Sources of Variance & ANOVA

Total Page:16

File Type:pdf, Size:1020Kb

Sources of Variance & ANOVA ANOVA ANalysis Of VAriance Sources of Variance & ANOVA Variance means “variation” • BG & WG ANOVA • Sum of Squares (SS) is the most common variation index – Partitioning Variation • SS stands for, “Sum of squared deviations between each of a –“making”F set of values and the mean of those values” – “making” effect sizes SS = ∑ (value – mean)2 • Things that “influence” F – Confounding So, Analysis Of Variance translates to “partitioning of SS” – Inflated within-condition variability • Integrating “stats” & “methods” In order to understand something about “how ANOVA works” we need to understand how BG and WG ANOVAs partition the SS differently and how F is constructed by each. Variance partitioning for a BG design Called “error” Tx C because we can’t account for why 20 30 the folks in a 10 30 condition -- who were all treated 10 20 the same – have different scores. 20 20 Mean 15 25 Variation among all the participants – Variation among represents variation Variation between the participants within due to “treatment conditions – represents each condition – effects” and “individual variation due to represents “individual differences” “treatment effects” differences” SSTotal =SSEffect +SSError An Example … Constructing BG F & r SSTotal = SSEffect + SSError Descriptives ANOVA SCORE SCORE Mean Square is the SS converted to a “mean” dividing it Sum of N Mean Std. Deviation Squares df Mean Square F Sig. 1.00 10 28.9344 8.00000 Between Groups 605.574 1 605.574 9.462 .007 by “the number of things” 2.00 10 17.9292 8.00000 Within Groups 1152.000 18 64.000 Total 20 23.4318 9.61790 Total 1757.574 19 •MS = SS / df Effect Effect IV dfEffect= k - 1 represents design size SS = SS + SS •MSerror = SSerror / dferror dferror = ∑n – k represents sample size total effect error 1757.574 = 605.574 + 1152.000 F is the ratio of “effect variation” (mean MSIV difference) * “individual variation” F= (within condition differences) r2 = SS / ( SS + SS ) MSerror effect effect error = 605.574 / ( 605.574 + 1152.000 ) = .34 r2 = Effect / (Effect + error) conceptual formula = SSEffect / ( SSEffect + SSerror ) definitional formula 2 r = F / (F + dferror) = F / (F + df ) computational forumla error = 9.462 / ( 9.462 + 18) = .34 Variance partitioning for a WG design Called “error” because we can’t Tx C Sum Dif account for why folks who were in the same 20 30 50 10 two conditions -- who were all treated the 10 30 40 20 same two ways – have different 10 20 30 10 difference scores. 20 20 40 0 Mean 15 25 Variation among Variation among participant’s difference participants – estimable scores – represents because “S” is a “individual differences” composite score (sum) SSTotal = SSEffect + SSSubj + SSError An Example … Descriptive Statistics Don’t ever do this with Constructing WG F & r SSTotal = SSEffect + SSSubj + SSError Mean Std. Deviation N SCORE 28.9344 8.00000 10 real data !!!!!! SCORE2 17.9292 8.00000 10 Mean Square is the SS converted to a “mean” dividing it Tests of Within-Subjects Effects Measure: MEASURE_1 by “the number of things” Type III Sum Source of Squares df Mean Square F Sig. factor1 Sphericity Assumed 605.574 1 605.574 19.349 .002 •MS = SS / df Error(factor1) Sphericity Assumed 281.676 9 31.297 effect effect effect dfeffect = k - 1 represents design size •MS = SS / df Tests of Between-Subjects Effects error error error dferror = (k-1)(s-1) represents sample size Measure: MEASURE_1 Transformed Variable: Average Type III Sum F is the ratio of “effect variation” (mean Source of Squares df Mean Square F Sig. MS Intercept 10980.981 1 10980.981 113.554 .000 difference) * “individual variation” effect Error 870.325 9 96.703 (within condition differences). “Subject F= variation” is neither effect nor error, and MS SStotal = SSeffect + SSsubj + SSerror is left out of the F calculation. error 1757.574 = 605.574 + 281.676 + 870.325 2 r2 = effect / (effect + error) conceptual formula Professional r = SSeffect / ( SSeffect + SSerror ) statistician on a = 605.574 / ( 605.574 + 281.676 ) = .68 = SSeffect / ( SSeffect + SSerror ) definitional formula closed course. 2 = F / (F + dferror) computational forumla Do not try at r = F / (F + dferror) home! = 19.349 / ( 19.349 + 9) = .68 What happened????? Same data. Same means & Std. Same total variance. Different F ??? BG ANOVA SSTotal = SSEffect + SSError WG ANOVA SSTotal = SSEffect + SSSubj + SSError The variation that is called “error” for the BG ANOVA is divided between “subject” and “error” variation in the WG ANOVA. Thus, the WG F is based on a smaller error term than the BG F and so, the WG F is generally larger than the BG F. It is important to note that the dferror also changes… BG dfTotal = dfEffect + dfError WG dfTotal = dfEffect + dfSubj + dfError So, whether F-BG or F-WG is larger depends upon how much variation is due to subject variability Control, variance partitioning & F… What happened????? Same data. Same means & Std. Same total variance. Different r ??? ANOVA was designed to analyze data from studies with… • Samples that represent the target populations r2 = Effect / (Effect + error) conceptual formula • True Experimental designs • proper RA = SSEffect / ( SSEffect + SSerror ) definitional formula • well-controlled IV manipulation = F / (F + dferror) computational forumla • Good procedural standardization • No confounds ANOVA is a very simple statistical model that assumes there The variation that is called “error” for the BG ANOVA is divided are few sources of variability in the data between “subject” and “error” variation in the WG ANOVA. BG SS = SS + SS SSEffect / dfEffect Total Effect Error F = WG SS = SS +SS +SS Total Effect Subj Error SS / df Thus, the WG r is based on a smaller error term than the BG r error error and so, the WG r is generally larger than the BG r. However, as we’ve discussed, most data we’re asked to analyze are not from experimental designs. 2 other sources of variation we need to consider whenever we are working with quasi- or non-experiments are… Between-condition procedural variation -- confounds • any source of between-condition differences other than the IV • subject variable confounds (initial equiv) • procedural variable confounds (ongoing equiv.) • influence the numerator of F Within-condition procedural variation – (sorry, no agreed-upon label) • any source of within-condition differences other than “naturally occurring population individual differences” • subject variable diffs not representing the population • procedural variable influences on within cond variation • influence the denominator of F These considerations lead us to a somewhat more realistic Imagine an educational study that compares the effects of two model of the variation in the DV… types of math instruction (IV) upon performance (% - DV) Participants were randomly assigned to conditons, treated, then allowed to practice (Prac) as many problems as they wanted to before taking the DV-producing test SSTotal =SSIV +SSconfound +SSindif +SSwcvar Confounding due to Practice • mean prac dif between cond Control Grp Exper. Grp Sources of variability… Prac DV Prac DV WC variability due to Practice SS IV • wg corrrelation or prac & DV IV S1 5 75 S2 10 82 SS initial & ongoing equivalence problems confound S3 5 74 S4 10 84 IV SS population individual differences compare Ss 5&2 - 7&4 indif S5 10 78 S6 15 88 SS non-population individual differences wcvar S7 10 79 S8 15 89 Individual differences • compare Ss 1&3, 5&7, 2&4, or 6&8 SSIV +SSconfound / dfIV SSEffect / dfEffect F = ≠ SSindif +SSWCVAR / dferror SSerror / dferror r The problem is that the F-formula will … = F / (F + dferror) • Ignore the confounding caused by differential practice between the groups and attribute all BG variation to the type of instruction (IV) overestimating the SSeffect • Ignore the changes in within-condition variation caused by differential practice within the groups and attribute all WG variation to individual differences overestimating SSerror • As a result, the F & r values won’t properly reflect the relationship between type of math instruction and performance we will make statistical conclusion errors ! • We have 2 strategies: • Identify and procedurally control “inappropriate” sources • Include those sources in our statistical analyses Both strategies require that we have a “richer” model for SS Both strategies require that we have a “richer” model for variance sources – and that we can apply that model to our research! sources – and that we can apply that model to our research! The “better” SS model we’ll use … The “better” SS model we’ll use … SSTotal =SSIV + SSsubcon+ SSproccon + SSIndif+ SSwcsubinf +SSwcprocinf SSTotal =SSIV +SSsubcon+ SSproccon + SSIndif+ SSwcsubinf +SSwcprocinf Sources of variability… In order to apply this model, we have to understand: SSIV IV 1. How these variance sources relate to aspects of … • IV manipulation & Population selection SSsubcon subject variable confounds (initial eq problems) • Initial equivalence & ongoing equivalence SS procedural variable confounds (ongoing eq pbms) proccon • Sampling & procedural standardization SS population individual differences 2. How these variance sources befoul SSEffect, SSerror & F of indif the simple ANOVA model SS within-condition subject variable influences wcsubinf •SSIV numerator SSwcprocinf within-condition procedural variable influences • SS denominator Sources of variability their influence on SSEffect, SSerror & F… SSIV IV “Bigger manipulations” produce larger mean differences • larger SSeffect larger numerator
Recommended publications
  • Higher-Order Asymptotics
    Higher-Order Asymptotics Todd Kuffner Washington University in St. Louis WHOA-PSI 2016 1 / 113 First- and Higher-Order Asymptotics Classical Asymptotics in Statistics: available sample size n ! 1 First-Order Asymptotic Theory: asymptotic statements that are correct to order O(n−1=2) Higher-Order Asymptotics: refinements to first-order results 1st order 2nd order 3rd order kth order error O(n−1=2) O(n−1) O(n−3=2) O(n−k=2) or or or or o(1) o(n−1=2) o(n−1) o(n−(k−1)=2) Why would anyone care? deeper understanding more accurate inference compare different approaches (which agree to first order) 2 / 113 Points of Emphasis Convergence pointwise or uniform? Error absolute or relative? Deviation region moderate or large? 3 / 113 Common Goals Refinements for better small-sample performance Example Edgeworth expansion (absolute error) Example Barndorff-Nielsen’s R∗ Accurate Approximation Example saddlepoint methods (relative error) Example Laplace approximation Comparative Asymptotics Example probability matching priors Example conditional vs. unconditional frequentist inference Example comparing analytic and bootstrap procedures Deeper Understanding Example sources of inaccuracy in first-order theory Example nuisance parameter effects 4 / 113 Is this relevant for high-dimensional statistical models? The Classical asymptotic regime is when the parameter dimension p is fixed and the available sample size n ! 1. What if p < n or p is close to n? 1. Find a meaningful non-asymptotic analysis of the statistical procedure which works for any n or p (concentration inequalities) 2. Allow both n ! 1 and p ! 1. 5 / 113 Some First-Order Theory Univariate (classical) CLT: Assume X1;X2;::: are i.i.d.
    [Show full text]
  • 1. How Different Is the T Distribution from the Normal?
    Statistics 101–106 Lecture 7 (20 October 98) c David Pollard Page 1 Read M&M §7.1 and §7.2, ignoring starred parts. Reread M&M §3.2. The eects of estimated variances on normal approximations. t-distributions. Comparison of two means: pooling of estimates of variances, or paired observations. In Lecture 6, when discussing comparison of two Binomial proportions, I was content to estimate unknown variances when calculating statistics that were to be treated as approximately normally distributed. You might have worried about the effect of variability of the estimate. W. S. Gosset (“Student”) considered a similar problem in a very famous 1908 paper, where the role of Student’s t-distribution was first recognized. Gosset discovered that the effect of estimated variances could be described exactly in a simplified problem where n independent observations X1,...,Xn are taken from (, ) = ( + ...+ )/ a normal√ distribution, N . The sample mean, X X1 Xn n has a N(, / n) distribution. The random variable X Z = √ / n 2 2 Phas a standard normal distribution. If we estimate by the sample variance, s = ( )2/( ) i Xi X n 1 , then the resulting statistic, X T = √ s/ n no longer has a normal distribution. It has a t-distribution on n 1 degrees of freedom. Remark. I have written T , instead of the t used by M&M page 505. I find it causes confusion that t refers to both the name of the statistic and the name of its distribution. As you will soon see, the estimation of the variance has the effect of spreading out the distribution a little beyond what it would be if were used.
    [Show full text]
  • On the Meaning and Use of Kurtosis
    Psychological Methods Copyright 1997 by the American Psychological Association, Inc. 1997, Vol. 2, No. 3,292-307 1082-989X/97/$3.00 On the Meaning and Use of Kurtosis Lawrence T. DeCarlo Fordham University For symmetric unimodal distributions, positive kurtosis indicates heavy tails and peakedness relative to the normal distribution, whereas negative kurtosis indicates light tails and flatness. Many textbooks, however, describe or illustrate kurtosis incompletely or incorrectly. In this article, kurtosis is illustrated with well-known distributions, and aspects of its interpretation and misinterpretation are discussed. The role of kurtosis in testing univariate and multivariate normality; as a measure of departures from normality; in issues of robustness, outliers, and bimodality; in generalized tests and estimators, as well as limitations of and alternatives to the kurtosis measure [32, are discussed. It is typically noted in introductory statistics standard deviation. The normal distribution has a kur- courses that distributions can be characterized in tosis of 3, and 132 - 3 is often used so that the refer- terms of central tendency, variability, and shape. With ence normal distribution has a kurtosis of zero (132 - respect to shape, virtually every textbook defines and 3 is sometimes denoted as Y2)- A sample counterpart illustrates skewness. On the other hand, another as- to 132 can be obtained by replacing the population pect of shape, which is kurtosis, is either not discussed moments with the sample moments, which gives or, worse yet, is often described or illustrated incor- rectly. Kurtosis is also frequently not reported in re- ~(X i -- S)4/n search articles, in spite of the fact that virtually every b2 (•(X i - ~')2/n)2' statistical package provides a measure of kurtosis.
    [Show full text]
  • The Method of Maximum Likelihood for Simple Linear Regression
    08:48 Saturday 19th September, 2015 See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 6: The Method of Maximum Likelihood for Simple Linear Regression 36-401, Fall 2015, Section B 17 September 2015 1 Recapitulation We introduced the method of maximum likelihood for simple linear regression in the notes for two lectures ago. Let's review. We start with the statistical model, which is the Gaussian-noise simple linear regression model, defined as follows: 1. The distribution of X is arbitrary (and perhaps X is even non-random). 2. If X = x, then Y = β0 + β1x + , for some constants (\coefficients", \parameters") β0 and β1, and some random noise variable . 3. ∼ N(0; σ2), and is independent of X. 4. is independent across observations. A consequence of these assumptions is that the response variable Y is indepen- dent across observations, conditional on the predictor X, i.e., Y1 and Y2 are independent given X1 and X2 (Exercise 1). As you'll recall, this is a special case of the simple linear regression model: the first two assumptions are the same, but we are now assuming much more about the noise variable : it's not just mean zero with constant variance, but it has a particular distribution (Gaussian), and everything we said was uncorrelated before we now strengthen to independence1. Because of these stronger assumptions, the model tells us the conditional pdf 2 of Y for each x, p(yjX = x; β0; β1; σ ). (This notation separates the random variables from the parameters.) Given any data set (x1; y1); (x2; y2);::: (xn; yn), we can now write down the probability density, under the model, of seeing that data: n n (y −(β +β x ))2 Y 2 Y 1 − i 0 1 i p(yijxi; β0; β1; σ ) = p e 2σ2 2 i=1 i=1 2πσ 1See the notes for lecture 1 for a reminder, with an explicit example, of how uncorrelated random variables can nonetheless be strongly statistically dependent.
    [Show full text]
  • Use of the Kurtosis Statistic in the Frequency Domain As an Aid In
    lEEE JOURNALlEEE OF OCEANICENGINEERING, VOL. OE-9, NO. 2, APRIL 1984 85 Use of the Kurtosis Statistic in the FrequencyDomain as an Aid in Detecting Random Signals Absmact-Power spectral density estimation is often employed as a couldbe utilized in signal processing. The objective ofthis method for signal ,detection. For signals which occur randomly, a paper is to compare the PSD technique for signal processing frequency domain kurtosis estimate supplements the power spectral witha new methodwhich computes the frequency domain density estimate and, in some cases, can be.employed to detect their presence. This has been verified from experiments vith real data of kurtosis (FDK) [2] forthe real and imaginary parts of the randomly occurring signals. In order to better understand the detec- complex frequency components. Kurtosis is defined as a ratio tion of randomlyoccurring signals, sinusoidal and narrow-band of a fourth-order central moment to the square of a second- Gaussian signals are considered, which when modeled to represent a order central moment. fading or multipath environment, are received as nowGaussian in Using theNeyman-Pearson theory in thetime domain, terms of a frequency domain kurtosis estimate. Several fading and multipath propagation probability density distributions of practical Ferguson [3] , has shown that kurtosis is a locally optimum interestare considered, including Rayleigh and log-normal. The detectionstatistic under certain conditions. The reader is model is generalized to handle transient and frequency modulated referred to Ferguson'swork for the details; however, it can signals by taking into account the probability of the signal being in a be simply said thatit is concernedwith detecting outliers specific frequency range over the total data interval.
    [Show full text]
  • Volatility Modeling Using the Student's T Distribution
    Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Economics Aris Spanos, Chair Richard Ashley Raman Kumar Anya McGuirk Dennis Yang August 29, 2003 Blacksburg, Virginia Keywords: Student’s t Distribution, Multivariate GARCH, VAR, Exchange Rates Copyright 2003, Maria S. Heracleous Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous (ABSTRACT) Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of uni- variateandmultivariateGARCHtypemodels.Whiletheunivariatemodelshavebeenrelatively successful in empirical studies, they suffer from a number of weaknesses, such as unverifiable param- eter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization. This dissertation uses the Student’s t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations. Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatil- ity literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student’s t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data.
    [Show full text]
  • Calculating Variance and Standard Deviation
    VARIANCE AND STANDARD DEVIATION Recall that the range is the difference between the upper and lower limits of the data. While this is important, it does have one major disadvantage. It does not describe the variation among the variables. For instance, both of these sets of data have the same range, yet their values are definitely different. 90, 90, 90, 98, 90 Range = 8 1, 6, 8, 1, 9, 5 Range = 8 To better describe the variation, we will introduce two other measures of variation—variance and standard deviation (the variance is the square of the standard deviation). These measures tell us how much the actual values differ from the mean. The larger the standard deviation, the more spread out the values. The smaller the standard deviation, the less spread out the values. This measure is particularly helpful to teachers as they try to find whether their students’ scores on a certain test are closely related to the class average. To find the standard deviation of a set of values: a. Find the mean of the data b. Find the difference (deviation) between each of the scores and the mean c. Square each deviation d. Sum the squares e. Dividing by one less than the number of values, find the “mean” of this sum (the variance*) f. Find the square root of the variance (the standard deviation) *Note: In some books, the variance is found by dividing by n. In statistics it is more useful to divide by n -1. EXAMPLE Find the variance and standard deviation of the following scores on an exam: 92, 95, 85, 80, 75, 50 SOLUTION First we find the mean of the data: 92+95+85+80+75+50 477 Mean = = = 79.5 6 6 Then we find the difference between each score and the mean (deviation).
    [Show full text]
  • Statistical Models in R Some Examples
    Statistical Models Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Statistical Models Outline Statistical Models Linear Models in R Statistical Models Regression Regression analysis is the appropriate statistical method when the response variable and all explanatory variables are continuous. Here, we only discuss linear regression, the simplest and most common form. Remember that a statistical model attempts to approximate the response variable Y as a mathematical function of the explanatory variables X1;:::; Xn. This mathematical function may involve parameters. Regression analysis attempts to use sample data find the parameters that produce the best model Statistical Models Linear Models The simplest such model is a linear model with a unique explanatory variable, which takes the following form. y^ = a + bx: Here, y is the response variable vector, x the explanatory variable, y^ is the vector of fitted values and a (intercept) and b (slope) are real numbers. Plotting y versus x, this model represents a line through the points. For a given index i,y ^i = a + bxi approximates yi . Regression amounts to finding a and b that gives the best fit. Statistical Models Linear Model with 1 Explanatory Variable ● 10 ● ● ● ● ● 5 y ● ● ● ● ● ● y ● ● y−hat ● ● ● ● 0 ● ● ● ● x=2 0 1 2 3 4 5 x Statistical Models Plotting Commands for the record The plot was generated with test data xR, yR with: > plot(xR, yR, xlab = "x", ylab = "y") > abline(v = 2, lty = 2) > abline(a = -2, b = 2, col = "blue") > points(c(2), yR[9], pch = 16, col = "red") > points(c(2), c(2), pch = 16, col = "red") > text(2.5, -4, "x=2", cex = 1.5) > text(1.8, 3.9, "y", cex = 1.5) > text(2.5, 1.9, "y-hat", cex = 1.5) Statistical Models Linear Regression = Minimize RSS Least Squares Fit In linear regression the best fit is found by minimizing n n X 2 X 2 RSS = (yi − y^i ) = (yi − (a + bxi )) : i=1 i=1 This is a Calculus I problem.
    [Show full text]
  • A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications
    Special Publication 800-22 Revision 1a A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications AndrewRukhin,JuanSoto,JamesNechvatal,Miles Smid,ElaineBarker,Stefan Leigh,MarkLevenson,Mark Vangel,DavidBanks,AlanHeckert,JamesDray,SanVo Revised:April2010 LawrenceE BasshamIII A Statistical Test Suite for Random and Pseudorandom Number Generators for NIST Special Publication 800-22 Revision 1a Cryptographic Applications 1 2 Andrew Rukhin , Juan Soto , James 2 2 Nechvatal , Miles Smid , Elaine 2 1 Barker , Stefan Leigh , Mark 1 1 Levenson , Mark Vangel , David 1 1 2 Banks , Alan Heckert , James Dray , 2 San Vo Revised: April 2010 2 Lawrence E Bassham III C O M P U T E R S E C U R I T Y 1 Statistical Engineering Division 2 Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 Revised: April 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick Gallagher, Director A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems.
    [Show full text]
  • Variance Difference Between Maximum Likelihood Estimation Method and Expected a Posteriori Estimation Method Viewed from Number of Test Items
    Vol. 11(16), pp. 1579-1589, 23 August, 2016 DOI: 10.5897/ERR2016.2807 Article Number: B2D124860158 ISSN 1990-3839 Educational Research and Reviews Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/ERR Full Length Research Paper Variance difference between maximum likelihood estimation method and expected A posteriori estimation method viewed from number of test items Jumailiyah Mahmud*, Muzayanah Sutikno and Dali S. Naga 1Institute of Teaching and Educational Sciences of Mataram, Indonesia. 2State University of Jakarta, Indonesia. 3 University of Tarumanegara, Indonesia. Received 8 April, 2016; Accepted 12 August, 2016 The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice items of 5 alternatives. The total items are 102 and 3159 respondents which were drawn using random matrix sampling technique, thus 73 items were generated which were qualified based on classical theory and IRT. The study examines 5 hypotheses. The results are variance of the estimation method using MLE is higher than the estimation method using EAP on the test consisting of 25 items with F= 1.602, variance of the estimation method using MLE is higher than the estimation method using EAP on the test consisting of 50 items with F= 1.332, variance of estimation with the test of 50 items is higher than the test of 25 items, and variance of estimation with the test of 50 items is higher than the test of 25 items on EAP method with F=1.329.
    [Show full text]
  • Chapter 5 Statistical Models in Simulation
    Chapter 5 Statistical Models in Simulation Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model might well describe the variations. An appropriate model can be developed by sampling the phenomenon of interest: Select a known distribution through educated guesses Make estimate of the parameter(s) Test for goodness of fit In this chapter: Review several important probability distributions Present some typical application of these models ٢ ١ Review of Terminology and Concepts In this section, we will review the following concepts: Discrete random variables Continuous random variables Cumulative distribution function Expectation ٣ Discrete Random Variables [Probability Review] X is a discrete random variable if the number of possible values of X is finite, or countably infinite. Example: Consider jobs arriving at a job shop. Let X be the number of jobs arriving each week at a job shop. Rx = possible values of X (range space of X) = {0,1,2,…} p(xi) = probability the random variable is xi = P(X = xi) p(xi), i = 1,2, … must satisfy: 1. p(xi ) ≥ 0, for all i ∞ 2. p(x ) =1 ∑i=1 i The collection of pairs [xi, p(xi)], i = 1,2,…, is called the probability distribution of X, and p(xi) is called the probability mass function (pmf) of X. ٤ ٢ Continuous Random Variables [Probability Review] X is a continuous random variable if its range space Rx is an interval or a collection of intervals. The probability that X lies in the interval [a,b] is given by: b P(a ≤ X ≤ b) = f (x)dx ∫a f(x), denoted as the pdf of X, satisfies: 1.
    [Show full text]
  • Analysis of Variance with Summary Statistics in Microsoft Excel
    American Journal of Business Education – April 2010 Volume 3, Number 4 Analysis Of Variance With Summary Statistics In Microsoft Excel David A. Larson, University of South Alabama, USA Ko-Cheng Hsu, University of South Alabama, USA ABSTRACT Students regularly are asked to solve Single Factor Analysis of Variance problems given only the sample summary statistics (number of observations per category, category means, and corresponding category standard deviations). Most undergraduate students today use Excel for data analysis of this type. However, Excel, like all other statistical software packages, requires an input data set in order to invoke its Anova: Single Factor procedure. The purpose of this paper is therefore to provide the student with an Excel macro that, given just the sample summary statistics as input, generates an equivalent underlying data set. This data set can then be used as the required input data set in Excel for Single Factor Analysis of Variance. Keywords: Analysis of Variance, Summary Statistics, Excel Macro INTRODUCTION ost students have migrated to Excel for data analysis because of Excel‟s pervasive accessibility. This means, given just the summary statistics for Analysis of Variance, the Excel user is either limited to solving the problem by hand or to solving the problem using an Excel Add-in. Both of Mthese options have shortcomings. Solving by hand means there is no Excel counterpart solution that puts the entire answer „right there in front of the student‟. Using an Excel Add-in is often not an option because, typically, Excel Add-ins are not available. The purpose of this paper, therefore, is to explain how to accomplish analysis of variance using an equivalent input data set and also to provide the Excel user with a straight-forward macro that accomplishes this technique.
    [Show full text]