Statistical Modeling Methods: Challenges and Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Higher-Order Asymptotics
Higher-Order Asymptotics Todd Kuffner Washington University in St. Louis WHOA-PSI 2016 1 / 113 First- and Higher-Order Asymptotics Classical Asymptotics in Statistics: available sample size n ! 1 First-Order Asymptotic Theory: asymptotic statements that are correct to order O(n−1=2) Higher-Order Asymptotics: refinements to first-order results 1st order 2nd order 3rd order kth order error O(n−1=2) O(n−1) O(n−3=2) O(n−k=2) or or or or o(1) o(n−1=2) o(n−1) o(n−(k−1)=2) Why would anyone care? deeper understanding more accurate inference compare different approaches (which agree to first order) 2 / 113 Points of Emphasis Convergence pointwise or uniform? Error absolute or relative? Deviation region moderate or large? 3 / 113 Common Goals Refinements for better small-sample performance Example Edgeworth expansion (absolute error) Example Barndorff-Nielsen’s R∗ Accurate Approximation Example saddlepoint methods (relative error) Example Laplace approximation Comparative Asymptotics Example probability matching priors Example conditional vs. unconditional frequentist inference Example comparing analytic and bootstrap procedures Deeper Understanding Example sources of inaccuracy in first-order theory Example nuisance parameter effects 4 / 113 Is this relevant for high-dimensional statistical models? The Classical asymptotic regime is when the parameter dimension p is fixed and the available sample size n ! 1. What if p < n or p is close to n? 1. Find a meaningful non-asymptotic analysis of the statistical procedure which works for any n or p (concentration inequalities) 2. Allow both n ! 1 and p ! 1. 5 / 113 Some First-Order Theory Univariate (classical) CLT: Assume X1;X2;::: are i.i.d. -
Model Selection for Optimal Prediction in Statistical Machine Learning
Model Selection for Optimal Prediction in Statistical Machine Learning Ernest Fokou´e Introduction science with several ideas from cognitive neuroscience and At the core of all our modern-day advances in artificial in- psychology to inspire the creation, invention, and discov- telligence is the emerging field of statistical machine learn- ery of abstract models that attempt to learn and extract pat- ing (SML). From a very general perspective, SML can be terns from the data. One could think of SML as a field thought of as a field of mathematical sciences that com- of science dedicated to building models endowed with bines mathematics, probability, statistics, and computer the ability to learn from the data in ways similar to the ways humans learn, with the ultimate goal of understand- Ernest Fokou´eis a professor of statistics at Rochester Institute of Technology. His ing and then mastering our complex world well enough email address is [email protected]. to predict its unfolding as accurately as possible. One Communicated by Notices Associate Editor Emilie Purvine. of the earliest applications of statistical machine learning For permission to reprint this article, please contact: centered around the now ubiquitous MNIST benchmark [email protected]. task, which consists of building statistical models (also DOI: https://doi.org/10.1090/noti2014 FEBRUARY 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 155 known as learning machines) that automatically learn and Theoretical Foundations accurately recognize handwritten digits from the United It is typical in statistical machine learning that a given States Postal Service (USPS). A typical deployment of an problem will be solved in a wide variety of different ways. -
The Method of Maximum Likelihood for Simple Linear Regression
08:48 Saturday 19th September, 2015 See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 6: The Method of Maximum Likelihood for Simple Linear Regression 36-401, Fall 2015, Section B 17 September 2015 1 Recapitulation We introduced the method of maximum likelihood for simple linear regression in the notes for two lectures ago. Let's review. We start with the statistical model, which is the Gaussian-noise simple linear regression model, defined as follows: 1. The distribution of X is arbitrary (and perhaps X is even non-random). 2. If X = x, then Y = β0 + β1x + , for some constants (\coefficients", \parameters") β0 and β1, and some random noise variable . 3. ∼ N(0; σ2), and is independent of X. 4. is independent across observations. A consequence of these assumptions is that the response variable Y is indepen- dent across observations, conditional on the predictor X, i.e., Y1 and Y2 are independent given X1 and X2 (Exercise 1). As you'll recall, this is a special case of the simple linear regression model: the first two assumptions are the same, but we are now assuming much more about the noise variable : it's not just mean zero with constant variance, but it has a particular distribution (Gaussian), and everything we said was uncorrelated before we now strengthen to independence1. Because of these stronger assumptions, the model tells us the conditional pdf 2 of Y for each x, p(yjX = x; β0; β1; σ ). (This notation separates the random variables from the parameters.) Given any data set (x1; y1); (x2; y2);::: (xn; yn), we can now write down the probability density, under the model, of seeing that data: n n (y −(β +β x ))2 Y 2 Y 1 − i 0 1 i p(yijxi; β0; β1; σ ) = p e 2σ2 2 i=1 i=1 2πσ 1See the notes for lecture 1 for a reminder, with an explicit example, of how uncorrelated random variables can nonetheless be strongly statistically dependent. -
Use of the Kurtosis Statistic in the Frequency Domain As an Aid In
lEEE JOURNALlEEE OF OCEANICENGINEERING, VOL. OE-9, NO. 2, APRIL 1984 85 Use of the Kurtosis Statistic in the FrequencyDomain as an Aid in Detecting Random Signals Absmact-Power spectral density estimation is often employed as a couldbe utilized in signal processing. The objective ofthis method for signal ,detection. For signals which occur randomly, a paper is to compare the PSD technique for signal processing frequency domain kurtosis estimate supplements the power spectral witha new methodwhich computes the frequency domain density estimate and, in some cases, can be.employed to detect their presence. This has been verified from experiments vith real data of kurtosis (FDK) [2] forthe real and imaginary parts of the randomly occurring signals. In order to better understand the detec- complex frequency components. Kurtosis is defined as a ratio tion of randomlyoccurring signals, sinusoidal and narrow-band of a fourth-order central moment to the square of a second- Gaussian signals are considered, which when modeled to represent a order central moment. fading or multipath environment, are received as nowGaussian in Using theNeyman-Pearson theory in thetime domain, terms of a frequency domain kurtosis estimate. Several fading and multipath propagation probability density distributions of practical Ferguson [3] , has shown that kurtosis is a locally optimum interestare considered, including Rayleigh and log-normal. The detectionstatistic under certain conditions. The reader is model is generalized to handle transient and frequency modulated referred to Ferguson'swork for the details; however, it can signals by taking into account the probability of the signal being in a be simply said thatit is concernedwith detecting outliers specific frequency range over the total data interval. -
Linear Regression: Goodness of Fit and Model Selection
Linear Regression: Goodness of Fit and Model Selection 1 Goodness of Fit I Goodness of fit measures for linear regression are attempts to understand how well a model fits a given set of data. I Models almost never describe the process that generated a dataset exactly I Models approximate reality I However, even models that approximate reality can be used to draw useful inferences or to prediction future observations I ’All Models are wrong, but some are useful’ - George Box 2 Goodness of Fit I We have seen how to check the modelling assumptions of linear regression: I checking the linearity assumption I checking for outliers I checking the normality assumption I checking the distribution of the residuals does not depend on the predictors I These are essential qualitative checks of goodness of fit 3 Sample Size I When making visual checks of data for goodness of fit is important to consider sample size I From a multiple regression model with 2 predictors: I On the left is a histogram of the residuals I On the right is residual vs predictor plot for each of the two predictors 4 Sample Size I The histogram doesn’t look normal but there are only 20 datapoint I We should not expect a better visual fit I Inferences from the linear model should be valid 5 Outliers I Often (particularly when a large dataset is large): I the majority of the residuals will satisfy the model checking assumption I a small number of residuals will violate the normality assumption: they will be very big or very small I Outliers are often generated by a process distinct from those which we are primarily interested in. -
Scalable Model Selection for Spatial Additive Mixed Modeling: Application to Crime Analysis
Scalable model selection for spatial additive mixed modeling: application to crime analysis Daisuke Murakami1,2,*, Mami Kajita1, Seiji Kajita1 1Singular Perturbations Co. Ltd., 1-5-6 Risona Kudan Building, Kudanshita, Chiyoda, Tokyo, 102-0074, Japan 2Department of Statistical Data Science, Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562, Japan * Corresponding author (Email: [email protected]) Abstract: A rapid growth in spatial open datasets has led to a huge demand for regression approaches accommodating spatial and non-spatial effects in big data. Regression model selection is particularly important to stably estimate flexible regression models. However, conventional methods can be slow for large samples. Hence, we develop a fast and practical model-selection approach for spatial regression models, focusing on the selection of coefficient types that include constant, spatially varying, and non-spatially varying coefficients. A pre-processing approach, which replaces data matrices with small inner products through dimension reduction dramatically accelerates the computation speed of model selection. Numerical experiments show that our approach selects the model accurately and computationally efficiently, highlighting the importance of model selection in the spatial regression context. Then, the present approach is applied to open data to investigate local factors affecting crime in Japan. The results suggest that our approach is useful not only for selecting factors influencing crime risk but also for predicting crime events. This scalable model selection will be key to appropriately specifying flexible and large-scale spatial regression models in the era of big data. The developed model selection approach was implemented in the R package spmoran. Keywords: model selection; spatial regression; crime; fast computation; spatially varying coefficient modeling 1. -
Model Selection Techniques: an Overview
Model Selection Techniques An overview ©ISTOCKPHOTO.COM/GREMLIN Jie Ding, Vahid Tarokh, and Yuhong Yang n the era of big data, analysts usually explore various statis- following different philosophies and exhibiting varying per- tical models or machine-learning methods for observed formances. The purpose of this article is to provide a compre- data to facilitate scientific discoveries or gain predictive hensive overview of them, in terms of their motivation, large power. Whatever data and fitting procedures are employed, sample performance, and applicability. We provide integrated Ia crucial step is to select the most appropriate model or meth- and practically relevant discussions on theoretical properties od from a set of candidates. Model selection is a key ingredi- of state-of-the-art model selection approaches. We also share ent in data analysis for reliable and reproducible statistical our thoughts on some controversial views on the practice of inference or prediction, and thus it is central to scientific stud- model selection. ies in such fields as ecology, economics, engineering, finance, political science, biology, and epidemiology. There has been a Why model selection long history of model selection techniques that arise from Vast developments in hardware storage, precision instrument researches in statistics, information theory, and signal process- manufacturing, economic globalization, and so forth have ing. A considerable number of methods has been proposed, generated huge volumes of data that can be analyzed to extract useful information. Typical statistical inference or machine- learning procedures learn from and make predictions on data Digital Object Identifier 10.1109/MSP.2018.2867638 Date of publication: 13 November 2018 by fitting parametric or nonparametric models (in a broad 16 IEEE SIGNAL PROCESSING MAGAZINE | November 2018 | 1053-5888/18©2018IEEE sense). -
Least Squares After Model Selection in High-Dimensional Sparse Models.” DOI:10.3150/11-BEJ410SUPP
Bernoulli 19(2), 2013, 521–547 DOI: 10.3150/11-BEJ410 Least squares after model selection in high-dimensional sparse models ALEXANDRE BELLONI1 and VICTOR CHERNOZHUKOV2 1100 Fuqua Drive, Durham, North Carolina 27708, USA. E-mail: [email protected] 250 Memorial Drive, Cambridge, Massachusetts 02142, USA. E-mail: [email protected] In this article we study post-model selection estimators that apply ordinary least squares (OLS) to the model selected by first-step penalized estimators, typically Lasso. It is well known that Lasso can estimate the nonparametric regression function at nearly the oracle rate, and is thus hard to improve upon. We show that the OLS post-Lasso estimator performs at least as well as Lasso in terms of the rate of convergence, and has the advantage of a smaller bias. Remarkably, this performance occurs even if the Lasso-based model selection “fails” in the sense of missing some components of the “true” regression model. By the “true” model, we mean the best s-dimensional approximation to the nonparametric regression function chosen by the oracle. Furthermore, OLS post-Lasso estimator can perform strictly better than Lasso, in the sense of a strictly faster rate of convergence, if the Lasso-based model selection correctly includes all components of the “true” model as a subset and also achieves sufficient sparsity. In the extreme case, when Lasso perfectly selects the “true” model, the OLS post-Lasso estimator becomes the oracle estimator. An important ingredient in our analysis is a new sparsity bound on the dimension of the model selected by Lasso, which guarantees that this dimension is at most of the same order as the dimension of the “true” model. -
Statistical Models in R Some Examples
Statistical Models Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Statistical Models Outline Statistical Models Linear Models in R Statistical Models Regression Regression analysis is the appropriate statistical method when the response variable and all explanatory variables are continuous. Here, we only discuss linear regression, the simplest and most common form. Remember that a statistical model attempts to approximate the response variable Y as a mathematical function of the explanatory variables X1;:::; Xn. This mathematical function may involve parameters. Regression analysis attempts to use sample data find the parameters that produce the best model Statistical Models Linear Models The simplest such model is a linear model with a unique explanatory variable, which takes the following form. y^ = a + bx: Here, y is the response variable vector, x the explanatory variable, y^ is the vector of fitted values and a (intercept) and b (slope) are real numbers. Plotting y versus x, this model represents a line through the points. For a given index i,y ^i = a + bxi approximates yi . Regression amounts to finding a and b that gives the best fit. Statistical Models Linear Model with 1 Explanatory Variable ● 10 ● ● ● ● ● 5 y ● ● ● ● ● ● y ● ● y−hat ● ● ● ● 0 ● ● ● ● x=2 0 1 2 3 4 5 x Statistical Models Plotting Commands for the record The plot was generated with test data xR, yR with: > plot(xR, yR, xlab = "x", ylab = "y") > abline(v = 2, lty = 2) > abline(a = -2, b = 2, col = "blue") > points(c(2), yR[9], pch = 16, col = "red") > points(c(2), c(2), pch = 16, col = "red") > text(2.5, -4, "x=2", cex = 1.5) > text(1.8, 3.9, "y", cex = 1.5) > text(2.5, 1.9, "y-hat", cex = 1.5) Statistical Models Linear Regression = Minimize RSS Least Squares Fit In linear regression the best fit is found by minimizing n n X 2 X 2 RSS = (yi − y^i ) = (yi − (a + bxi )) : i=1 i=1 This is a Calculus I problem. -
A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications
Special Publication 800-22 Revision 1a A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications AndrewRukhin,JuanSoto,JamesNechvatal,Miles Smid,ElaineBarker,Stefan Leigh,MarkLevenson,Mark Vangel,DavidBanks,AlanHeckert,JamesDray,SanVo Revised:April2010 LawrenceE BasshamIII A Statistical Test Suite for Random and Pseudorandom Number Generators for NIST Special Publication 800-22 Revision 1a Cryptographic Applications 1 2 Andrew Rukhin , Juan Soto , James 2 2 Nechvatal , Miles Smid , Elaine 2 1 Barker , Stefan Leigh , Mark 1 1 Levenson , Mark Vangel , David 1 1 2 Banks , Alan Heckert , James Dray , 2 San Vo Revised: April 2010 2 Lawrence E Bassham III C O M P U T E R S E C U R I T Y 1 Statistical Engineering Division 2 Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 Revised: April 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick Gallagher, Director A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. -
Model Selection and Estimation in Regression with Grouped Variables
J. R. Statist. Soc. B (2006) 68, Part 1, pp. 49–67 Model selection and estimation in regression with grouped variables Ming Yuan Georgia Institute of Technology, Atlanta, USA and Yi Lin University of Wisconsin—Madison, USA [Received November 2004. Revised August 2005] Summary. We consider the problem of selecting grouped variables (factors) for accurate pre- diction in regression. Such a problem arises naturally in many practical situations with the multi- factor analysis-of-variance problem as the most important and well-known example. Instead of selecting factors by stepwise backward elimination, we focus on the accuracy of estimation and consider extensions of the lasso, the LARS algorithm and the non-negative garrotte for factor selection. The lasso, the LARS algorithm and the non-negative garrotte are recently proposed regression methods that can be used to select individual variables. We study and propose effi- cient algorithms for the extensions of these methods for factor selection and show that these extensions give superior performance to the traditional stepwise backward elimination method in factor selection problems.We study the similarities and the differences between these methods. Simulations and real examples are used to illustrate the methods. Keywords: Analysis of variance; Lasso; Least angle regression; Non-negative garrotte; Piecewise linear solution path 1. Introduction In many regression problems we are interested in finding important explanatory factors in pre- dicting the response variable, where each explanatory factor may be represented by a group of derived input variables. The most common example is the multifactor analysis-of-variance (ANOVA) problem, in which each factor may have several levels and can be expressed through a group of dummy variables. -
Model Selection for Production System Via Automated Online Experiments
Model Selection for Production System via Automated Online Experiments Zhenwen Dai Praveen Ravichandran Spotify Spotify [email protected] [email protected] Ghazal Fazelnia Ben Carterette Mounia Lalmas-Roelleke Spotify Spotify Spotify [email protected] [email protected] [email protected] Abstract A challenge that machine learning practitioners in the industry face is the task of selecting the best model to deploy in production. As a model is often an intermedi- ate component of a production system, online controlled experiments such as A/B tests yield the most reliable estimation of the effectiveness of the whole system, but can only compare two or a few models due to budget constraints. We propose an automated online experimentation mechanism that can efficiently perform model se- lection from a large pool of models with a small number of online experiments. We derive the probability distribution of the metric of interest that contains the model uncertainty from our Bayesian surrogate model trained using historical logs. Our method efficiently identifies the best model by sequentially selecting and deploying a list of models from the candidate set that balance exploration-exploitation. Using simulations based on real data, we demonstrate the effectiveness of our method on two different tasks. 1 Introduction Evaluating the effect of individual changes to machine learning (ML) systems such as choice of algorithms, features, etc., is the key to growth in many internet services and industrial applications. Practitioners are faced with the decision of choosing one model from several candidates to deploy in production. This can be viewed as a model selection problem. Classical model selection paradigms such as cross-validation consider ML models in isolation and focus on selecting the model with the best predictive power on unseen data.