Least Squares After Model Selection in High-Dimensional Sparse Models.” DOI:10.3150/11-BEJ410SUPP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Model Selection for Optimal Prediction in Statistical Machine Learning
Model Selection for Optimal Prediction in Statistical Machine Learning Ernest Fokou´e Introduction science with several ideas from cognitive neuroscience and At the core of all our modern-day advances in artificial in- psychology to inspire the creation, invention, and discov- telligence is the emerging field of statistical machine learn- ery of abstract models that attempt to learn and extract pat- ing (SML). From a very general perspective, SML can be terns from the data. One could think of SML as a field thought of as a field of mathematical sciences that com- of science dedicated to building models endowed with bines mathematics, probability, statistics, and computer the ability to learn from the data in ways similar to the ways humans learn, with the ultimate goal of understand- Ernest Fokou´eis a professor of statistics at Rochester Institute of Technology. His ing and then mastering our complex world well enough email address is [email protected]. to predict its unfolding as accurately as possible. One Communicated by Notices Associate Editor Emilie Purvine. of the earliest applications of statistical machine learning For permission to reprint this article, please contact: centered around the now ubiquitous MNIST benchmark [email protected]. task, which consists of building statistical models (also DOI: https://doi.org/10.1090/noti2014 FEBRUARY 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 155 known as learning machines) that automatically learn and Theoretical Foundations accurately recognize handwritten digits from the United It is typical in statistical machine learning that a given States Postal Service (USPS). A typical deployment of an problem will be solved in a wide variety of different ways. -
A Robust Hybrid of Lasso and Ridge Regression
A robust hybrid of lasso and ridge regression Art B. Owen Stanford University October 2006 Abstract Ridge regression and the lasso are regularized versions of least squares regression using L2 and L1 penalties respectively, on the coefficient vector. To make these regressions more robust we may replace least squares with Huber’s criterion which is a hybrid of squared error (for relatively small errors) and absolute error (for relatively large ones). A reversed version of Huber’s criterion can be used as a hybrid penalty function. Relatively small coefficients contribute their L1 norm to this penalty while larger ones cause it to grow quadratically. This hybrid sets some coefficients to 0 (as lasso does) while shrinking the larger coefficients the way ridge regression does. Both the Huber and reversed Huber penalty functions employ a scale parameter. We provide an objective function that is jointly convex in the regression coefficient vector and these two scale parameters. 1 Introduction We consider here the regression problem of predicting y ∈ R based on z ∈ Rd. The training data are pairs (zi, yi) for i = 1, . , n. We suppose that each vector p of predictor vectors zi gets turned into a feature vector xi ∈ R via zi = φ(xi) for some fixed function φ. The predictor for y is linear in the features, taking the form µ + x0β where β ∈ Rp. In ridge regression (Hoerl and Kennard, 1970) we minimize over β, a criterion of the form n p X 0 2 X 2 (yi − µ − xiβ) + λ βj , (1) i=1 j=1 for a ridge parameter λ ∈ [0, ∞]. -
Linear Regression: Goodness of Fit and Model Selection
Linear Regression: Goodness of Fit and Model Selection 1 Goodness of Fit I Goodness of fit measures for linear regression are attempts to understand how well a model fits a given set of data. I Models almost never describe the process that generated a dataset exactly I Models approximate reality I However, even models that approximate reality can be used to draw useful inferences or to prediction future observations I ’All Models are wrong, but some are useful’ - George Box 2 Goodness of Fit I We have seen how to check the modelling assumptions of linear regression: I checking the linearity assumption I checking for outliers I checking the normality assumption I checking the distribution of the residuals does not depend on the predictors I These are essential qualitative checks of goodness of fit 3 Sample Size I When making visual checks of data for goodness of fit is important to consider sample size I From a multiple regression model with 2 predictors: I On the left is a histogram of the residuals I On the right is residual vs predictor plot for each of the two predictors 4 Sample Size I The histogram doesn’t look normal but there are only 20 datapoint I We should not expect a better visual fit I Inferences from the linear model should be valid 5 Outliers I Often (particularly when a large dataset is large): I the majority of the residuals will satisfy the model checking assumption I a small number of residuals will violate the normality assumption: they will be very big or very small I Outliers are often generated by a process distinct from those which we are primarily interested in. -
Lasso Reference Manual Release 17
STATA LASSO REFERENCE MANUAL RELEASE 17 ® A Stata Press Publication StataCorp LLC College Station, Texas Copyright c 1985–2021 StataCorp LLC All rights reserved Version 17 Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in TEX ISBN-10: 1-59718-337-7 ISBN-13: 978-1-59718-337-6 This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice. The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes. The automobile dataset appearing on the accompanying media is Copyright c 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979. -
Overfitting Can Be Harmless for Basis Pursuit, but Only to a Degree
Overfitting Can Be Harmless for Basis Pursuit, But Only to a Degree Peizhong Ju Xiaojun Lin Jia Liu School of ECE School of ECE Department of ECE Purdue University Purdue University The Ohio State University West Lafayette, IN 47906 West Lafayette, IN 47906 Columbus, OH 43210 [email protected] [email protected] [email protected] Abstract Recently, there have been significant interests in studying the so-called “double- descent” of the generalization error of linear regression models under the overpa- rameterized and overfitting regime, with the hope that such analysis may provide the first step towards understanding why overparameterized deep neural networks (DNN) still generalize well. However, to date most of these studies focused on the min `2-norm solution that overfits the data. In contrast, in this paper we study the overfitting solution that minimizes the `1-norm, which is known as Basis Pursuit (BP) in the compressed sensing literature. Under a sparse true linear regression model with p i.i.d. Gaussian features, we show that for a large range of p up to a limit that grows exponentially with the number of samples n, with high probability the model error of BP is upper bounded by a value that decreases with p. To the best of our knowledge, this is the first analytical result in the literature establishing the double-descent of overfitting BP for finite n and p. Further, our results reveal significant differences between the double-descent of BP and min `2-norm solu- tions. Specifically, the double-descent upper-bound of BP is independent of the signal strength, and for high SNR and sparse models the descent-floor of BP can be much lower and wider than that of min `2-norm solutions. -
Scalable Model Selection for Spatial Additive Mixed Modeling: Application to Crime Analysis
Scalable model selection for spatial additive mixed modeling: application to crime analysis Daisuke Murakami1,2,*, Mami Kajita1, Seiji Kajita1 1Singular Perturbations Co. Ltd., 1-5-6 Risona Kudan Building, Kudanshita, Chiyoda, Tokyo, 102-0074, Japan 2Department of Statistical Data Science, Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562, Japan * Corresponding author (Email: [email protected]) Abstract: A rapid growth in spatial open datasets has led to a huge demand for regression approaches accommodating spatial and non-spatial effects in big data. Regression model selection is particularly important to stably estimate flexible regression models. However, conventional methods can be slow for large samples. Hence, we develop a fast and practical model-selection approach for spatial regression models, focusing on the selection of coefficient types that include constant, spatially varying, and non-spatially varying coefficients. A pre-processing approach, which replaces data matrices with small inner products through dimension reduction dramatically accelerates the computation speed of model selection. Numerical experiments show that our approach selects the model accurately and computationally efficiently, highlighting the importance of model selection in the spatial regression context. Then, the present approach is applied to open data to investigate local factors affecting crime in Japan. The results suggest that our approach is useful not only for selecting factors influencing crime risk but also for predicting crime events. This scalable model selection will be key to appropriately specifying flexible and large-scale spatial regression models in the era of big data. The developed model selection approach was implemented in the R package spmoran. Keywords: model selection; spatial regression; crime; fast computation; spatially varying coefficient modeling 1. -
Model Selection Techniques: an Overview
Model Selection Techniques An overview ©ISTOCKPHOTO.COM/GREMLIN Jie Ding, Vahid Tarokh, and Yuhong Yang n the era of big data, analysts usually explore various statis- following different philosophies and exhibiting varying per- tical models or machine-learning methods for observed formances. The purpose of this article is to provide a compre- data to facilitate scientific discoveries or gain predictive hensive overview of them, in terms of their motivation, large power. Whatever data and fitting procedures are employed, sample performance, and applicability. We provide integrated Ia crucial step is to select the most appropriate model or meth- and practically relevant discussions on theoretical properties od from a set of candidates. Model selection is a key ingredi- of state-of-the-art model selection approaches. We also share ent in data analysis for reliable and reproducible statistical our thoughts on some controversial views on the practice of inference or prediction, and thus it is central to scientific stud- model selection. ies in such fields as ecology, economics, engineering, finance, political science, biology, and epidemiology. There has been a Why model selection long history of model selection techniques that arise from Vast developments in hardware storage, precision instrument researches in statistics, information theory, and signal process- manufacturing, economic globalization, and so forth have ing. A considerable number of methods has been proposed, generated huge volumes of data that can be analyzed to extract useful information. Typical statistical inference or machine- learning procedures learn from and make predictions on data Digital Object Identifier 10.1109/MSP.2018.2867638 Date of publication: 13 November 2018 by fitting parametric or nonparametric models (in a broad 16 IEEE SIGNAL PROCESSING MAGAZINE | November 2018 | 1053-5888/18©2018IEEE sense). -
Modern Regression 2: the Lasso
Modern regression 2: The lasso Ryan Tibshirani Data Mining: 36-462/36-662 March 21 2013 Optional reading: ISL 6.2.2, ESL 3.4.2, 3.4.3 1 Reminder: ridge regression and variable selection Recall our setup: given a response vector y 2 Rn, and a matrix X 2 Rn×p of predictor variables (predictors on the columns) Last time we saw that ridge regression, ^ridge 2 2 β = argmin ky − Xβk2 + λkβk2 β2Rp can have better prediction error than linear regression in a variety of scenarios, depending on the choice of λ. It worked best when there was a subset of the true coefficients that are small or zero But it will never sets coefficients to zero exactly, and therefore cannot perform variable selection in the linear model. While this didn't seem to hurt its prediction ability, it is not desirable for the purposes of interpretation (especially if the number of variables p is large) 2 Recall our example: n = 50, p = 30; true coefficients: 10 are nonzero and pretty big, 20 are zero Linear MSE ● True nonzero Ridge MSE True zero 1.0 ● Ridge Bias^2 ● 0.8 ● Ridge Var ● ● ● ● 0.6 ● 0.5 ● ● ● 0.4 Coefficients ● ● ● ● ● 0.0 ● ● 0.2 ● ● ● ● ● ● 0.0 −0.5 0 5 10 15 20 25 0 5 10 15 20 25 λ λ 3 Example: prostate data Recall the prostate data example: we are interested in the level of prostate-specific antigen (PSA), elevated in men who have prostate cancer. We have measurements of PSA on n = 97 men with prostate cancer, and p = 8 clinical predictors. -
On Lasso Refitting Strategies
On Lasso refitting strategies EVGENII CHZHEN1,* , MOHAMED HEBIRI1,** , and JOSEPH SALMON2,y 1LAMA, Universit´eParis-Est, 5 Boulevard Descartes, 77420, Champs-sur-Marne, France E-mail: *[email protected]; **[email protected] 2IMAG, Universit´ede Montpellier, Place Eug`eneBataillon, 34095 Montpellier Cedex 5, France E-mail: [email protected] A well-know drawback of `1-penalized estimators is the systematic shrinkage of the large coefficients towards zero. A simple remedy is to treat Lasso as a model-selection procedure and to perform a second refitting step on the selected support. In this work we formalize the notion of refitting and provide oracle bounds for arbitrary refitting procedures of the Lasso solution. One of the most widely used refitting techniques which is based on Least-Squares may bring a problem of interpretability, since the signs of the refitted estimator might be flipped with respect to the original estimator. This problem arises from the fact that the Least-Squares refitting considers only the support of the Lasso solution, avoiding any information about signs or amplitudes. To this end we define a sign consistent refitting as an arbitrary refitting procedure, preserving the signs of the first step Lasso solution and provide Oracle inequalities for such estimators. Finally, we consider special refitting strategies: Bregman Lasso and Boosted Lasso. Bregman Lasso has a fruitful property to converge to the Sign-Least-Squares refitting (Least-Squares with sign constraints), which provides with greater interpretability. We additionally study the Bregman Lasso refitting in the case of orthogonal design, providing with simple intuition behind the proposed method. -
Model Selection and Estimation in Regression with Grouped Variables
J. R. Statist. Soc. B (2006) 68, Part 1, pp. 49–67 Model selection and estimation in regression with grouped variables Ming Yuan Georgia Institute of Technology, Atlanta, USA and Yi Lin University of Wisconsin—Madison, USA [Received November 2004. Revised August 2005] Summary. We consider the problem of selecting grouped variables (factors) for accurate pre- diction in regression. Such a problem arises naturally in many practical situations with the multi- factor analysis-of-variance problem as the most important and well-known example. Instead of selecting factors by stepwise backward elimination, we focus on the accuracy of estimation and consider extensions of the lasso, the LARS algorithm and the non-negative garrotte for factor selection. The lasso, the LARS algorithm and the non-negative garrotte are recently proposed regression methods that can be used to select individual variables. We study and propose effi- cient algorithms for the extensions of these methods for factor selection and show that these extensions give superior performance to the traditional stepwise backward elimination method in factor selection problems.We study the similarities and the differences between these methods. Simulations and real examples are used to illustrate the methods. Keywords: Analysis of variance; Lasso; Least angle regression; Non-negative garrotte; Piecewise linear solution path 1. Introduction In many regression problems we are interested in finding important explanatory factors in pre- dicting the response variable, where each explanatory factor may be represented by a group of derived input variables. The most common example is the multifactor analysis-of-variance (ANOVA) problem, in which each factor may have several levels and can be expressed through a group of dummy variables. -
Lecture 2: Overfitting. Regularization
Lecture 2: Overfitting. Regularization • Generalizing regression • Overfitting • Cross-validation • L2 and L1 regularization for linear estimators • A Bayesian interpretation of regularization • Bias-variance trade-off COMP-652 and ECSE-608, Lecture 2 - January 10, 2017 1 Recall: Overfitting • A general, HUGELY IMPORTANT problem for all machine learning algorithms • We can find a hypothesis that predicts perfectly the training data but does not generalize well to new data • E.g., a lookup table! COMP-652 and ECSE-608, Lecture 2 - January 10, 2017 2 Another overfitting example 1 M = 0 1 M = 1 t t 0 0 −1 −1 0 x 1 0 x 1 1 M = 3 1 M = 9 t t 0 0 −1 −1 0 x 1 0 x 1 • The higher the degree of the polynomial M, the more degrees of freedom, and the more capacity to “overfit” the training data • Typical overfitting means that error on the training data is very low, but error on new instances is high COMP-652 and ECSE-608, Lecture 2 - January 10, 2017 3 Overfitting more formally • Assume that the data is drawn from some fixed, unknown probability distribution • Every hypothesis has a "true" error J ∗(h), which is the expected error when data is drawn from the distribution. • Because we do not have all the data, we measure the error on the training set JD(h) • Suppose we compare hypotheses h1 and h2 on the training set, and JD(h1) < JD(h2) ∗ ∗ • If h2 is "truly" better, i.e. J (h2) < J (h1), our algorithm is overfitting. • We need theoretical and empirical methods to guard against it! COMP-652 and ECSE-608, Lecture 2 - January 10, 2017 4 Typical overfitting plot 1 Training Test RMS 0.5 E 0 0 3 6 9 M • The training error decreases with the degree of the polynomial M, i.e. -
A Revisit to De-Biased Lasso for Generalized Linear Models
A Revisit to De-biased Lasso for Generalized Linear Models Lu Xia1 ,∗ Bin Nan2 y and Yi Li1 z 1 Department of Biostatistics, University of Michigan, Ann Arbor 2 Department of Statistics, University of California, Irvine Abstract De-biased lasso has emerged as a popular tool to draw statistical inference for high-dimensional regression models. However, simulations indicate that for general- ized linear models (GLMs), de-biased lasso inadequately removes biases and yields unreliable confidence intervals. This motivates us to scrutinize the application of de-biased lasso in high-dimensional GLMs. When p > n, we detect that a key spar- sity condition on the inverse information matrix generally does not hold in a GLM setting, which likely explains the subpar performance of de-biased lasso. Even in a less challenging \large n, diverging p" scenario, we find that de-biased lasso and the maximum likelihood method often yield confidence intervals with unsatisfactory cov- erage probabilities. In this scenario, we examine an alternative approach for further bias correction by directly inverting the Hessian matrix without imposing the matrix sparsity assumption. We establish the asymptotic distributions of any linear combi- nations of the resulting estimates, which lay the theoretical groundwork for drawing inference. Simulations show that this refined de-biased estimator performs well in removing biases and yields an honest confidence interval coverage. We illustrate the method by analyzing a prospective hospital-based Boston Lung Cancer Study, a large scale epidemiology cohort investigating the joint effects of genetic variants on lung arXiv:2006.12778v1 [stat.ME] 23 Jun 2020 cancer risk. Keywords: Confidence interval; Coverage; High-dimension; Inverse of information matrix; Statistical inference.