The Most Influential Speech Ever Presented in the History of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

The Most Influential Speech Ever Presented in the History of Mathematics HISTORICAL NOTES The most influential speech ever presented in the history of mathematics Rosalind Ezhil K. In the year 1897, the very first ‘Interna- 5. Lie’s concept of a continuous group either the quantitative or in the qualita- tional Congress of Mathematicians’ (ICM) of transformations without the assump- tive regard’2. However, the importance was convened in the city of Zurich. It tion of the differentiability of the func- of his talk was recognized rather quickly was a time when Europe was at the fore- tions defining the group. afterwards. The prediction of his close front of mathematical study and the Con- 6. Mathematical treatment of the axi- friend and fellow mathematician Hermann gress was organized by leading French oms of physics. Minkowski ‘Most alluring would be the and German mathematicians of the day. 7. Irrationality and transcendence of attempt to look into the future, in other It was decided at that meeting that the certain numbers. words, a characterization of the problems Congress would be a regular event in the 8. Problems of prime numbers. to which the mathematicians should turn coming years with one of the primary 9. Proof of the most general law of re- in the future. With this, you might con- purposes being ‘to promote personal ciprocity in any number field. ceivably have people talking about your relations between mathematicians of dif- 10. Determination of the solvability of speech even decades from now’3 was to ferent lands. .’ Since then, except for a Diophantine equation. come true many times over. the period corresponding to the two 11. Quadratic forms with any algebraic In fact, the impact of his talk on the World Wars, the Congress has been a numerical coefficients. course of mathematical research in the rather regular event. The next Congress 12. Extension of Kronecker’s theorem 20th century was extraordinary. Cer- is due to happen in 2010 (ICM 2010) and on abelian fields to any algebraic realm tainly none of the other ICMs that took for the first time in its history, the Con- or rationality. place after the 1900 can boast of an event gress will take place in India. 13. Impossiblity of the solution of the with consequences of such magnitude. In this article, we will look at a parti- general equation of the 7th degree by Solving one of ‘Hilbert’s problems’ is a cularly significant event that took place means of functions of only two arguments. matter of great prestige and has been the in the second Congress ever to be held. 14. Proof of the finiteness of certain preoccupation and inspiration of a great This Congress was held at Paris in 1900. complete systems of functions. number of mathematical minds. A large At this meeting, leading German mathe- 15. Rigorous foundation of Schubert’s number of articles, papers, books have matician of the day – David Hilbert, was enumerative calculus. been written on the subject. invited to present a talk. And on the 16. Problem of the topology of alge- What is the status of the problems morning of 8 August 1900, during the braic curves and surfaces. today? Some of the problems that Hilbert section of the Congress on bibliography 17. Expression of definite forms by presented were solved fairly quickly; and history, David Hilbert presented squares. some were decided not to be problems at his talk entitled, ‘The future problems of 18. Building up of space from congru- all whereas some continue to remain mathematics’. He outlined some 23 pro- ent polyhedra. open to this day. In contrast to mathema- blems in different fields of mathe- 19. Are the solutions of regular pro- ticians of today, Hilbert was a ‘universal’ matics that he believed were a sample of blems in the calculus of variations always mathematician with a profound under- what future mathematicians ought to be necessarily analytic? standing of many unrelated areas of working at. (He had time during the 20. The general problem of boundary mathematicians. As Ben Yandell4 says in lecture to present only ten problems – the values. his book (The Honors Class: Hilbert’s rest were part of the published proceed- 21. Proof of the existence of linear dif- Problems and their Solvers): ‘Mathemat- ings.) ferential equations having a prescribed ics has come a long way. , expanding It would be a daunting task to explain monodromic group. and fragmenting to the point that it is in- these problems even to a sophisticated 22. Uniformization of analytic rela- conceivable that one person could survey mathematical audience – we will there- tions by means of automorphic functions. the whole and make a similar list of fore not even attempt it here! However, 23. Further development of the meth- problems. In the worst case such a list to give a flavour of the talk, we present ods of the calculus of variations. would be the work of a series of commit- the list of the 23 problems here. tees with no common members. The Did this talk have an instant impact? International Mathematical Union did 1. Cantor’s problem of the cardinal Apparently, British mathematician Char- better than this in 2000, when it pub- number of the continuum. lotte Angas Scott who prepared a report lished Mathematics: Frontiers and Per- 2. The compatibility of the arithmeti- on the proceedings for the Bulletin of the spectives (“It is inspired by the famous cal axioms. American Mathematical Society has re- list of problems that Hilbert proposed”) 3. The equality of the volumes of two corded only ‘a rather desultory discus- but still credited four editors, had tetrahedra of equal bases and equal alti- sion’2 after the talk. And Hilbert himself thirty signed articles, and was 459 pages tudes. was not very pleased with the confer- long’. 4. Problem of the straight line as the ence – he wrote to his friend Adolf Hur- Born in 1864 in the town of Konisberg shortest distance between two points. witz that ‘the visit was not very strong in (then a part of the German Kingdom of CURRENT SCIENCE, VOL. 97, NO. 10, 25 NOVEMBER 2009 1493 HISTORICAL NOTES Prussia, now a part of Russia), Hilbert way’2 from the viewpoint Poincaré put fields of our science. Trying to unveil showed very early on, his extraordinary forward. what the future would hold in store for flair and passion for mathematics. At the We end with a tribute to David Hilbert us, he posed and discussed 23 unsolved time of his entry into the world of mathe- in the words of his student Hermann problems which have indeed, as we can matics, the tenet of French philosopher Weyl, also a great mathematician, ‘A now state in retrospect, played an impor- Du Bois-Reymond that some scientific great master of mathematics passed away tant role during the following 40 odd problems were unsolvable was much in when David Hilbert died in Göttingen on years. A mathematician who had solved vogue. However, this was something February the 14th, 1943, at the age of one of them thereby passed on to the Hilbert completely rejected and fought eighty-one. In retrospect it seems to us honours class of the mathematical com- against all his life. that the era of mathematics upon which munity6. At the age of 38 when he presented his he impressed the seal of his spirit and bold talk, Hilbert ended his famous lecture which is now sinking below the horizon 1. Wikipedia. thus ‘There are absolutely no unsolvable achieved a more perfect balance than 2. Ivor Grattan-Guinness, Notices of the Am. problems. Instead of the foolish ignor- prevailed before and after, between the Math. Soc., 2000, 47, 752. abimus, our answer is on the contrary: mastering of single concrete problems 3. Jeremy, G., Newsletter 36 of the European We must know, we shall know’. A ‘pure’ and the formation of general abstract Mathematical Society, 2000, pp. 10–13. 4. Benjamin H. Yandell, The Honors Class: mathematician at that stage in his life, concepts. Hilbert’s own work contributed Hilbert’s Problems and Their Solvers. Hilbert was not very interested in the ap- not a little to bringing about this happy 5. Sridharan, R., Resonance, 1999, 4, 96. plications of mathematics. His talk is equilibrium, and the direction in which 6. Herman Weyl, Bull. Am. Math. Soc., 1944, considered to be a response to mathema- we have since proceeded can in many in- 50, 612–654. tician Poincaré’s speech on the impor- stances be traced back to his impulses. tance of applied mathematics at the No mathematician of equal stature has Rosalind Ezhil K. lives at 122, 3rd Main, previous ICM in Zurich. In fact there is risen from our generation. .’. Dollars Colony, RMV 2nd Stage, 1st some criticism of his talk as having His Paris address on ‘Mathematical Block, Bangalore 560 094, India. ‘. .surely swung too much the other problems’ quoted above straddles all e-mail: [email protected] Edited and published by P. Balaram, Current Science Association, Bangalore 560 080. Typeset by WINTECS Typesetters (Ph: 2332 7311), Bangalore 560 021 and Printed at Printek Printers, Bangalore (Ph: 2328 7763) 1494 CURRENT SCIENCE, VOL. 97, NO. 10, 25 NOVEMBER 2009 .
Recommended publications
  • David Hilbert's Contributions to Logical Theory
    David Hilbert’s contributions to logical theory CURTIS FRANKS 1. A mathematician’s cast of mind Charles Sanders Peirce famously declared that “no two things could be more directly opposite than the cast of mind of the logician and that of the mathematician” (Peirce 1976, p. 595), and one who would take his word for it could only ascribe to David Hilbert that mindset opposed to the thought of his contemporaries, Frege, Gentzen, Godel,¨ Heyting, Łukasiewicz, and Skolem. They were the logicians par excellence of a generation that saw Hilbert seated at the helm of German mathematical research. Of Hilbert’s numerous scientific achievements, not one properly belongs to the domain of logic. In fact several of the great logical discoveries of the 20th century revealed deep errors in Hilbert’s intuitions—exemplifying, one might say, Peirce’s bald generalization. Yet to Peirce’s addendum that “[i]t is almost inconceivable that a man should be great in both ways” (Ibid.), Hilbert stands as perhaps history’s principle counter-example. It is to Hilbert that we owe the fundamental ideas and goals (indeed, even the name) of proof theory, the first systematic development and application of the methods (even if the field would be named only half a century later) of model theory, and the statement of the first definitive problem in recursion theory. And he did more. Beyond giving shape to the various sub-disciplines of modern logic, Hilbert brought them each under the umbrella of mainstream mathematical activity, so that for the first time in history teams of researchers shared a common sense of logic’s open problems, key concepts, and central techniques.
    [Show full text]
  • Einstein and Hilbert: the Creation of General Relativity
    EINSTEIN AND HILBERT: THE CREATION OF GENERAL RELATIVITY ∗ Ivan T. Todorov Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, Friedrich-Hund-Platz 1 D-37077 G¨ottingen, Germany; e-mail: [email protected] and Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Tsarigradsko Chaussee 72, BG-1784 Sofia, Bulgaria;∗∗e-mail: [email protected] ABSTRACT It took eight years after Einstein announced the basic physical ideas behind the relativistic gravity theory before the proper mathematical formulation of general relativity was mastered. The efforts of the greatest physicist and of the greatest mathematician of the time were involved and reached a breathtaking concentration during the last month of the work. Recent controversy, raised by a much publicized 1997 reading of Hilbert’s proof- sheets of his article of November 1915, is also discussed. arXiv:physics/0504179v1 [physics.hist-ph] 25 Apr 2005 ∗ Expanded version of a Colloquium lecture held at the International Centre for Theoretical Physics, Trieste, 9 December 1992 and (updated) at the International University Bremen, 15 March 2005. ∗∗ Permanent address. Introduction Since the supergravity fashion and especially since the birth of superstrings a new science emerged which may be called “high energy mathematical physics”. One fad changes the other each going further away from accessible experiments and into mathe- matical models, ending up, at best, with the solution of an interesting problem in pure mathematics. The realization of the grand original design seems to be, decades later, nowhere in sight. For quite some time, though, the temptation for mathematical physi- cists (including leading mathematicians) was hard to resist.
    [Show full text]
  • Foundations of Geometry
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2008 Foundations of geometry Lawrence Michael Clarke Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Geometry and Topology Commons Recommended Citation Clarke, Lawrence Michael, "Foundations of geometry" (2008). Theses Digitization Project. 3419. https://scholarworks.lib.csusb.edu/etd-project/3419 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Lawrence Michael Clarke March 2008 Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino by Lawrence Michael Clarke March 2008 Approved by: 3)?/08 Murran, Committee Chair Date _ ommi^yee Member Susan Addington, Committee Member 1 Peter Williams, Chair, Department of Mathematics Department of Mathematics iii Abstract In this paper, a brief introduction to the history, and development, of Euclidean Geometry will be followed by a biographical background of David Hilbert, highlighting significant events in his educational and professional life. In an attempt to add rigor to the presentation of Geometry, Hilbert defined concepts and presented five groups of axioms that were mutually independent yet compatible, including introducing axioms of congruence in order to present displacement.
    [Show full text]
  • Georg Cantor English Version
    GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle.
    [Show full text]
  • John Von Neumann's “Impossibility Proof” in a Historical Perspective’, Physis 32 (1995), Pp
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SAS-SPACE Published: Louis Caruana, ‘John von Neumann's “Impossibility Proof” in a Historical Perspective’, Physis 32 (1995), pp. 109-124. JOHN VON NEUMANN'S ‘IMPOSSIBILITY PROOF’ IN A HISTORICAL PERSPECTIVE ABSTRACT John von Neumann's proof that quantum mechanics is logically incompatible with hidden varibales has been the object of extensive study both by physicists and by historians. The latter have concentrated mainly on the way the proof was interpreted, accepted and rejected between 1932, when it was published, and 1966, when J.S. Bell published the first explicit identification of the mistake it involved. What is proposed in this paper is an investigation into the origins of the proof rather than the aftermath. In the first section, a brief overview of the his personal life and his proof is given to set the scene. There follows a discussion on the merits of using here the historical method employed elsewhere by Andrew Warwick. It will be argued that a study of the origins of von Neumann's proof shows how there is an interaction between the following factors: the broad issues within a specific culture, the learning process of the theoretical physicist concerned, and the conceptual techniques available. In our case, the ‘conceptual technology’ employed by von Neumann is identified as the method of axiomatisation. 1. INTRODUCTION A full biography of John von Neumann is not yet available. Moreover, it seems that there is a lack of extended historical work on the origin of his contributions to quantum mechanics.
    [Show full text]
  • David Hilbert and the Axiomatization of Physics (1898–1918) from Grundlagen Der Geometrie to Grundlagen Der Physik
    L. Corry David Hilbert and the Axiomatization of Physics (1898–1918) From Grundlagen der Geometrie to Grundlagen der Physik Series: Archimedes, Vol. 10 ▶ Presents a totally fresh and comprehensive picture of Hilbert’s intense, original, well-informed, and highly influential involvement with physics, that spanned his entire career and that constituted a truly main focus of interest in his scientific horizon David Hilbert (1862-1943) was the most influential mathematician of the early twentieth century and, together with Henri Poincaré, the last mathematical universalist. His main known areas of research and influence were in pure mathematics (algebra, number theory, geometry, integral equations and analysis, logic and foundations), but he was also known to have some interest in physical topics. The latter, however, was traditionally conceived as comprising only sporadic incursions into a scientific domain which was 2004, XVII, 513 p. 36 illus. essentially foreign to his mainstream of activity and in which he only made scattered, if important, contributions. Printed book Based on an extensive use of mainly unpublished archival sources, the present book Hardcover presents a totally fresh and comprehensive picture of Hilbert’s intense, original, well- ▶ 249,99 € | £219.99 | $299.99 informed, and highly influential involvement with physics, that spanned his entire career ▶ *267,49 € (D) | 274,99 € (A) | CHF 295.00 and that constituted a truly main focus of interest in his scientific horizon. His program for axiomatizing physical theories provides the connecting link with his research in more eBook purely mathematical fields, especially geometry, and a unifying point of view from which to understand his physical activities in general.
    [Show full text]
  • Turing and Von Neumann's Brains and Their Computers
    Turing and von Neumann’s Brains and their Computers Dedicated to Alan Turing’s 100th birthday and John von Neumann’s 110th birthday Sorin Istrail* and Solomon Marcus** In this paper we discuss the lives and works of Alan Turing and John von Neumann that intertwined and inspired each other, focusing on their work on the Brain. Our aim is to comment and to situate historically and conceptually an unfinished research program of John von Neumann, namely, towards the unification of discrete and continuous mathematics via a concept of thermodynamic error; he wanted a new information and computation theory for biological systems, especially the brain. Turing’s work contains parallels to this program as well. We try to take into account the level of knowledge at the time these works were conceived while also taking into account developments after von Neumann’s death. Our paper is a call for the continuation of von Neumann’s research program, to metaphorically put meat, or more decisively, muscle, on the skeleton of biological systems theory of today. In the historical context, an evolutionary trajectory of theories from LeiBniz, Boole, Bohr and Turing to Shannon, McCullogh-Pitts, Wiener and von Neumann powered the emergence of the new Information Paradigm. As Both Turing and von Neumann were interested in automata, and with their herculean zest for the hardest proBlems there are, they were mesmerized by one in particular: the brain. Von Neumann confessed: “In trying to understand the function of the automata and the general principles governing them, we selected for prompt action the most complicated oBject under the sun – literally.” Turing’s research was done in the context of the important achievements in logic: formalism, logicism, intuitionism, constructivism, Hilbert’s formal systems, S.C.
    [Show full text]
  • Minkowski's Space-Time: from Visual Thinking to the Absolute World*
    Minkowski’s Space-Time: From Visual Thinking to the Absolute World* Peter Galison Galison traces Minkowski‘s progression from his visual-geometric thinking to his physics of space-time and finally to his view of the nature of physical reality. Minkowski always held that a sort of ―pre-established harmony‖ existed between mathematics and nature, but then a different sort of ―pre-established harmony‖ than that of Leibniz. Geometry was not merely an abstraction from natural phenomena or a mere description of physical laws through a mathematical construct; rather, the world was indeed a ―four-dimensional, non-Euclidean manifold‖, a true geometrical structure. As a contemporary of Einstein, Minkowski proposed a reconciliation of gravitation and electro-magnetism that he called, ―the Theory of the Absolute World‖. Despite his untimely death, Minkowski holds a prominent place in twentieth century theoretical physics, not the least for his conception of ―space-time‖, emphatically stating that we can no longer speak of ―space‖ and ―time‖, rather ―spaces‖ and ―times‖. Hermann Minkowski is best known for his invention of the concept of space- time. For the last seventy years, this idea has found application in physics from electromagnetism to black holes. But for Minkowski space-time came to signify much more than a useful tool of physics. It was, he thought, the core of a new view of nature which he dubbed the ―Theory of the Absolute World.‖ This essay will focus on two related questions: how did Minkowski arrive at his idea of space-time, and how did he progress from space-time to his new concept of physical reality.1 * This essay is reprinted with permissions from the author and publisher from Historical Studies in the Physical Sciences, Vol.10, (1979):85-119.
    [Show full text]
  • David Hilbert (1862-1943)
    NOTES ON HZ\THK1i\TICS 6. David Hilbert (1862-1943) C. T. Chong University of Singapore ~he worZd Zooked upon David Hilbert as the greatest mathematician Ziving in the first decadeP of the twientieth cen­ tury. "· ·-- Hermann fveyZ [1] . There is probably no one 't'Tho exerted as great an influence on the development of twentieth century mathematics as David Hilbert. His deep insight; his creative polf;er and his broad interest in matha~atical sciences made him one of the most impressive contributors to the subject. Yet these attributes and achievements, shared and accomplished at least as much by Poincare [2] and-some \vould perhaps argue ~ more by Riemann [3] arid Gauss [ 4 J , \<Jere but part of the reason that gave him lasting radiance and permanent status in Mathematics. It l'Jas the fortuitous combination of Gottingen the institution:· and Hilbert the scientific personality that brought together aspring and established mathematicians to the German University vvhere much of the mathematics of this century ~as subsequently created. Youth. David Hilbert was born on January 23, 1862, in Wehlau, near Konigsberg [51 P . the capital of East Prussia. His father v;as a judge in th,e city of I<onigberg, and David spent his childhood in this city \'·Ihich e.arned farne in mathematics through the ' ~ Konigsberg Bridge Problem~~ solved a century_ earlier by Euler [6] The most r:evered historical figure in the minds and hearts of "Konigsbergers'; was the philosopher Im.i'nanuel Y.ant [ 7 ] , a native son, 'IA!hose words = ·~ 13 4 = r ~lThe greatest "Vronders are the starry heavens above me and 1 the moral lat"l within ne ; ~ must have been repeated to David on many occassions.
    [Show full text]
  • Hilbert's Program Then And
    Hilbert’s Program Then and Now Richard Zach Abstract Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic sys- tems. Although G¨odel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial suc- cesses, and generated important advances in logical theory and meta- theory, both at the time and since. The article discusses the historical background and development of Hilbert’s program, its philosophical un- derpinnings and consequences, and its subsequent development and influ- ences since the 1930s. Keywords: Hilbert’s program, philosophy of mathematics, formal- ism, finitism, proof theory, meta-mathematics, foundations of mathemat- ics, consistency proofs, axiomatic method, instrumentalism. 1 Introduction Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of G¨ottingen and elsewhere in the 1920s and 1930s. Briefly, Hilbert’s proposal called for a new foundation of mathematics based on two pillars: the axiomatic method, and finitary proof theory. Hilbert thought that by formalizing mathematics in axiomatic systems, and subsequently proving by finitary methods that these systems are consistent (i.e., do not prove contradictions), he could provide a philosophically satisfactory grounding of classical, infinitary mathematics (analysis and set theory).
    [Show full text]
  • David Hilbert and the Axiomatization of Physics (1898-1918) from Grundlagen Der Geometrie to Grundlagen Der Physik
    David Hilbert and the Axiomatization of Physics (1898-1918) From Grundlagen der Geometrie to Grundlagen der Physik by LEO CORRY Cohn Institute for History and Philosophy of Science, Tel Aviv University, Israel KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON CONTENTS Preface xi Acknowledgements and Credits xv Introduction 1 Chapter 1: Late Nineteenth Century Background 11 1.1. Hilbert's Early Career 11 1.1.1 Algebraic Invariants 17 1.1.2 Algebraic Number Fields 20 1.1.3 Deep Roots in Tradition 23 1.2. Foundations of Geometry 25 1.2.1 Riemann 25 1.2.2 Projective Geometry 30 1.2.3 Nineteenth-Century Axiomatics 35 1.2.4 Pasch and the Italian School 40 1.3. Foundations of Physics 45 1.3.1 Kinetic Theory, Mechanistic Foundations 46 1.3.2 Carl Neumann 51 1.3.3 Heinrich Hertz 54 1.3.4 Paul Volkmann 61 1.3.5 Ludwig Boltzmann 63 1.3.6 Aurel Voss 66 1.4. Mathematics and Physics in Gottingen at the Turn of the Century 71 1.4.1 Felix Klein... 72 1.4.2 The Physicists 78 viii CONTENTS Chapter 2: Axiomatization in Hilbert's Early Career 83 2.1. Axiomatics, Geometry and Physics in Hilbert's Early Lectures 83 2.1.1 Geometry in Konigsberg 83 2.1.2 Geometry in Gottingen 89 2.1.3 Mechanics in Gottingen 91 2.2. Grundlagen der Geometrie 93 2.2.1 Independence, Simplicity, Completeness 95 2.2.2 Fundamental Theorems ofProjective Geometry 97 2.2.3 On the Concept of Number 99 2.3.
    [Show full text]
  • From Traditional Set Theory – That of Cantor, Hilbert, Gödel, Cohen – to Its Necessary Quantum Extension
    From Traditional Set Theory – that of Cantor, Hilbert, G¨odel, Cohen – to Its Necessary Quantum Extension Edouard BELAGA Institut des Hautes Etudes´ Scientifiques 35, route de Chartres 91440 – Bures-sur-Yvette (France) Juin 2011 IHES/M/11/18 From Traditional Set Theory – that of Cantor, Hilbert, Gödel, Cohen – to Its Necessary Quantum Extension Dr. Edouard Belaga IRMA, Université de Strasbourg IHES, Bures-sur-Yvette June 16, 2011 1 Plan of the talk • Introduction. • Review of traditional set theory. • Summing up the traditional set theory’s results. • Starting anew. • Philosophical context. • New foundations of set theory. • References. 2 Introduction: the main points of the talk • The central theme of the talk. • A brief, suggestive review of traditional set theory and its failure to find a proper place for the Continuum. • Formalism for reviewing the veracity of traditional set theory. • Metaphysical considerations, old and new. • The role of “experimental physics” in processes of definition, understanding, study, and exploitation of the Continuum. • What next ? Enters quantum mechanics of light. • The original purpose of the present study, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear. 3 History of traditional set theory • Georg Cantor’s set theory and its metaphysical ambition, the Continuum Hypothesis, CH: 2!° = !1 (1874-1877).
    [Show full text]