Copyright by Simone Caroline Cappellari 2011

Total Page:16

File Type:pdf, Size:1020Kb

Copyright by Simone Caroline Cappellari 2011 Copyright by Simone Caroline Cappellari 2011 The Dissertation Committee for Simone Caroline Cappellari certifies that this is the approved version of the following dissertation: Evolutionary Ecology of Malpighiaceae Pollination at the Species and Community Levels Committee: Beryl B. Simpson, Supervisor John L. Neff , Co-Supervisor Daniel I. Bolnick Lawrence Gilbert Lauren A. Meyers Michael Singer Evolutionary Ecology of Malpighiaceae Pollination at the Species and Community Levels by Simone Caroline Cappellari, Dipl. Biol. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2011 Dedication I dedicate this thesis to Christian Rabeling, my life partner, love, and best friend, whose adventurous passion for nature is my daily source of inspiration; to my family and to the memory of my dear grandmother, Etelvina dos Santos (Vó Teté), who enriched my childhood with her stories of frogs singing in the forest and bird parties in the sky. Her simple joys taught me a great deal about what matters in life. “Just living is not enough... One must have sunshine, freedom, and a little flower.” -Hans Christian Andersen Acknowledgements The support, friendship, and help from several people made the work presented in this dissertation possible. A special thanks goes to my adviser, Beryl Simpson, for accepting me as a student in her lab, reading and editing my texts, teaching me how to write papers, diving deeply into the world of ecological networks with me, and for giving me enough freedom to pursue my own interests. I thank Jack Neff, a walking encyclopedia of all matters, for his patience continuously teaching me lessons of bee taxonomy and systematics over the past six years, for sharing so much of what he knows about plant-pollinator interactions with me, and especially for critically reading my manuscripts and grant applications. I am grateful to my other committee members: Lauren A. Meyers, Dan Bolnick, Larry Gilbert, and Mike Singer for their enthusiasm for the topic of this dissertation, for contributing ideas, suggesting papers, and statistical methods that greatly improved the quality of the results presented in this thesis. A special thanks goes to Mike Singer for hosting me in his lab when I needed a quiet space to work, for showing up at random places at random times and giving good advice whenever I felt graduate school was about to swallow me. This study could not possibly have been done without the help of my collaborator and friend Rosana Tidon, who opened the doors of the Universidade de Brasilia (UnB) for me and provided me with all sorts of logistical support I could possibly need during the years of fieldwork in Brasilia. I thank her and her lab also for their great hospitality during my visits at the UnB. I wish to thank the UnB Graduate Program in Ecology for welcoming me as a visiting researcher to their institution, for providing me the permits necessary to conduct fieldwork, and granting access to the field station and other facilities. I thank the staff of the Reserva Ecológica do IBGE for allowing me to conduct my research at the station, for their great hospitality, and logistical support during every field season. A special thanks goes to Sr. Neidimar Bispo for his friendship and for helping me repair all sorts of vehicles, from bikes to cars, I used during my field work. I am also very grateful to the following students: Andre Mendes, Dianne Souza, Gabriela Correa, and Paulo H. Pinheiro who overcame their fears of snakes, and dedicated their weekends and sweat to help me in the field and in the lab. Plant identification was also an important part of this work, which was done with the kind help of the following v experts: Maria Aparecida da Silva (IBGE), Maria Cândida Mamede (IB), and Carolyn Barnes Proença (UnB). I also thank Antonio Aguiar (UnB), and the Hymenoptera research group from the Universidade Federal do Paraná, especially Gabriel Melo, Felipe Vivallo, Kelli Ramos, and Danúncia Urban for spending much of their time with the identification of my bees and for teaching me how to identify them myself. I am very thankful to Marcelino C. Boaventura for contributing with his unpublished data set for the comparative analyses of Chapter 2; and to my collaborators from the Universidade Estadual de Campinas, Brazil, Anita J. Marsaioli and M. Abdul Haleem, for doing the chemical analyses of floral oils, which enabled me to pursue chemo-ecological perspectives in Chapters 3 and 4. My years of fieldwork at the station in Brasilia will remain as a dear memory to me in part due to the presence of other researchers with whom I overlapped – in particular Anita, Daniel, Imma, Amartya, Leonel, Randol, Erika, Sybil, Eric, Lucíola, Aliny, On Lee, Bill, and Marina. These people provided not just good company but also car rides, supplies, scientific discussions about Cerrado, surgical assistance with „bichos- de-pé‟, cold drinks after a day in the field, etc. Thank you all! I would like to thank several people that contributed to the making of this dissertation: Blinda McClelland for having me as her TA for many years and for being supportive of my field research schedule; Erika Hale, from the Division of Statistics and Scientific Computation at UT, whose help and support were essential for the statistical analyses of Chapters 3 and 4; Gwen Gage, from the UT Graphics Department, and Barrett Klein for making the drawing of bees used in Chapter 5; Christian Rabeling for introducing me to the wonderful world of electron microscopy, and for help making images for Chapter 5. I thank Ted Schultz and his group from the Smithsonian Institution for the great atmosphere during the last year of my dissertation, for providing the equipment needed to estimate pollen quantity in Chapter 4, and for access to automontage imaging for Chapter 5. I thank my friend, collaborator, guru of network and food web knowledge, and plant-pollinator enthusiast Samraat Pawar for being a great discussion partner for all sorts of ideas and questions that crossed my mind since the beginning of this work. I thank him and Kate Behrman for encouraging me to learn the computational methods – and I did it! I also wish to thank all the anonymous people out there doing what I call „computational charity‟ for designing websites with tips for using R and creating vi packages that make complicated analysis easy to run. I would not have done my analyses without your help! I thank all my colleagues and friends in Austin whose friendship made the past years so much more enjoyable, especially: Barrett Pupated Klein, Betsy Kreakie, Carlos Guarnizo, Catalina Estrada, Debra Hansen, Deepa Agashe, Dosha Durban, Eben Gering, Elizabeth Ruck, Josh McDill, Juan Santos, Kate Behrman, Krushnamegh Kunte, Mariana Vasconcellos, Natalia Biani, Nikhil Advani, Samraat Pawar, Sasha Mikheyev, Schona Mannig, Scott Solomon, Sze Huei Yek, Vicky Huang, and Xiao Wei; and all past and current members of the Simpson lab with whom I overlapped for the good atmosphere and friendship. Thanks to Sandy Monahan, for saving me from bureaucratic catastrophes and for always being so sweet to all of us. Finally, yet importantly, I would like to thank my family in Brazil, especially my parents, Roselene and Luiz, my siblings, and their partners (Viviane, Cris, Ewerton, Lisa, Vanessa and Yasmin) for always being there for me and for cheering me up with every step that brought me closer to getting this degree. A special thanks goes to my sister, Vica, for helping me buy a field vehicle so I could do my research more effectively. I also thank my family in Germany, especially Renate, Klaus, and Oma Hermine, for their support and for providing a steady supply of chocolates and coffee that sure kept me up and running. My husband Christian Rabeling I thank for his loving support all these years, for believing in me and my work, for coping with my long field trips to Brazil, for brightening up my life, making me happy even when skies became grey, and for making all this worthwhile. I am very grateful for receiving funding from the following sponsors: EEB program departmental funds; Lorraine Stengl and the Dorothea Bennett Memorial Fellowship Fund from which I received support that made it possible for me to collect data over several summers; NSF for a Doctoral Dissertation Improvement Grant (DEB- 0909511); Frank and Fern Blair Fellowship Fund; The Tinker Foundation; Texas Ecolab; and The University of Texas at Austin for providing support through a University of Texas Continuing Fellowship for my last year so I could dedicate myself entirely to the data analysis and writing of this dissertation. vii Evolutionary Ecology of Malpighiaceae Pollination at the Species and Community Levels Publication No._____________ Simone Caroline Cappellari, Ph. D. The University of Texas at Austin, 2011 Supervisor: Beryl B. Simpson Co-Supervisor: John L. Neff Abstract Plant-pollinator interactions figure as key elements promoting the natural regeneration of terrestrial vegetation, as most plants depend on animals to transfer their gametes between flowers and produce seeds. Bees are the most common pollinators of plants and their interactions with flowers have served as model systems for the study of specialized mutualisms since Darwin‟s time. While most plants offer nectar as a reward and attract a variety of floral visitors, others produce distinctive types of resources which are sought by particular groups of pollinators. Such associations may involve specialization at the morphological, behavioral, or physiological levels and are especially common in tropical habitats. The interactions between oil-producing flowers of Neotropical Malpighiaceae and oil-collecting bees are an example of a specialized mutualism in which plants offer lipids to attract pollinators that use the resource to build nest cells and feed their offspring.
Recommended publications
  • Bees in Urban Landscapes: an Investigation of Habitat Utilization By
    Bees in urban landscapes: An investigation of habitat utilization By Victoria Agatha Wojcik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, & Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Gregory S. Biging Professor Louise A. Mozingo Fall 2009 Bees in urban landscapes: An investigation of habitat utilization © 2009 by Victoria Agatha Wojcik ABSTRACT Bees in urban landscapes: An investigation of habitat utilization by Victoria Agatha Wojcik Doctor of Philosophy in Environmental Science, Policy, & Management University of California, Berkeley Professor Joe R. McBride, Chair Bees are one of the key groups of anthophilies that make use of the floral resources present within urban landscapes. The ecological patterns of bees in cities are under further investigation in this dissertation work in an effort to build knowledge capacity that can be applied to management and conservation. Seasonal occurrence patterns are common among bees and their floral resources in wildland habitats. To investigate the nature of these phenological interactions in cities, bee visitation to a constructed floral resource base in Berkeley, California was monitored in the first year of garden development. The constructed habitat was used by nearly one-third of the locally known bee species. Bees visiting this urban resource displayed distinct patterns of seasonality paralleling those of wildland bees, with some species exhibiting extended seasons. Differential bee visitation patterns are common between individual floral resources. The effective monitoring of bee populations requires an understanding of this variability. To investigate the patterns and trends in urban resource usage, the foraging of the community of bees visiting Tecoma stans resources in three tropical dry forest cities in Costa Rica was studied.
    [Show full text]
  • Clear Plastic Bags of Bark Mulch Trap and Kill Female Megachile (Hymenoptera: Megachilidae) Searching for Nesting Sites
    JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 92(4), 2019, pp. 649-654 SHORT COMMUNICATION Clear Plastic Bags of Bark Mulch Trap and Kill Female Megachile (Hymenoptera: Megachilidae) Searching for Nesting Sites Casey M. Delphia1*, Justin B. Runyon2, and Kevin M. O’Neill3 ABSTRACT: In 2017, we found 17 dead females of Megachile frigida Smith in clear plastic bags of com- posted bark mulch in a residential yard in Bozeman, Montana, USA. Females apparently entered bags via small ventilation holes, then became trapped and died. To investigate whether this is a common source of mortality, we deployed unmodified bags of mulch and those fitted with cardboard tubes (as potential nest sites) at three nearby sites in 2018. We found two dead M. frigida females and five completed leaf cells in one of these bags of mulch fitted with cardboard tubes; two male M. frigida emerged from these leaf cells. In 2018, we also discovered three dead female M. frigida and three dead females of a second leafcutter bee species, Megachile gemula Cresson, in clear bags of another type of bark mulch. Both mulches emitted nearly identical blends of volatile organic compounds, suggesting their odors could attract females searching for nesting sites. These findings suggest that more research is needed to determine how common and wide- spread this is for Megachile species that nest in rotting wood and if there are simple solutions to this problem. KEYWORDS: Leafcutter bees, solitary bees, cavity-nesting bees, Apoidea, wild bees, pollinators, Megachile frigida, Megachile gemula The leafcutter bees Megachile frigida Smith, 1853 and Megachile gemula Cresson, 1878 (Megachilidae) are widespread in North America (Mitchell 1960; Michener, 2007; Sheffield et al., 2011).
    [Show full text]
  • DISSERTAÇÃO Influênciaaztec
    UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Biodiversidade, Evolução e Meio Ambiente Programa de Pós-Graduação em Ecologia de Biomas Tropicais INFLUÊNCIA DE Azteca chartifex (FORMICIDAE) NA MICROBIOTA FOLIAR DE Byrsonima sericea Aluno: Marília Romão Bitar de Brito Orientador: Sérvio Pontes Ribeiro Co-orientador: Leandro Marcio Moreira Ouro Preto/MG Maio 2019 1 UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Biodiversidade, Evolução e Meio Ambiente Programa de Pós-Graduação em Ecologia de Biomas Tropicais INFLUÊNCIA DE AZTECA CHARTIFEX (FORMICIDAE) NA MICROBIOTA FOLIAR DE BYRSONIMA SERICEA Dissertação apresentada ao Programa de Pós-graduação em Ecologia de Biomas Tropicais da Universidade Federal de Ouro Preto como requisito para obtenção de título de Mestre em Ecologia. Ouro Preto/MG Maio 2019 2 B624i Bitar, Marília. Influência de Azteca chartifex (Formicidae) na Microbiota Foliar de Byrsonima sericea [manuscrito] / Marília Bitar. - 2019. 40f.: il.: color; grafs; tabs. Orientador: Prof. Dr. Sérvio Pontes Ribeiro. Coorientador: Prof. Dr. Leandro Moreira. Dissertação (Mestrado) - Universidade Federal de Ouro Preto. Instituto de Ciências Exatas e Biológicas. Departamento de Biodiversidade, Evolução e Meio Ambiente. Programa de Pós-Graduação em Ecologia de Biomas Tropicais . CDU: 595.796 Catalogação: www.sisbin.ufop.br 3 stério da Edução Universidade Federal de Ouro Preto Prograina de Pós-graduação em Ecologia de Biomas Tropicais ICEB - Campus — Morro do Cruzeiro Ouro Preto — MG - CEP 35.400-000 Fone: (031)3559-1747 E-mail: biomas ufo .edu.br “Influência de Azteca chartifex na microbiota foliar de Byrsonima sericea.” Autora: Marília Romão Bitar de Brito Dissertação defendida e aprovada, em 20 de maio de 2019, pela banca examinadora constituida pelos professores: Professor r.Sérvio ontes Ribeiro Universidade Federal de Ouro Preto Prof.
    [Show full text]
  • Teletusa Limpida (SIGNORET)
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Teletusa limpida (SIGNORET): a Neotropical proconiine leafhopper that mimics megachilid bees (Hymenoptera: Apoidea), with notes on Batesian mimicry in the subfamily Cicadellinae (Hemiptera: Cicadellidae) G. MEJDALANI, D.M. TAKIYA, M. FELIX, P. CEOTTO & D. YANEGA Abstract Morphological comparisons and field and M. neoxanthoptera. Yellow areas on studies carried out in the Brazilian State of the leafhopper abdomen resemble the Minas Gerais suggested that the proconi- metasomal scopal hairs or the pollen ine leafhopper Teletusa limpida (SlG- carried on the scopa of the bees. The NORET) is a Batesian mimic of bees of the present case of mimicry is compared with family Megachilidae. This leafhopper the two other known cases of mimicry in exhibits the following mimicry-related leafhoppers of the subfamily Cicadellinae characteristics: (1) body densely covered (genera Propetes WALKER and Lissoscarta by conspicuous hairs, especially developed STAL), as well as with similar cases in the on the face and mesoscutellum, (2) disc of Auchenorrhyncha. The appearance of frons forming an approximately right angle mimicry in the Cicadellinae is discussed in with the longitudinal axis of body, (3) a phylogenetic context. fore- and hindwings almost entirely hya- line, (4) abdomen short and expanded lat- erally, and (5) overall coloration dark Key words brown or black with yellow markings. These features are remarkably similar to Proconiini, Cicadellini, mimetic spe- those of four megachilid species that are cies, morphology, phylogeny, Megachili- sympatric with T. limpida in Minas Gerais dae, Vespidae. (Anthodioctes megachiloides (HOLMBERG), Hypanthidiodes subarenarium (SCHWARZ), Hypanthidiodes musciforme (SCHROTTKY), and Megachile meoxanthoptera COCKE- RELL.
    [Show full text]
  • Effects of Forest Fragmentation on Bottom-Up Control in Leaf-Cuttings Ants
    Effects of forest fragmentation on bottom-up control in leaf-cuttings ants Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades Fachbereich Biologie Technische Universität Kaiserslautern vorgelegt von M.Sc. Pille Urbas Kaiserslautern, Dezember 2004 1. Gutachter: Prof. Dr. Burkhard Büdel 2. Gutachter: PD Dr. Jürgen Kusch Vorsitzender der Prüfungskommission: Prof. Dr. Matthias Hahn ACKNOWLEDGEMENTS I ACKNOWLEDGEMENTS I wish to thank my family for always being there; Joachim Gerhold who gave me great support and Jutta, Klaus and Markus Gerhold who decided to provide me with a second family; my supervisors Rainer Wirth, Burkhard Büdel and the department of Botany, University of Kaiserslautern for integrating me into the department and providing for such an interesting subject and the infrastructure to successfully work on it; the co-operators at the Federal University of Pernambuco (UFPE), Brazil - Inara Leal and Marcelo Tabarelli - for their assistance and interchange during my time overseas; the following students for the co-operatation in collecting and analysing data for some aspects of this study: Manoel Araújo (LAI and LCA leaf harvest), Ùrsula Costa (localization and size measurements of LCA colonies), Poliana Falcão (LCA diet breadth) and Nicole Meyer (tree density and DBH). Conservation International do Brasil, Centro de Estudos Ambientais do Nordeste and Usina Serra Grande for providing infrastructure during the field work; Marcia Nascimento, Lourinalda Silva and Lothar Bieber (UFPE) for sharing their laboratory, equipment and knowledge for chemical analyses; Jose Roberto Trigo (University of Campinas) for providing some special chemicals; my friends in Brazil Reisla Oliveira, Olivier Darrault, Cindy Garneau, Leonhard Krause, Edvaldo Florentino, Marcondes Oliveira and Alexandre Grillo for supporting me in a foreign land.
    [Show full text]
  • List of Insect Species Which May Be Tallgrass Prairie Specialists
    Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites
    [Show full text]
  • 24 Janeiro 2012 REVISADO GERAL[1]
    UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA DE ALIMENTOS TELDES CORRÊA ALBUQUERQUE ANÁLISE EMERGÉTICA DE UM SISTEMA AGROFLORESTAL: SÍTIO CATAVENTO, INDAITUBA, SP TESE DE DOUTORADO APRESENTADA À FACULDADE DE ENGENHARIA DE ALIMENTOS UNICAMP PARA OBTENÇÃO DO TÍTULO DE DOUTOR EM ENGENHARIA DE ALIMENTOS ENRIQUE ORTEGA RODRÍGUEZ ORIENTADOR Este exemplar corresponde à versão final da tese Análise Emergética de um Sistema Agroflorestal: Sítio Catavento, Indaiatuba, SP, defendida por Teldes Corrêa Albuquerque, aprovada pela comissão julgadora em 27/02/2012 e orientada pelo Prof. Dr. Enrique Ortega Rodríguez. _____________________ Assinatura do Orientador CAMPINAS, 2012 FICHA CATALOGRÁFICA ELABORADA POR LUCIANA P. MILLA – CRB8/8129- BIBLIOTECA DA FACULDADE DE ENGENHARIA DE ALIMENTOS – UNICAMP Albuquerque, Teldes Corrêa AL15a Análise emergética de um sistema agroflorestal: Sítio Catavento, Indaiatuba, SP. / Teldes Corrêa Albuquerque. - Campinas, SP: [s.n], 2012. Orientador: Enrique Ortega Rodríguez Tese (doutorado) – Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos. 1. Agrofloresta. 2. Sustentabilidade. 3. Emergia. 4. Recuperação florestal. I. Rodríguez, Enrique Ortega. II. Universidade Estadual de Campinas.Faculdade de Engenharia de Alimentos. III. Título. Informações para Biblioteca Digital Título em inglês: Emergy analysis of na agroforestry system Palavras-chave em inglês (Keywords): Agroforestry Sustainability Emergy Foresty recovery Área de concentração: Engenharia de Alimentos Titulação: Doutor em Engenharia
    [Show full text]
  • Projeto Flora Amazônica: Eight Years of Binational Botanical Expeditions
    PROJETO FLORA AMAZÔNICA: EIGHT YEARS OF BINATIONAL BOTANICAL EXPEDITIONS Ghillean T. Prance (*) Bruce W. Nelson (*) MarIene Freitas da Silva (**) Douglas C. Daly (*) SUMMARY A ktitfM of the history and results of tht first eight yean of fieldwork of Projeto flora Amazônica ii given. This binational plant collecting program, sponsored by the Comelho Nacional de Vcòtnvolviintinto Cientifico e Tecnológico and the. National Science foundation, has mounted 25 expedition to many parti of, Brazilian Amazonia. Expeditions have visited both areai threatened with destruction of the forest and remote areas previously unknown botanically. The results have included the collection of 11,916 numbers of vascular plants, 16,442 of cryptogami, ai well ai quantitative inventory of IS.67 hectares of forest with the collection of 7,294*** numbenof iterile voucher coUeetiom. The non-inventory collection* have been made in replicate ieti of 10-13 ui/iete poaible and divided equally between Brazilian and U.S. inititutioni. To date, 55 botanists from many different institutions and withmanydifferentspecialities have taken pant with 36 different Brazilian botanisti. The resulting herbarium material is just beginning to be icorked up and many new species have been collected ai well ai many interesting range extensions and extra material of many rare species. INTRODUCTION AND HISTORY OF THE PROGRAM After eight years of intensive fieldwork in Brazilian Amazonia, the series of papers in this volume seek to present some of the results of the Brazi1ian - U.S. collaborative program entitled Projeto Flora Amazônica. In this paper we givea general overview of the U.S. side of the program and of the overall results.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Journal of Biotechnology and Biodiversity | V.8 | N.4 | 2020
    Journal of Biotechnology and Biodiversity | v.8 | n.4 | 2020 Journal of Biotechnology and Biodiversity journal homepage: https://sistemas.uft.edu.br/periodicos/index.php/JBB/index Resposta da fratura e integridade dos pirênios embebidos em água e GA3 na germinação de “muricis” Cylles Zara dos Reis Barbosaa* , Maria Sílvia de Mendonçaa , Oscar José Smiderleb a Universidade Federal do Amazonas, Brasil b Empresa Brasileira de Pesquisa Agropecuária, Brasil * Autor correspondente ([email protected]) I N F O A B S T R A C T Fracture response and integrity of pyrenes soaked in water and GA3 in germination of "muricis". Keywords The spread of "muricis" species is affected by the dormancy of its seeds, and as yet, there is no consen- Byrsonima sus on the cause and method to be used to overcome dormancy, the objective was to evaluate the frac- Malpighiaceae ture response and integrity of pyrenes soaked in water and GA3 in the germination of “muricis” (Byrson- overcoming dormancy ima crassifolia (L.) Kunth., B. verbascifolia (L.) DC. and B. coccolobifolia Kunth.), from savanna areas pre-germination of Boa Vista, Roraima. The experiment was conducted in a completely randomized design and a 3x3 treatments factorial scheme, consisting of three species and three pre-twinning treatments, with four replications of 25 pyrenes. The treatments consisted of pyrenes immersed in a gibberellic acid solution (500 mg L-1), for 48 hours and intact; immersed in distilled water for 48 hours and fractured; and immersed in distilled water for 48 hours and intact. Pyrenes belong to the same genus, but the species respond differently to pre-germination treatments for onset, average time and percentage of germination, however the immer- sion of the pyrenes in gibberellic acid solution was the most efficient treatment to overcome the dor- mancy in the seeds of the three species of "muricis".
    [Show full text]
  • Efectos De La Fragmentación Del Hábitat Sobre Himenópteros Antófilos (Insecta) En El Bosque Chaqueño Serrano
    Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Doctorado en Ciencias Biológicas Manuscrito de Tesis para optar al título de Dra. en Ciencias Biológicas Efectos de la fragmentación del hábitat sobre himenópteros antófilos (Insecta) en el Bosque Chaqueño Serrano Doctorando: Bióloga Mariana Laura Musicante Directora: Dra. Adriana Salvo Co-Director: Dr. Leonardo Galetto Centro de Investigaciones Entomológicas de Córdoba (CIEC) Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Córdoba, Argentina 2013 Comisión Asesora Dr. Marcelo Aizen Laboratorio Ecotono-Centro Regional Universitario Bariloche (CRUB), Universidad Nacional del Comahue e Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), San Carlos de Bariloche. Departamento de Botánica, Museo Argentino de Ciencias Naturales, Buenos Aires. Dr. Marcelo Cabido Instituto Multidisciplinario de Biología Vegetal-CONICT. Universidad Nacional de Córdoba. Dra. Adriana Salvo Centro de Investigaciones Entomológicas de Córdoba. Instituto Multidisciplinario de Biología Vegetal-CONICT Universidad Nacional de Córdoba. Defensa Oral y Pública Lugar y fecha: Calificación: Tribunal ______________________________ _____________________________________ Firma Aclaración ______________________________ _____________________________________ Firma Aclaración ______________________________ ____________________________________ Firma Aclaración A esos pequeños seres que zumbaban ayer y a los que todavía zumban hoy Efectos de la fragmentación del hábitat
    [Show full text]
  • Effects of Invasive Plant Species on Native Bee Communities in the Southern Great Plains
    EFFECTS OF INVASIVE PLANT SPECIES ON NATIVE BEE COMMUNITIES IN THE SOUTHERN GREAT PLAINS By KAITLIN M. O’BRIEN Bachelor of Science in Rangeland Ecology & Management Texas A&M University College Station, Texas 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2017 EFFECTS OF INVASIVE PLANT SPECIES ON NATIVE BEE COMMUNITIES IN THE SOUTHERN GREAT PLAINS Thesis Approved: Dr. Kristen A. Baum Thesis Adviser Dr. Karen R. Hickman Dr. Dwayne Elmore ii ACKNOWLEDGEMENTS I would like to begin by thanking my advisor, Dr. Kristen Baum, for all of her guidance and expertise throughout this research project. She is an exemplary person to work with, and I am so grateful to have shared my graduate school experience with her. I would also like to recognize my committee members, Dr. Karen Hickman and Dr. Dwayne Elmore, both of whom provided valuable insight to this project. A huge thank you goes out to the Southern Plains Network of the National Park Service, specifically Robert Bennetts and Tomye Folts-Zettner. Without them, this project would not exist, and I am forever grateful to have been involved with their network and parks, both as a research student and summer crew member. A special thank you for Jonathin Horsely, who helped with plot selection, summer sampling, and getting my gear around. I would also like to thank the Baum Lab members, always offering their support and guidance as we navigated through graduate school. And lastly, I would like to thank my family, especially my fiancé Garrett, for believing in me and supporting me as I pursued my goals.
    [Show full text]