Serine-To-Alanine Substitutions at the Amino-Terminal Region of Phytochrome a Result in an Increase M Biological Activity

Total Page:16

File Type:pdf, Size:1020Kb

Serine-To-Alanine Substitutions at the Amino-Terminal Region of Phytochrome a Result in an Increase M Biological Activity Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase m biological activity J6rg Stockhaus, 1-3 Akira Nagatani, 2 Ursula Halfter, 1,2 Steve Kay, 1'4 Masaki Furuya, 2,s and Nam-Hai Chua 1"6 ~The Rockefeller University, Laboratory of Plant Molecular Biology, New York, New York 10021-6399 USA; 2Frontier Research Program, Laboratory of Plant Biological Regulation, RIKEN Institute, Wako, Saitama, 351-01, Japan We have used a tobacco transgenic plant system to assay the structure/function relationship of phytochrome A (phyA), a plant photoreceptor. The amino terminus of phyA from different plant species is very rich in serine residues. To investigate whether these serine residues are required for phytochrome function, the first 10 serine codons encoding amino acid residues 2-4, 10-14, 19, and 20 in the amino-terminal domain of the rice phyA gene (phyA) were changed to alanine codons. The mutant (S/A phyA), as well as the wild-type phyA cDNA, was placed under the control of the 35S promoter, and the chimeric genes were transferred into the tobacco genome by Agrobacterium-mediated transformation. Transgenic tobacco plants expressing either wild-type or S/A phyA showed similar phenotypic alterations, including dwarfism and dark-green leaves. However, hypocotyl elongation experiments revealed that transgenic seedlings expressing S/A phyA showed a higher amplitude of the red light response with respect to the inhibition of hypocotyl elongation. The observed difference is not correlated with expression levels of the transgene. The chromophore is attached to the mutant phyA apoprotein (PHY A), and the mutant photoreceptor is photoreversible, giving a difference spectrum indistinguishable from that of the rice phyA. Our results indicate that the S/A mutant has a higher biological activity as compared with the wild-type rice phyA. [Key Words: Phytochrome; structure/function; tobacco] Received August 7, 1992; revised version accepted October 1, 1992. Autotrophic plants depend on light as the primary en- olated seedlings undergo photomorphogenesis that is ergy source. For this reason, it is essential for the plant to characterized by chlorophyll synthesis, chloroplast de- continuously monitor and adapt to ambient light condi- velopment, leaf expansion, and the cessation of rapid in- tions. The light-sensing function is carried out by several temode elongation. It is known that this process is reg- photosensory pigments that are able to measure light ulated by the complex interaction of several different quantity and quality. In addition, the light-detection photoreceptors (Furuya 1987; Thomas and Johnson mechanism is used to trigger various plant developmen- 1991). One of these photoreceptors is red light-absorbing tal processes ranging from germination to flowering phytochrome, which is the best characterized plant pho- (Kendrick and Kronenberg 1986; Smith and Whitelam toreceptor to date (Furuya 1989; Smith and Whitelam 1990). One of these developmental processes is a phe- 1990). Phytochrome is a chromoprotein consisting of an nomenon termed photomorphogenesis. When germinat- apoprotein {molecular mass of monomer, 118-125 kD) ed in complete darkness, higher plant seedlings exhibit covalently linked to a linear tetrapyrrole (Lagarias and certain characteristic features, including elongated inter- Rapoport 1980). It is synthesized in the dark as the red nodes, reduced leaf size, no chlorophyll synthesis, and light-absorbing form (Pr; h max. = 666 nm), which is arrested development. Upon exposure to light these eti- physiologically inactive. Absorption of red light converts the Pr form to the biologically active far red-absorbing form (Pff; h max. = 730 nm). The light-induced conver- Present addresses: 3Institut fiir Entwicklungs- und Molekularbiologieder Pflanzen, Heinrich-Heine Universit~t Dfisseidorf, 4000 Dfisseldorf 1, sion between the Pr and Pff forms is photoreversible. Germany; 4Department of Biology, University of Virginia, Charlottes- Phytochrome therefore serves as a molecular light ville, Virginia 22901 USA; SAdvancedResearch Laboratory, Hitachi, Ltd. switch, being activated by red light and attenuated by far Laboratory of Plant Biological Regulation, Hatoyama, Saitama, Japan 350-03. red light. 6Corresponding author. Several cDNA and genomic clones encoding phy- 2364 GENES& DEVELOPMENT 6:2364-2372 9 1992by Cold Spring Harbor Laboratory ISSN 0890-9369/92 $3.00 Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press PhyA mutant with increased biological activity tochrome have been isolated and characterized (for re- of phyA from different species contain a preponderance view, see Quail 1991). Sequence analysis revealed that of serine residues. Figure 1A compares the first 20 amino the cDNA clones encode distinct apoproteins (PHY A, acids of phyA from different monocotyledonous and di- PHY B, PHY C, etc.). Among these different types of cotyledonous species. The serine-rich character is con- phytochrome, phytochrome A (phyA), also referred to as served among phyA molecules from evolutionarily di- type I phytochrome (Furuya 1989), is the best character- vergent species such as the monocot rice and the dicot ized so far. Some data have accumulated concerning its tobacco (Fig. 1A). Of the first 20 amino-terminal amino domain structure and the conformational changes that acids of rice phyA, 10 are serine residues {amino acids the molecule undergoes during photoconversion (Vier- 2--4, 10-14, 19, and 20). This observation prompted us to stra and Quail 1986; Yamamoto 1990; Parker et al. 1991). investigate whether these serine residues are essential However, very little is known about the sequence of mo- for the function of rice phyA in vivo. To address this lecular events by which phyA triggers the diverse phys- question, we have chosen to assay the activity of mu- iological responses. The availability of full-length cDNA tated phyA in transgenic tobacco plants. The first 10 clones encoding phyA from different plant species made serine codons of a rice phyA cDNA (Kay et al. 1989a) it possible to express this particular photoreceptor in were changed to alanine codons (Fig. 1B), and the mu- transgenic plants. It was found that expression of mono- tated cDNA was fused downstream of the 35S promoter cot phyA in transgenic tobacco or tomato plants induces of cauliflower mosaic virus. This construct was trans- phenotypic changes that include semidwarfism and ferred into the Nicotiana tabacum var. Xanthi genome dark-green leaves (Boylan and Quail 1989; Keller et al. by Agrobacterium-mediated transformation. Transgenic 1989; Nagatani et al. 1991), as well as altered patterns of tobacco plants expressing rice wild-type (RW) phyA un- endogenous cab gene expression (Kay et al. 1989b). In der the transcriptional regulation of the 35S promoter particular, it was shown that the introduced rice gene were used as controls throughout these studies. phyA can regulate the hypocotyl length of transgenic Eight independent transgenic plants expressing the tobacco seedlings, resulting in shorter hypocotyls, as mutated rice phyA cDNA (S/A) showed phenotypic compared with untransformed control seedlings, under changes, such as shortened intemodes and dark-green dim white light (Nagatani et al. 1991). Similar results leaves. Similar phenotypes have been described previ- were obtained with the expression of oat phyA in trans- ously for plants expressing wild-type phyA genes (Boylan genie Arabidopsis (Boylan and Quail 1991). Therefore, and Quail 1989; Keller et al. 1989; Nagatani et al. 1991). these transgenic systems can be used to analyze the This characteristic phenotype indicated that the rice S/A structure/function relationship of phyA in vivo. phyA mutant was still functional (Fig. 1C). Because the We are interested in studying the functions of different plants shown in Figure 1C were grown under light con- domains of phyA using rice phyA as a model system. We ditions that were saturating for most phytochrome re- have first focused on the amino-terminal domain, be- sponses, it was not possible to perform comparative cause previous studies (Vierstra and Quail 1986; Ya- studies of transgenic plants expressing either the rice mamoto 1990; Parker et al. 1991) demonstrated that this wild-type phyA (RW phyA) or the S/A phyA mutant. To domain (amino-terminal 10 kD of phytochrome) under- analyze the biological activity of the expressed rice phyA goes significant conformational changes upon photocon- molecules, we have chosen the hypocotyl elongation as- version from the Pr to the Pfr form (Cordonnier et al. say described by Nagatani et al. (1991) as a sensitive ex- 1985; Jones et al. 1985; Lagarias and Mercurio 1985; perimental system. Chai et al. 1987; Vierstra et al. 1987}. In the Pfr form, the T 1 seeds of independent transgenic plants were im- amino-terminal domain interacts with the chromophore bibed under white light for 24 hr and subsequently irra- environment and alters the spectral properties of this diated with 15 x 10 -~ W/m 2 red light for 6 days. Under molecule (Vierstra and Quail 1983}. An inspection of these growth conditions, phytochrome is limiting for the amino-terminal amino acid sequences of phyA from dif- inhibition of hypocotyl elongation, which is known to be ferent species revealed that these sequences are enriched a characteristic phytochrome
Recommended publications
  • Insights Into the Molecular Basis for Substrate Binding and Specificity of the Wild-Type L-Arginine/Agmatine Antiporter Adic
    Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC Hüseyin Ilgüa,b,1, Jean-Marc Jeckelmanna,b,1, Vytautas Gapsysc, Zöhre Ucuruma,b, Bert L. de Grootc, and Dimitrios Fotiadisa,b,2 aInstitute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland; bSwiss National Centre of Competence in Research TransCure, University of Bern, CH-3012 Bern, Switzerland; and cComputational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved July 26, 2016 (received for review April 4, 2016) Pathogenic enterobacteria need to survive the extreme acidity of Arg-bound states (10). The two outward-open, substrate-free the stomach to successfully colonize the human gut. Enteric bacteria structures are at the reasonable and moderate resolutions of 3.2 Å circumvent the gastric acid barrier by activating extreme acid- (8) and 3.6 Å (9), respectively, and the only ones available of wild- resistance responses, such as the arginine-dependent acid resistance type AdiC (AdiC-wt). The two other structures are with bound system. In this response, L-arginine is decarboxylated to agmatine, Arg and at 3-Å resolution, and could only be obtained as a result thereby consuming one proton from the cytoplasm. In Escherichia of the introduction of specific point mutations: AdiC-N22A (10) coli,theL-arginine/agmatine antiporter AdiC facilitates the export and AdiC-N101A (11). The N101A mutation results in a defective of agmatine in exchange of L-arginine, thus providing substrates for AdiC protein unable to bind Arg and with a dramatically de- further removal of protons from the cytoplasm and balancing the creased turnover rate compared with wild-type (11).
    [Show full text]
  • Separation of Isomers <Emphasis Type="Italic">L </Emphasis>-Alanine and Sarcosine in Urine by Electrospra
    SHORT COMMUNICATION Separation of Isomers L-Alanine and Sarcosine in Urine by Electrospray Ionization and Tandem Differential Mobility Analysis-Mass Spectrometry Pablo Martínez-Lozanoa and Juan Rusb a Institute for Biomedical Technologies-National Research Council, Milan, Italy b SEADM, Valladolid, Spain Sarcosine, an isomer of L-alanine, has been proposed as a prostate cancer progression biomarker [1]. Both compounds are detected in urine, where the measured sarcosine/alanine ratio has been found to be higher in prostate biopsy-positive group versus controls. We present here preliminary evidence showing that urine samples spiked with sarcosine/alanine can be partially resolved in 3 min via tandem differential mobility analysis-mass spectrometry (DMA-MS). Based on the calibration curves obtained for two mobility peaks, we finally estimate their concentration ratio in urine. (J Am Soc Mass Spectrom 2010, 21, 1129–1132) © 2010 American Society for Mass Spectrometry rostate cancer is a leading cause of death among the tive-ion mode at the DMA entrance slit. Our nanospray male population. Sarcosine, an isomer of alanine, parameters were: capillary 360 ␮m o.d., 50 ␮m i.d., length Pwas recently proposed as a prostate cancer progres- 22 cm, driving pressure 75 mbar, and 3.8 kV. The ions sion biomarker [1]. In particular, the sarcosine/alanine entered the separation region propelled by an electric field ratio was found to be significantly higher in urine derived and against a counterflow gas (0.2 L/min). Sheath gas from biopsy-positive prostate cancer patients compared flow was kept constant, and the classification voltage was with biopsy-negative controls.
    [Show full text]
  • The Role of Agmatine and Arginine Decarboxylase in Ischemic Tolerance After Transient Cerebral Ischemia in Rat Models
    The role of agmatine and arginine decarboxylase in ischemic tolerance after transient cerebral ischemia in rat models Jin Young Jung Department of Medicine The Graduate School, Yonsei University The role of agmatine and arginine decarboxylase in ischemic tolerance after transient cerebral ischemia in rat models Directed by Professor Seung Kon Huh The Doctoral Dissertation submitted to the Department of Medicine, the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Jin Young Jung May 2007 This certifies that the Doctoral Dissertation of Jin Young Jung is approved. __________________________________ Thesis Supervisor: Seung Kon Huh __________________________________ Jong Eun Lee: Thesis Committee Member #1 __________________________________ Jin Woo Chang: Thesis Committee Member #2 __________________________________ Duck Sun Ahn: Thesis Committee Member #3 __________________________________ Ji Cheol Shin: Thesis Committee Member #4 The Graduate School Yonsei University May 2007 Acknowledgements Some may consider this short section of the thesis trivial but for me it is a chance to express my sincerest gratitude to those that I am truly thankful. First of all, I would like to express my deepest gratitude to my thesis supervisor and mentor Professor Seung Kon Huh. He has inspired me when I was troubled and always gave me a warm heart. I would also like to thank Professor Jong Eun Lee who shared her valuable time on the execution and interpretation of this study, Professor Jin Woo Chang who always inspiring me with passion and discerning insight. Professor Duck Sun Ahn whose insightful comments were essential in completing this thesis, Professor Ji Cheol Shin for the excellent suggestion for improvement in this thesis.
    [Show full text]
  • Beta Alanine
    PERFORMANCE ENHANCERS FACTS AND BOTTOM LINE BETA ALANINE What is it? B-alanine is a naturally occurring amino acid (a non-essential amino acid) not used by the body to make muscle tissue. Rather, research has shown that B-alanine works by increasing the muscle content of an important compound – carnosine. In fact, the production of carnosine is limited by the availability of B-alanine. Carnosine is highly concentrated in muscle tissue where its role is primarily to soak up hydrogen ions. Does it work? B-alanine is one of the few dietary supplements that actually have good scientific evidence that it can possibly enhance performance. How does it work? When you exercise intensely the body produces hydrogen ions. The longer you exercise the more hydrogen ions you produce and this reduces the pH level in your muscles. Muscles work best in a very specific pH range and when the pH drops below that level then muscular performance also starts to decrease. Anything that helps to prevent or delay that drop in pH will help delay muscle fatigue. This is where B-alanine has proven to be very helpful. Beta-alanine increases the levels of carnosine in your slow and fast twitch muscle fibers and carnosine is a buffer that basically soaks up hydrogen ions and so reduces the drop in pH. By keeping your hydrogen ion levels lower, B-alanine allows you to train harder and longer. The bottom line is that B-alanine works by increasing the hydrogen ion buffering abilities of your muscles. What benefits does it offer? B-alanine has been shown to increase muscle strength, increase muscle mass, increase anaerobic endurance, increase aerobic endurance and increase exercise capacity.
    [Show full text]
  • Poly(L-Alanine) As a Universal Reference Material for Understanding Protein Energies and Structures TERESA HEAD-GORDON, FRANK H
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 11513-11517, December 1992 Biophysics Poly(L-alanine) as a universal reference material for understanding protein energies and structures TERESA HEAD-GORDON, FRANK H. STILLINGER, MARGARET H. WRIGHT, AND DAVID M. GAY AT&T Bell Laboratories, Murray Hill, NJ 07974 Contributed by Frank H. Stillinger, June 17, 1992 ABSTRACT We present a proposition, the "poly(L- alanine) hypothesis," which asserts that the native backbone geometry for any polypeptide or protein of M residues has a closely mimicking, mechanically stable, image in poly(L- POLY-L-ALANINE alanine) of the same number of residues. Using a molecular co mechanics force field to represent the relevant potential energy a: hypersurfaces, we have carried out calculations over a wide z range of M values to show that poly(L-alanine) possesses the w structural versatility necessary to satisfy the proposition. These w include poly(L-alanine) representatives of minima correspond- U- ing to secondary and supersecondary structures, as well as PROTEIN poly(L-alanine) images for tertiary structures of the naturally occurring proteins bovine pancreatic trypsin inhibitor, crambin, ribonuclease A, and superoxide dismutase. The suc- cessful validation of the hypothesis presented in this paper BACKBONE COORDINATES indicates that poly(L-alanine) will serve as a good reference FIG. 1. Topographic basis ofthe poly(L-alanine) hypothesis. Free material in thermodynamic perturbation theory and calcula- energy hypersurfaces are compared for a given protein and for tions aimed at evaluating relative free energies for competing poly(L-alanine) with the same number of residues. candidate tertiary structures in real polypeptides and proteins.
    [Show full text]
  • Alcohol Use Disorder
    Section: A B C D E Resources References Alcohol Use Disorder (AUD) Tool This tool is designed to support primary care providers (family physicians and primary care nurse practitioners) in screening, diagnosing and implementing pharmacotherapy treatments for adult patients (>18 years) with Alcohol Use Disorder (AUD). Primary care providers should routinely offer medication for moderate and severe AUD. Pharmacotherapy alone to treat AUD is better than no therapy at all.1 Pharmacotherapy is most effective when combined with non-pharmacotherapy, including behavioural therapy, community reinforcement, motivational enhancement, counselling and/or support groups. 2,3 TABLE OF CONTENTS pg. 1 Section A: Screening for AUD pg. 7 Section D: Non-Pharmacotherapy Options pg. 4 Section B: Diagnosing AUD pg. 8 Section E: Alcohol Withdrawal pg. 5 Section C: Pharmacotherapy Options pg. 9 Resources SECTION A: Screening for AUD All patients should be screened routinely (e.g. annually or when indicators are observed) with a recommended tool like the AUDIT. 2,3 It is important to screen all patients and not just patients eliciting an index of suspicion for AUD, since most persons with AUD are not recognized. 4 Consider screening for AUD when any of the following indicators are observed: • After a recent motor vehicle accident • High blood pressure • Liver disease • Frequent work avoidance (off work slips) • Cardiac arrhythmia • Chronic pain • Rosacea • Insomnia • Social problems • Rhinophyma • Exacerbation of sleep apnea • Legal problems Special Patient Populations A few studies have reviewed AUD in specific patient populations, including youth, older adults and pregnant or breastfeeding patients. The AUDIT screening tool considered these populations in determining the sensitivity of the tool.
    [Show full text]
  • Amino Acid Chemistry
    Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1.
    [Show full text]
  • Insights Into the Mn Binding Site in the Agmatinase-Like Protein (ALP): A
    International Journal of Molecular Sciences Article Insights into the Mn2+ Binding Site in the Agmatinase-Like Protein (ALP): A Critical Enzyme for the Regulation of Agmatine Levels in Mammals María-Belen Reyes 1, José Martínez-Oyanedel 1,*, Camila Navarrete 1, Erika Mardones 1, Ignacio Martínez 1,Mónica Salas 2, Vasthi López 3, María García-Robles 4, Estefania Tarifeño-Saldivia 1, Maximiliano Figueroa 1, David García 1 and Elena Uribe 1,* 1 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile; [email protected] (M.-B.R.); [email protected] (C.N.); [email protected] (E.M.); [email protected] (I.M.); [email protected] (E.T.-S.); [email protected] (M.F.); [email protected] (D.G.) 2 Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5110566, Chile; [email protected] 3 Departamento de Ciencias Biomédicas, Universidad Católica del Norte, Coquimbo 1781421, Chile; [email protected] 4 Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 3349001, Chile; [email protected] * Correspondence: [email protected] (J.M.-O.); [email protected] (E.U.) Received: 28 April 2020; Accepted: 5 June 2020; Published: 10 June 2020 Abstract: Agmatine is a neurotransmitter with anticonvulsant, anti-neurotoxic and antidepressant-like effects, in addition it has hypoglycemic actions. Agmatine is converted to putrescine and urea by agmatinase (AGM) and by an agmatinase-like protein (ALP), a new type of enzyme which is present in human and rodent brain tissues. Recombinant rat brain ALP is the only mammalian protein that exhibits significant agmatinase activity in vitro and generates putrescine under in vivo conditions.
    [Show full text]
  • Proline- and Alanine-Rich N-Terminal Extension of the Basic Bovine P-Crystallin B1 Chains
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 161, number 2 FEBS 0790 September 1983 Proline- and alanine-rich N-terminal extension of the basic bovine P-crystallin B1 chains G.A.M. Berbers, W.A. Hoekman, H. Bloemendal, W.W. de Jong, T. Kleinschmidt* and G. Braunitzer* Laboratorium voor Biochemie, Universiteit van Nijmegen, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands and *Max-Planck-Institut ft’ir Biochemie, Abteilung Proteinchemie, D-8033 Martinsried bei Miinchen, FRG Received 22 June 1983 The amino acid sequence of the N-terminal region of the two basic bovine &crystallin B1 chains has been analyzed. The results reveal that @Bibis derived in vivo from the primary gene product @la by removal of a short N-terminal sequence. It appears that them1 chains have the same domain structure as observed in other /3- and y-crystallin chains. They have, however, a very long N-terminal extension in comparison with other &chains. This extension is mainly composed of a remarkable Pro- and Ala-rich sequence, which suggests an interaction of these structural proteins with the cytoskeleton and/or the plasma membranes of the lens cells. Protein sequence Bovine &crystallin N-terminal extension Proline- and aianine-rich Domain structure 1. INTRODUCTION 33 000 and 31000, respectively, are characteristic for fltikt, [ 111. ,8Fha is a primary gene product, from The crystallins are evolutionary highly conserv- which ,8&b arises by post-translational modifica- ed structural eye lens proteins, which can be divid; tion [lo-121, most probably a proteolytic step ed into 4 classes: (Y-,,&, y- and t-crystallin [ 11.
    [Show full text]
  • The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 4-2017 The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats Justin P. Canakis College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Animal Sciences Commons, Exercise Science Commons, Laboratory and Basic Science Research Commons, and the Other Nutrition Commons Recommended Citation Canakis, Justin P., "The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats" (2017). Undergraduate Honors Theses. Paper 1128. https://scholarworks.wm.edu/honorstheses/1128 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. 1 2 Title Page……………………………………………………………………………………...…..1 Abstract…………………………………………………………………………………………....5 Acknowledgement……………………………………………………………………….………..6 Background.………………………………………………………………………..……………...7 DSEHA and its Effect on the VMS Industry………………...……………………………7 History of Adverse Side Effects from Pre-Workout Supplements ………….……………8 Ingredient Analysis ………………………………………..……………….……………..……....9 2.5g Beta-Alanine…………………………..……………………………………………..9 1g Creatine Nitrate……………………………...……………………………………..…12 500mg L-Leucine……………………………………………………………………...…16 500mg Agmatine Sulfate……………………….………………………………..………18
    [Show full text]
  • The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 4-2017 The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats Justin P. Canakis College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Animal Sciences Commons, Exercise Science Commons, Laboratory and Basic Science Research Commons, and the Other Nutrition Commons Recommended Citation Canakis, Justin P., "The Efficacy and Safety of Six-Weeks of Pre-Workout Supplementation in Resistance Trained Rats" (2017). Undergraduate Honors Theses. Paper 1128. https://scholarworks.wm.edu/honorstheses/1128 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. 1 2 Title Page……………………………………………………………………………………...…..1 Abstract…………………………………………………………………………………………....5 Acknowledgement……………………………………………………………………….………..6 Background.………………………………………………………………………..……………...7 DSEHA and its Effect on the VMS Industry………………...……………………………7 History of Adverse Side Effects from Pre-Workout Supplements ………….……………8 Ingredient Analysis ………………………………………..……………….……………..……....9 2.5g Beta-Alanine…………………………..……………………………………………..9
    [Show full text]
  • Detection of Cyanotoxins, Β-N-Methylamino-L-Alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis
    Toxins 2015, 7, 322-336; doi:10.3390/toxins7020322 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Detection of Cyanotoxins, β-N-methylamino-L-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis Sandra Anne Banack 1, Tracie Caller 2,†, Patricia Henegan 3,†, James Haney 4,†, Amanda Murby 4, James S. Metcalf 1, James Powell 1, Paul Alan Cox 1 and Elijah Stommel 3,* 1 Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA; E-Mails: [email protected] (S.A.B.); [email protected] (J.S.M.); [email protected] (J.P.); [email protected] (P.A.C.) 2 Cheyenne Regional Medical Group, Cheyenne, WY 82001, USA; E-Mail: [email protected] 3 Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; E-Mail: [email protected] 4 Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA; E-Mails: [email protected] (J.H.); [email protected] (A.M.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-603-650-8615; Fax: +1-603-650-6233. Academic Editor: Luis M. Botana Received: 19 November 2014 / Accepted: 21 January 2015 / Published: 29 January 2015 Abstract: A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam.
    [Show full text]