Balsano Evelyn.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Balsano Evelyn.Pdf Uptake, physiological responses and technical application of the aquatic fungus Mucor hiemalis EH5 for the removal of cyanobacterial toxins vorgelegt von MSc Evelyn Balsano geb. in Bozen, Italien von der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Juri Rappsilber Gutachter: Prof. Dr. Stephan Pflugmacher Lima Gutachter: Prof. Dr. Enamul Hoque Gutachterin: Prof. Dr.–Ing. Vera Meyer Tag der wissenschaftlichen Aussprache: 05. Oktober 2017 Berlin 2017 Auch eine Reise von tausend Meilen beginnt mit dem ersten Schritt ACKNOWLEDGEMENTS This study was conducted at the Department of Ecological Impact Research and Ecotoxicology and was funded by the Elsa-Neumann-Scholarship (formally known as Nachwuchsförderungsgesetz-NaFöG) and in part by the Studienbeihilfen für postuniversitäre Ausbildungen, Autonome Provinz Bozen Südtirol. I especially thank my academic supervisor Prof. Dr. Stephan Pflugmacher Lima for the opportunity to work in his well-equipped department on such a fascinating and innovative topic. I am thankful for the guidance and advice during the years and his confidence in my work. I further very much appreciated the possibility to present the Green Liver Systems on the exhibition IFAT in Munich, the inauguration of Felidae in Barnim and other occasions at the TU Berlin, thereby offering me the opportunity of being also involved in other fruitful outcomes of our research group. I am deeply grateful to my co-supervisor Prof. Dr. Enamul Hoque for the constant support and interest in the progress of my thesis throughout all these years. I am especially thankful for always welcoming me at the Helmholtz Zentrum München as well as introducing me to his wonderful family. Special thanks go to Dr. Maranda Esterhuizen-Londt for being my direct contact, her patient guidance, constant availability and amazing support throughout the course of this study. I also want to express my gratitude for all the invaluable corrections and suggestions on the manuscripts and this thesis. I further express my sincere gratitude to Dr. Valeska Contardo-Jara for her fruitful inputs and constructive discussions. Our laboratory technicians merit special recognition for always being ready to help and assist with any technical and supportive needs, Sandra Kühn especially for the help with the LC-MS/MS measurements and Mahboobeh Behmaneshfard for her unique kindness. I I further thank… All the staff members, especially Anja, Annette, Azam, Beheshteh, Cecilia, Cielo, Maranda, Mahboobeh, Mi-Hee, Sandra, Suhana, Suseth, and Valeska for their companionship, the pleasant work atmosphere, inspiring and fun lunches, and very good team spirit throughout the course of my entire thesis. ! My former lab and office colleague from the University of Vienna, Stephan Mokesch for his motivating scientific talks, his honest interest in the development of my work and also for reviewing the introduction part of this thesis. My friends for the irreplaceable encouragement, emotional support, and beneficial distractions from work when I needed it the most, especially Anna, Carlo, Dani, Esi, Kurt, Magda, Masha, Nora, Stephan, and Suhana. Last but most important, I am happy and grateful of having met Daniel at the peak of my PhD journey, whom I have always been able to count on through thick and thin ever since. And of course, I particularly thank my FAMILY for always being here and supporting me unconditionally in all the steps I take. II LIST OF MANUSCRIPTS This doctoral thesis is presented in cumulative form and is based on the following three manuscripts, referred to in the text by their corresponding Roman numerals. The three manuscripts, which form separate chapters in the thesis, have been published in international peer-reviewed journals and are inserted herein as their postprint version. I) Toxin resistance in aquatic fungi poses environmentally friendly remediation possibilities: A study on the growth responses and biosorption potential of Mucor hiemalis EH5 against cyanobacterial toxins. Evelyn Balsano, Maranda Esterhuizen-Londt, Enamul Hoque, and Stephan Pflugmacher International Journal of Water and Wastewater Treatment, 2015, 1(1), 1-9 Doi: 10.16966/2381-5299.101 This work is licensed under the Creative Commons Attribution 4.0 International License. CC BY 4.0 II) Fungal pellets as potential tools to control water pollution: Strategic approach for the pelletization and subsequent microcystin-LR uptake by Mucor hiemalis. Evelyn Balsano, Maranda Esterhuizen-Londt, Enamul Hoque, and Stephan Pflugmacher Journal of Applied Biology and Biotechnology, 2016, 4(4), 031-041 Doi: 10.7324/JABB.2016.40403 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. CC BY-NC-SA 3.0 III) Responses of the antioxidative and biotransformation enzymes in the aquatic fungus Mucor hiemalis exposed to cyanotoxins. Evelyn Balsano, Maranda Esterhuizen-Londt, Enamul Hoque, and Stephan Pflugmacher Biotechnology Letters, 2017, 39(8), 1201-1209 Doi: 10.1007/s10529-017-2348-8 The final publication is available at Springer via http://dx.doi.org/10.1007/s10529-017-2348-8 III LIST OF CONFERENCES Toxin resistance in aquatic fungi poses environmentally friendly remediation possibilities: A study on the growth responses and biosorption potential of Mucor hiemalis EH5 against MC-LR, BMAA, and CYN. Evelyn Balsano, Maranda Esterhuizen-Londt, Enamul Hoque, and Stephan Pflugmacher Poster session presented at: FEMS 2015, 6th Congress of European Microbiologists 2015 Jun 7-11, Maastricht, The Netherlands. IV CONTENTS Acknowledgements ................................................................................................................... I List of manuscripts ................................................................................................................ III List of conferences ................................................................................................................. IV Contents .................................................................................................................................... V Figure Index ........................................................................................................................... IX Table Index .......................................................................................................................... XIII Abstract ................................................................................................................................. XV Zusammenfassung ............................................................................................................. XVII Abbreviations ...................................................................................................................... XIX 1 Introduction ........................................................................................................................ 1 1.1 Cyanotoxins .................................................................................................................. 2 1.2 Oxidative stress and antioxidant defensive system .................................................. 5 1.3 Cyanotoxin metabolism and detoxification in living organisms ............................. 8 1.4 Removal of cyanotoxins – Biodegradation .............................................................. 11 Mycoremediation ........................................................................................................ 13 1.5 Aims and objectives ................................................................................................... 17 2 Toxin resistance in aquatic fungi poses environmentally friendly remediation possibilities: A study on the growth responses and biosorption potential of Mucor hiemalis EH5 against cyanobacterial toxins ......................................................................... 21 Abstract ..................................................................................................................... 22 2.1 Introduction ............................................................................................................... 23 2.2 Materials and Methods ............................................................................................. 26 2.2.1 Fungal strain ................................................................................................... 26 2.2.2 Cyanobacterial toxins ..................................................................................... 26 2.2.3 Culture conditions ........................................................................................... 26 2.2.4 Disk diffusion assay: Inoculation and exposure ............................................. 26 2.2.5 Measurement of radial growth rate and biomass production .......................... 27 2.2.6 Biosorption: Exposure scenario and sample collection .................................. 27 2.2.7 Toxin extraction .............................................................................................. 28 V 2.2.8 LC-MS/MS ..................................................................................................... 29 2.2.9 Statistical analysis .......................................................................................... 30 2.3 Results and Discussion .............................................................................................
Recommended publications
  • The Fate of Microcystins in the Environment and Challenges for Monitoring
    Toxins 2014, 6, 3354-3387; doi:10.3390/toxins6123354 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review The Fate of Microcystins in the Environment and Challenges for Monitoring Justine R. Schmidt 1,*, Steven W. Wilhelm 2 and Gregory L. Boyer 1 1 Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; E-Mail: [email protected] 2 Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-315-470-6844; Fax: +1-315-470-6856. External Editor: Lesley V. D'Anglada Received: 1 November 2014; in revised form: 29 November 2014 / Accepted: 5 December 2014 / Published: 12 December 2014 Abstract: Microcystins are secondary metabolites produced by cyanobacteria that act as hepatotoxins in higher organisms. These toxins can be altered through abiotic processes, such as photodegradation and adsorption, as well as through biological processes via metabolism and bacterial degradation. Some species of bacteria can degrade microcystins, and many other organisms metabolize microcystins into a series of conjugated products. There are toxicokinetic models used to examine microcystin uptake and elimination, which can be difficult to compare due to differences in compartmentalization and speciation. Metabolites of microcystins are formed as a detoxification mechanism, and little is known about how quickly these metabolites are formed. In summary, microcystins can undergo abiotic and biotic processes that alter the toxicity and structure of the microcystin molecule. The environmental impact and toxicity of these alterations and the metabolism of microcystins remains uncertain, making it difficult to establish guidelines for human health.
    [Show full text]
  • Genome Diversification in Globally Distributed Novel Marine
    bioRxiv preprint doi: https://doi.org/10.1101/814418; this version posted October 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genome diversification in globally distributed novel 2 marine Proteobacteria is linked to environmental adaptation 3 4 Authors: Zhichao Zhou1, Patricia Q. Tran1, 2, Kristopher Kieft1, Karthik Anantharaman1* 5 6 7 Affiliations: 8 1Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, 53706, USA 9 2Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706, 10 USA 11 12 13 *Corresponding author 14 Email: [email protected] 15 Address: 4550 Microbial Sciences Building, 1550 Linden Dr., Madison, WI, 53706 16 17 Abstract 18 Proteobacteria constitute the most diverse and abundant group of microbes on Earth. In 19 productive marine environments like deep-sea hydrothermal systems, Proteobacteria have been 20 implicated in autotrophy coupled to sulfur, methane, and hydrogen oxidation, sulfate reduction, 21 and denitrification. Beyond chemoautotrophy, little is known about the ecological significance 22 of novel Proteobacteria that are globally distributed and active in hydrothermal systems. Here 23 we apply multi-omics to characterize 51 metagenome-assembled genomes from three 24 hydrothermal vent plumes in the Pacific and Atlantic Oceans that are affiliated with nine novel 25 Proteobacteria lineages. Metabolic analyses revealed these organisms to contain a diverse 26 functional repertoire including chemolithotrophic ability to utilize sulfur and C1 compounds, 27 and chemoorganotrophic ability to utilize environment-derived fatty acids, aromatics, 28 carbohydrates, and peptides.
    [Show full text]
  • <I>MICROCYSTIS</I> BLOOMS
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2018 MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS Lauren Elisabeth Krausfeldt University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Krausfeldt, Lauren Elisabeth, "MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5030 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lauren Elisabeth Krausfeldt entitled "MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation and recommend its acceptance: Alison Buchan, Shawn R. Campagna, Karen G. Lloyd Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Lauren Elisabeth Krausfeldt August 2018 Copyright © 2018 by Lauren E.
    [Show full text]
  • Extracellular Enzymes in Aquatic Environments
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2020 Extracellular Enzymes in Aquatic Environments: Possible Role of Non-Specific eptidasesP in Microcystin Degradation and Effects of Assay Protocol on Calculated Activities Christopher Cook University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Cook, Christopher, "Extracellular Enzymes in Aquatic Environments: Possible Role of Non-Specific Peptidases in Microcystin Degradation and Effects of Assay Protocol on Calculated Activities. " Master's Thesis, University of Tennessee, 2020. https://trace.tennessee.edu/utk_gradthes/6073 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Christopher Cook entitled "Extracellular Enzymes in Aquatic Environments: Possible Role of Non-Specific eptidasesP in Microcystin Degradation and Effects of Assay Protocol on Calculated Activities." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology. Andrew Steen, Major Professor We have
    [Show full text]
  • In Silico Proteomic Analysis Provides Insights Into Phylogenomics and Plant Biomass Deconstruction Potentials of the Tremelalles
    fbioe-08-00226 April 2, 2020 Time: 17:58 # 1 ORIGINAL RESEARCH published: 03 April 2020 doi: 10.3389/fbioe.2020.00226 In silico Proteomic Analysis Provides Insights Into Phylogenomics and Plant Biomass Deconstruction Potentials of the Tremelalles Habibu Aliyu1*†, Olga Gorte1†, Xinhai Zhou1,2, Anke Neumann1 and Katrin Ochsenreither1* 1 Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China Edited by: Basidiomycetes populate a wide range of ecological niches but unlike ascomycetes, Joao Carlos Setubal, their capabilities to decay plant polymers and their potential for biotechnological University of São Paulo, Brazil approaches receive less attention. Particularly, identification and isolation of CAZymes Reviewed by: Marco Antonio Seiki Kadowaki, is of biotechnological relevance and has the potential to improve the cache of currently Université libre de Bruxelles, Belgium available commercial enzyme cocktails toward enhanced plant biomass utilization. The Renato Graciano De Paula, order Tremellales comprises phylogenetically diverse fungi living as human pathogens, Federal University of Espírito Santo, Brazil mycoparasites, saprophytes or associated with insects. Here, we have employed Gabriel Paes, comparative genomics approaches to highlight the phylogenomic relationships among Fractionnation of AgroResources and Environment (INRA), France thirty-five Tremellales and to identify putative enzymes of biotechnological interest *Correspondence: encoded on their genomes. Evaluation of the predicted proteomes of the thirty-five Habibu Aliyu Tremellales revealed 6,918 putative carbohydrate-active enzymes (CAZYmes) and 7,066 [email protected]; peptidases. Two soil isolates, Saitozyma podzolica DSM 27192 and Cryptococcus sp.
    [Show full text]
  • Insight Into the Molecular Mechanisms for Microcystin Biodegradation in Lake Erie and Lake Taihu
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 2019 Insight Into the Molecular Mechanisms for Microcystin Biodegradation in Lake Erie and Lake Taihu Lauren E. Krausfeldt University of Tennessee, Knoxville Morgan M. Steffen James Madison University, Harrisonburg Robert M. McKay Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada George S. Bullerjahn Bowling Green State University, Bowling Green Gregory L. Boyer College of Environmental Science and Forestry, State University of New York, Syracuse, See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Recommended Citation Krausfeldt, Lauren E.; Steffen, Morgan M.; McKay, Robert M.; Bullerjahn, George S.; Boyer, Gregory L.; and Wilhelm, Steven W., "Insight Into the Molecular Mechanisms for Microcystin Biodegradation in Lake Erie and Lake Taihu" (2019). Microbiology Publications and Other Works. https://trace.tennessee.edu/utk_micrpubs/110 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Lauren E. Krausfeldt, Morgan M. Steffen, Robert M. McKay, George S. Bullerjahn, Gregory L. Boyer, and Steven W. Wilhelm This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/110 fmicb-10-02741 December 7, 2019 Time: 11:11 # 1 ORIGINAL RESEARCH published: 10 December 2019 doi: 10.3389/fmicb.2019.02741 Insight Into the Molecular Mechanisms for Microcystin Biodegradation in Lake Erie and Lake Taihu Lauren E.
    [Show full text]
  • Elucidating the Regulatory Functions of Mlra Originated from Novosphingobium Sp
    ntal & A me na n ly o t ir ic Li et al., J Environ Anal Toxicol 2018, 8:2 v a n l T E o Journal of f x DOI: 10.4172/2161-0525.1000556 o i l c o a n l o r g u y o J Environmental & Analytical Toxicology ISSN: 2161-0525 ResearchResearch Article Article OpenOpen Access Access Elucidating the Regulatory Functions of MlrA Originated from Novosphingobium sp. THN1 in Microcystin-LR Degradation Jieming Li, Ruiping Wang and Ji Li* College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China Abstract Microcystin-LR (MC-LR), produced by harmful cyanobacteria, seriously endangers animals and humans. Biodegradation appears as the major pathway for natural MC-LR attenuation. To elucidate the regulatory function of mlrA gene of Novosphingobium sp. THN1 (i.e., THN1-mlrA gene) in MC-LR biodegradation, this study constructed a recombinant bacterium and succeeded in heterlogously expressing the MlrA of THN1 strain (i.e., THN1-MlrA enzyme). The recombinant MlrA exhibited the activity for smoothly degrading 20 μg mL-1 of MC-LR at an average rate of 0.16 μg mL-1 h-1 within 80 h. Mass spectrum analysis confirmed that recombinant MlrA hydrolyzed cyclic MC-LR by cleaving the peptide bond between Adda and arginine residue and generated linearized MC-LR as primary intermediate. Such linearization for MC-LR catalyzed by THN1-MlrA enzyme was particularly important during MC-LR biodegradation process, because it opened the highly-stable cyclic structure of MC-LR and caused substantial detoxification. These findings for the first time manifested thatmlrA gene homolog of Novosphingobium genus conserved its original catalytic function as described elsewhere.
    [Show full text]
  • Synthese Et Evaluation Biologique De Derives De L'aminobenzosuberone
    Synthese et evaluation biologique de derives de l'aminobenzosuberone, inhibiteurs puissants et selectifs de l'aminopeptidase N ou CD13 Sarah Alavi To cite this version: Sarah Alavi. Synthese et evaluation biologique de derives de l'aminobenzosuberone, inhibiteurs puissants et selectifs de l'aminopeptidase N ou CD13. Chimie organique. Universit´ede Haute Alsace - Mulhouse, 2013. Fran¸cais. <NNT : 2013MULH4071>. <tel-01223670> HAL Id: tel-01223670 https://tel.archives-ouvertes.fr/tel-01223670 Submitted on 3 Nov 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. THESE En vue de l’obtention du Présentée et soutenue Doctorat de l’Université de Haute-Alsace par : Sarah ALAVI Spécialité : Chimie Organique Le jeudi 28 novembre 2013 Synthèse et évaluation biologique de dérivés de l’amino-benzosubérone, inhibiteurs puissants et sélectifs de l’Aminopeptidase N ou CD13. Ecole Doctorale : Jean Henri-Lambert 494 – Pôle Chimie, Physique et Matériaux Unité de recherche : Laboratoire de Chimie Organique et Bioorganique (COB) – EA 4566 Directeurs de Thèse : Pr Céline TARNUS (COB – UHA Mulhouse) Dr Philippe BISSERET (COB – UdS Strasbourg) Rapporteurs : Dr Jean-Bernard BEHR (ICMR – Univ. Champagne-Ardenne Reims) Dr Siden TOP (Lab.
    [Show full text]
  • Genome Sequencing and Functional Genes Comparison Between Sphingopyxis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437629; this version posted March 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genome sequencing and functional genes comparison between Sphingopyxis 2 USTB-05 and Sphingomonas morindae NBD5 3 4 Chao Liu1, Qianqian Xu1, Zhenzhen Zhao1, Shahbaz Ahmad1, Haiyang Zhang1, Yufan 5 Zhang1, Yu Pang1, Abudumukeyiti Aikemu1, Yang Liu1,* Hai Yan1,* 6 7 1 School of Chemistry and Biological Engineering, University of Science and 8 Technology Beijing, Beijing 100083, China 9 *Corresponding author: Prof Hai Yan; mail: [email protected]. Yang Liu; mail: 10 [email protected]. 11 12 Keywords: Sphingomonadaceae; Genome; Lutein; Hepatotoxin; Microcystins; 13 Biodegradation 14 15 16 17 18 19 20 21 22 23 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437629; this version posted March 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 26 ABSTRACT 27 Sphingomonadaceae has a large number of strains that can biodegrade hepatotoxins or 28 environmental pollutants. The latest research reported that certain strains can also 29 produce lutein. Based on the third-generation sequencing technology, we analyzed the 30 whole genome sequence and compared related functional genes of two strains of 31 Sphingomonadaceae isolated from different habitats. The genome of Sphingopyxis 32 USTB-05 was 4,679,489 bp and contained 4312 protein coding genes.
    [Show full text]
  • Tássio Brito De Oliveira Fungos Na Compostagem Da
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” unesp INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (ÁREA: MICROBIOLOGIA APLICADA) TÁSSIO BRITO DE OLIVEIRA FUNGOS NA COMPOSTAGEM DA TORTA DE FILTRO: DIVERSIDADE, GENÔMICA E POTENCIAL BIOTECNOLÓGICO Tese apresentada ao Instituto de Biociências, do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutor em Ciências Biológicas (Área: Microbiologia Aplicada). Rio Claro Dezembro – 2016 TÁSSIO BRITO DE OLIVEIRA FUNGOS NA COMPOSTAGEM DA TORTA DE FILTRO: DIVERSIDADE, GENÔMICA E POTENCIAL BIOTECNOLÓGICO Tese apresentada ao Instituto de Biociências, do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutor em Ciências Biológicas (Área: Microbiologia Aplicada). Orientador: Prof. Dr. André Rodrigues Co-orientadora: Profª. Drª. Eleni Gomes Rio Claro Dezembro – 2016 589.2 Oliveira, Tássio Brito de O48f Fungos na compostagem da torta de filtro : diversidade, genômica e potencial biotecnológico / Tássio Brito de Oliveira. - Rio Claro, 2016 127 f. : il., figs., gráfs., tabs., fots. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: André Rodrigues Coorientadora: Eleni Gomes 1. Fungos. 2. Pirosequenciamento. 3. Cana-de-açúcar. 4. Enzimas lignocelulolíticas. 5. Tratamento de resíduo. 6. Fungos termofílicos. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP AGRADECIMENTOS Ao meu orientador, Dr. André Rodrigues, quem muito admiro pela competência profissional e genialidade, pela oportunidade, dedicação e incentivo à pesquisa durante sua orientação, que me abriu caminhos e diversas colaborações, permitindo meu crescimento profissional e pessoal. À minha co-orientadora, Drª.
    [Show full text]
  • Microcystins and Nodularin) by Novel Gram-Positive Bacteria
    OpenAIR@RGU The Open Access Institutional Repository at Robert Gordon University http://openair.rgu.ac.uk Citation Details Citation for the version of the work held in ‘OpenAIR@RGU’: WELGAMAGE DON, A. C. D., 2012. An investigation into the biodegradation of peptide cyanotoxins (microcystins and nodularin) by novel gram-positive bacteria. Available from OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk Copyright Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository, are protected by copyright and intellectual property law. If you believe that any material held in ‘OpenAIR@RGU’ infringes copyright, please contact [email protected] with details. The item will be removed from the repository while the claim is investigated. AN INVESTIGATION INTO THE BIODEGRADATION OF PEPTIDE CYANOTOXINS (MICROCYSTINS AND NODULARIN) BY NOVEL GRAM-POSITIVE BACTERIA By Welgamage Don Aakash Channa Dharshan A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy Robert Gordon University February 2012 i TABLE OF CONTENTS Title page .............................................................................................. i Contents ............................................................................................... ii Declaration .......................................................................................... iii Dedication ........................................................................................... iv Acknowledgements ...............................................................................
    [Show full text]
  • Supplemental Materials and Methods
    Supplemental Materials and Methods Cell isolation and in vitro stimulation Human monocytes and neutrophils were isolated from fresh peripheral blood using RosetteSep™ Human Monocyte Enrichment Cocktail (STEMCELL Technology) and Polymorphophrep solution (Axis-Shield), respectively. Fresh cells (1 x 106) resuspended in complete RPMI 1640 medium without penicillin and streptomycin were plated into 96-well U- bottom plates, and then infected with live BPZE1 at a bacterium-to-cell ratio of 10:1. Cells and bacteria were centrifuged to facilitate contact at 2200 rpm for 2 min, followed by incubation for 2h at 37°C in a 5% CO2 atmosphere. Afterwards, polymyxin B (5 µg/ml) was added to kill extracellular bacteria. Then cells were extensively washed and further incubated for 6h or 12h. Cell activation was evaluated using flow cytometric analysis. Supernatants were collected from cell culture for the measurement of cytokines. Bacterial strains, growing conditions and lysates preparation Vaccine strain BPZE1 and a virulent clinical B. pertussis strain BP611-98 were obtained from the Public Health Agency of Sweden. As for the lysates preparation, both B. pertussis strains were grown on charcoal agar plates supplemented with 10% horse blood for 5 days at 37°C. Bacteria were then scraped gently from the plates, suspended in PBS, and then filtered through a 40 µm cell strainer. Bacteria suspensions were centrifuged at 3500 rpm for 15min and pellets were collected. An appropriate volume of lysis buffer (8M urea, 500mM bicarbonate, PH=8.5) was used to lyse the bacteria on ice for 1h, followed by centrifugation and collection of supernatants. Protein concentration was determined using Pierce BCA Protein Assay Kit according to the manual.
    [Show full text]