Embedded C++: an Overview

Total Page:16

File Type:pdf, Size:1020Kb

Embedded C++: an Overview by P.J. PLAUGER Embedded C++: An Overview Is EC++ the diet pill that will shrink C++ down to size for embedded applications? Here’s P.J. Plauger’s take. he Fall 1997 Embedded trary, I found growing enthusiasm on Systems Conference in several fronts. San Jose was a smashing success. Attendance was ■ The Embedded C++ Technical way up over last year, and Committee, a consortium of rather more than even the optimistic Japanese companies, held their Tprojections made by the Powers that third international meeting on Be before the conference opened. I September 30, across the street haven’t seen this much activity and from the convention center. About interest in the embedded marketplace 50 people showed up, many of them ever before. Period. vendors announcing new products Of particular interest to me was the that support this de facto industry attention awarded to Embedded C++. standard. Several major Japanese It was only a year earlier, at the Fall companies have also joined the 1996 Embedded Systems original four semiconductor heavy- Conference, that I had the honor of hitters as well P.J. Plauger is the author of the stan- formally introducing this project to ■ I repeated my talk on Embedded dard C++ library shipped with the public. It could have sunk without C++ on October 1 to an audience of Microsoft Visual C++. His “State of a trace in the intervening months— at least 150 people. There was obvi- the Art” column appears monthly in many optimistic new projects do— ous interest and lots of intelligent Embedded Systems Programming. but that didn’t happen. Quite the con- questions ■ Green Hills Software is now mar- Moving a C++ caught up. keting their embedded compiler It gets worse, at least from the stand- products with full EC++ support program between point of embedded systems program- ■ Metrowerks and Hiware, two other ming. Several of the new features add companies that license compilers significant overheads to a C++ pro- into the embedded marketplace, compilers has gram, in terms of both code size and announced their intention to supply execution speed. In some cases, the compilers that support Embedded become more overheads occur even if you don’t C++ in the near future explicitly make use of the new fea- ■ I talked to half a dozen exhibitors difficult, not less, tures. Customers aren’t asking for on the show floor who already knew these new features—at least, they about Embedded C++ and were haven’t yet been educated en masse to beginning to plan how to support it as a result of want the features—and the chip ven- for their customers dors haven’t gotten around to imple- standardization. menting all of them. Compiler devel- I’ll elaborate on these themes in the opment in the commercial world is dri- remainder of this article. But first, let ven by what customers are asking for me back up and supply a bit of history. All four companies shared a com- this month. There’s simply too many I can then fill in the relevant technical mon complaint. Their customers— things to do to devote product develop- details. (See also the sidebar, “Read almost all developers of embedded ment time in places that don’t confer All About It,” for a supplemental read- systems using their chips—were an immediate competitive advantage. ing list.) beginning to demand C++ compilers. Thus, some of the chip vendors Naturally, the vendors were eager to might love to have an excuse not to HISTORY oblige. All four companies offered have to supply, say, exception han- first heard of this project in some form of a C++ compiler, or were dling in C++. Many of their customers November 1995, while attending a about to. But when customers started would happily live without such a fea- meeting of WG21 and J16, the ISO using C++, they were largely dissatis- ture, at least for the more demanding Iand ANSI committees standardizing fied. They were accustomed to C, had embedded programming projects. And C++. Advanced Data Controls Corp. learned to deal with its complexities once the customers discover the over- (ADaC) is a Japanese company with over assembly language, and had heads associated with exception han- whom I’ve done business since their learned to accept its overheads. They dling, they may well want to avoid founding in 1982. My friends at ADaC were nevertheless surprised and those overheads even if the compiler urged me to extend my stay to attend a amazed at the added complexities and does support the feature. Equally, the Friday evening meeting they had overheads of C++. chip vendors don’t want to be stigma- arranged. Given the warmth and past On top of everything else was the tized. If the guy down the block sells a success of our business relationship, I dialect problem. C++ has been chang- compiler with some sexy feature, it’s didn’t hesitate to rearrange my travel ing rapidly and steadily for years. hard to make a case for not providing it plans and attend. “Standardization,” a process that nor- as well. Put simply, the vendors face a The meeting was astonishing. In mally stabilizes a programming lan- common software dilemma: how do addition to the folks from ADaC and a guage, began in 1989. But in the case you make sure that what the customers couple of fellow Americans, the atten- of C++, the standardization process think they want is also close to what dees included software people from the has been used as an opportunity to add they really need? four major Japanese semiconductor significant new capabilities to the lan- A popular solution to such a prob- manufacturers—Fujitsu, Hitachi, guage before it freezes. Multiple inher- lem is to define a suitable subset. In NEC, and Toshiba. These were the itance, exceptions, templates, and a this case, we’re talking about a subset folks responsible for providing soft- host of other major features have been of the full language and library man- ware development tools to their cus- added over the past seven years or so, dated by the draft C++ Standard. tomers. They were all wrestling with far faster than compiler writers can Include in the subset everything that what to do about C++, and they were keep up. As a consequence, every meets the need of embedded systems very frank about their problems. I have commercial C++ compiler implements programmers. Omit anything that personally never witnessed such an a different collection of language fea- arguably can be left out, either because open dialog between nominal competi- tures. Moving a C++ program between it adds to overheads, or it’s too new to tors, certainly not among American compilers has become more difficult, be widely available, or for some other companies. But then, we Americans not less, as a result of standardiza- good and proper reason. Get a bunch of enjoy a richer fabric of antitrust laws, tion—at least during this transitional people to agree on the subset. If sever- to keep companies from collaborating period before the draft C++ Standard al vendors supply the same subset, cus- unfairly. Or fairly, for that matter. finally settles down and everyone gets tomers can write C++ code that is both Embedded C++ efficient and portable across multiple Dr. Kiichiro Tamaru of Toshiba By September 1996, the Embedded implementations. Gone is much of the became vice secretary. ADaC is the C++ Technical Committee had pro- stigma for having less than a full secretariat. We Americans are merely duced a draft specification for their implementation. In its place is, in fact, advisers to the committee, which is subset. They even had a Web site up the cachet of matching a useful stan- very much a Japanese undertaking. and running. (See www.caravan.net/ dard, even if it’s only a de facto indus- The kickoff meeting was conducted ec2plus.) As I indicated earlier, I got to try standard. mostly in English, as a courtesy to us make the first public announcement at Thus was born the idea of Americans, who are notoriously weak the Fall 1996 Embedded Systems Embedded C++ (or EC++, for short) as at discussing technical matters in Conference. The project was out from a dialect aimed squarely at the needs of Japanese. Subsequent meetings were under wraps and into the marketplace. embedded systems programmers. The held in Japanese, rather more efficient- group that first came together that ly for the attendees I might add, THE EC++ LANGUAGE Friday night in Tokyo soon dubbed throughout much of 1996. The com- he Embedded C++ specification itself the Embedded C++ Technical mittee maintained a reflector, and did a is a proper subset of the full Committee. Hiroshi Monden of NEC heckuva lot of work between meetings, draft C++ Standard. Thus, the became chair of the committee, and in the bargain. Tmost economical way to describe it is READ ALL ABOUT IT often in terms of what it doesn’t have. I could list all the rules for writing dec- I’ve been writing about C++ and embedded systems for over five years now, both in larations, statements, and expressions, Embedded Systems Programming and in our sister publication, C/C++ Users Journal. For for instance. That might reassure peo- additional detail and considerably more background on the development of Embedded C++, ple who love detail that all the things you might want to review some of these essays. Most are available on CD-ROMs from they value about C++ (and C) are still Miller Freeman. there. But perspective is often lost in details.
Recommended publications
  • Introduction to Embedded C
    INTRODUCTION TO EMBEDDED C by Peter J. Vidler Introduction The aim of this course is to teach software development skills, using the C programming language. C is an old language, but one that is still widely used, especially in embedded systems, where it is valued as a high- level language that provides simple access to hardware. Learning C also helps us to learn general software development, as many of the newer languages have borrowed from its concepts and syntax in their design. Course Structure and Materials This document is intended to form the basis of a self-study course that provides a simple introduction to C as it is used in embedded systems. It introduces some of the key features of the C language, before moving on to some more advanced features such as pointers and memory allocation. Throughout this document we will also look at exercises of varying length and difficulty, which you should attempt before continuing. To help with this we will be using the free RapidiTTy® Lite IDE and targeting the TTE®32 microprocessor core, primarily using a cycle-accurate simulator. If you have access to an FPGA development board, such as the Altera® DE2-70, then you will be able to try your code out in hardware. In addition to this document, you may wish to use a textbook, such as “C in a Nutshell”. Note that these books — while useful and well written — will rarely cover C as it is used in embedded systems, and so will differ from this course in some areas. Copyright © 2010, TTE Systems Limited 1 Getting Started with RapidiTTy Lite RapidiTTy Lite is a professional IDE capable of assisting in the development of high- reliability embedded systems.
    [Show full text]
  • Embedded C Programming I (Ecprogrami)
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • Porting Musl to the M3 Microkernel TU Dresden
    Porting Musl to the M3 microkernel TU Dresden Sherif Abdalazim, Nils Asmussen May 8, 2018 Contents 1 Abstract 2 2 Introduction 3 2.1 Background.............................. 3 2.2 M3................................... 4 3 Picking a C library 5 3.1 C libraries design factors . 5 3.2 Alternative C libraries . 5 4 Porting Musl 7 4.1 M3andMuslbuildsystems ..................... 7 4.1.1 Scons ............................. 7 4.1.2 GNUAutotools........................ 7 4.1.3 Integrating Autotools with Scons . 8 4.2 Repositoryconfiguration. 8 4.3 Compilation.............................. 8 4.4 Testing ................................ 9 4.4.1 Syscalls ............................ 9 5 Evaluation 10 5.1 PortingBusyboxcoreutils . 10 6 Conclusion 12 1 Chapter 1 Abstract Today’s processing workloads require the usage of heterogeneous multiproces- sors to utilize the benefits of specialized processors and accelerators. This has, in turn, motivated new Operating System (OS) designs to manage these het- erogeneous processors and accelerators systematically. M3 [9] is an OS following the microkernel approach. M3 uses a hardware/- software co-design to exploit the heterogeneous systems in a seamless and effi- cient form. It achieves that by abstracting the heterogeneity of the cores via a Data Transfer Unit (DTU). The DTU abstracts the heterogeneity of the cores and accelerators so that they can communicate systematically. I have been working to enhance the programming environment in M3 by porting a C library to M3. I have evaluated different C library implementations like the GNU C Library (glibc), Musl, and uClibc. I decided to port Musl as it has a relatively small code base with fewer configurations. It is simpler to port, and it started to gain more ground in embedded systems which are also a perfect match for M3 applications.
    [Show full text]
  • TASKING VX-Toolset for Tricore User Guide
    TASKING VX-toolset for TriCore User Guide MA160-800 (v3.2) February 25, 2009 TASKING VX-toolset for TriCore User Guide Copyright © 2009 Altium Limited. All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed. Table of Contents 1. C Language .................................................................................................................. 1 1.1. Data Types ......................................................................................................... 1 1.1.1. Bit Data Type ........................................................................................... 2 1.1.2. Fractional Types .......................................................................................
    [Show full text]
  • PDF, Postscript(Tm) and HTML Form
    T2 System Development Environment Creating custom Linux solutions (Compiled from r369) René Rebe Susanne Klaus T2 System Development Environment: Creating custom Linux solutions: (Compiled from r369) by René Rebe and Susanne Klaus Published (TBA) Copyright © 2002, 2003, 2004, 2005, 2006, 2007 René RebeSusanne Klaus This work is licensed under the Open Publication License, v1.0, including license option B: Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder. The latest version of the Open Publication License is presently available at ht- tp://www.opencontent.org/openpub/. Table of Contents Preface ....................................................................................................................x Audience ..........................................................................................................x How to Read this Book ...................................................................................... x Conventions Used in This Book ......................................................................... x Typographic Conventions .......................................................................... x Icons ........................................................................................................x Organization of This Book ................................................................................ xi This Book is Free ............................................................................................
    [Show full text]
  • 4. Nios II Software Build Tools
    4. Nios II Software Build Tools May 2011 NII52015-11.0.0 NII52015-11.0.0 This chapter describes the Nios® II Software Build Tools (SBT), a set of utilities and scripts that creates and builds embedded C/C++ application projects, user library projects, and board support packages (BSPs). The Nios II SBT supports a repeatable, scriptable, and archivable process for creating your software product. You can invoke the Nios II SBT through either of the following user interfaces: ■ The Eclipse™ GUI ■ The Nios II Command Shell The purpose of this chapter is to make you familiar with the internal functionality of the Nios II SBT, independent of the user interface employed. 1 Before reading this chapter, consider getting an introduction to the Nios II SBT by first reading one of the following chapters: ■ Getting Started with the Graphical User Interface chapter of the Nios II Software Developer’s Handbook ■ Getting Started from the Command Line chapter of the Nios II Software Developer’s Handbook This chapter contains the following sections: ■ “Road Map for the SBT” ■ “Makefiles” on page 4–3 ■ “Nios II Embedded Software Projects” on page 4–5 ■ “Common BSP Tasks” on page 4–8 ■ “Details of BSP Creation” on page 4–20 ■ “Tcl Scripts for BSP Settings” on page 4–27 ■ “Revising Your BSP” on page 4–30 ■ “Specifying BSP Defaults” on page 4–35 ■ “Device Drivers and Software Packages” on page 4–39 ■ “Boot Configurations for Altera Embedded Software” on page 4–40 ■ “Altera-Provided Embedded Development Tools” on page 4–42 ■ “Restrictions” on page 4–48 © 2011 Altera Corporation.
    [Show full text]
  • Programming Embedded Systems, Second Edition with C and GNU Development Tools
    Programming Embedded Systems Second Edition Programming Embedded Systems, Second Edition with C and GNU Development Tools Foreword If you mention the word embedded to most people, they'll assume you're talking about reporters in a war zone. Few dictionaries—including the canonical Oxford English Dictionary—link embedded to computer systems. Yet embedded systems underlie nearly all of the electronic devices used today, from cell phones to garage door openers to medical instruments. By now, it's nearly impossible to build anything electronic without adding at least a small microprocessor and associated software. Vendors produce some nine billion microprocessors every year. Perhaps 100 or 150 million of those go into PCs. That's only about one percent of the units shipped. The other 99 percent go into embedded systems; clearly, this stealth business represents the very fabric of our highly technological society. And use of these technologies will only increase. Solutions to looming environmental problems will surely rest on the smarter use of resources enabled by embedded systems. One only has to look at the network of 32-bit processors in Toyota's hybrid Prius to get a glimpse of the future. Page 1 Programming Embedded Systems Second Edition Though prognostications are difficult, it is absolutely clear that consumers will continue to demand ever- brainier products requiring more microprocessors and huge increases in the corresponding software. Estimates suggest that the firmware content of most products doubles every 10 to 24 months. While the demand for more code is increasing, our productivity rates creep up only slowly. So it's also clear that the industry will need more embedded systems people in order to meet the demand.
    [Show full text]
  • Safe System-Level Concurrency on Resource-Constrained Nodes
    Safe System-level Concurrency on Resource-Constrained Nodes Accepted paper in SenSys’13 (preprint version) Francisco Sant’Anna Noemi Rodriguez Roberto Ierusalimschy [email protected] [email protected] [email protected] Departamento de Informatica´ – PUC-Rio, Brazil Olaf Landsiedel Philippas Tsigas olafl@chalmers.se [email protected] Computer Science and Engineering – Chalmers University of Technology, Sweden Abstract as an alternative, providing traditional structured program- Despite the continuous research in facilitating program- ming for WSNs [12, 7]. However, the development pro- ming WSNs, most safety analysis and mitigation efforts in cess still requires manual synchronization and bookkeeping concurrency are still left to developers, who must manage of threads [24]. Synchronous languages [2] have also been synchronization and shared memory explicitly. In this paper, adapted to WSNs and offer higher-level compositions of ac- we present a system language that ensures safe concurrency tivities, considerably reducing programming efforts [21, 22]. by handling threats at compile time, rather than at runtime. Despite the increase in development productivity, WSN The synchronous and static foundation of our design allows system languages still fail to ensure static safety properties for a simple reasoning about concurrency enabling compile- for concurrent programs. However, given the difficulty in time analysis to ensure deterministic and memory-safe pro- debugging WSN applications, it is paramount to push as grams. As a trade-off, our design imposes limitations on many safety guarantees to compile time as possible [25]. As the language expressiveness, such as doing computationally- an example, shared memory is widely used as a low-level intensive operations and meeting hard real-time responsive- communication mechanism, but current languages do not ness.
    [Show full text]
  • IAR Embedded Workbench®
    IAR Embedded Workbench® C-SPY® Debugging Guide for Renesas V850 Microcontroller Family UCSV850-1 UCSV850-1 COPYRIGHT NOTICE Copyright © 1998–2011 IAR Systems AB. No part of this document may be reproduced without the prior written consent of IAR Systems AB. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. DISCLAIMER The information in this document is subject to change without notice and does not represent a commitment on any part of IAR Systems. While the information contained herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors or omissions. In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. TRADEMARKS IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target, IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit, IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB. Microsoft and Windows are registered trademarks of Microsoft Corporation. Renesas is a registered trademark of Renesas Electronics Corporation. Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated. All other product names are trademarks or registered trademarks of their respective owners. EDITION NOTICE First edition: February 2011 Part number: UCSV850-1 The C-SPY® Debugging Guide for V850 replaces all debugging information in the IAR Embedded Workbench IDE User Guide and the hardware debugger guides for V850.
    [Show full text]
  • Embedded C Coding Standard Embedded C Coding Standard
    Keeps Bugs Out EmbeddedEmbedded CC CodingCoding StandardStandard by Michael Barr ® Edition: BARR-C: 2018 | barrgroup.com BARR-C:2018 Embedded C Coding Standard Embedded C Coding Standard ii Embedded C Coding Standard Embedded C Coding Standard by Michael Barr Edition: BARR-C:2018 | barrgroup.com iii Embedded C Coding Standard Embedded C Coding Standard by Michael Barr Copyright © 2018 Integrated Embedded, LLC (dba Barr Group). All rights reserved. Published by: Barr Group 20251 Century Blvd, Suite 330 Germantown, MD 20874 This book may be purchased in print and electronic editions. A free online edition is also available. For more information see https://barrgroup.com/coding-standard. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. Compliance with the coding standard rules in this book neither ensures against software defects nor legal liability. Product safety and security are your responsibility. Barr Group, the Barr Group logo, The Embedded Systems Experts, and BARR-C are trademarks or registered trademarks of Integrated Embedded, LLC. Any other trademarks used in this book are property of their respective owners. ISBN-13: 978-1-72112-798-6 ISBN-10: 1-72112-798-4 iv Embedded C Coding Standard Document License By obtaining Barr Group’s copyrighted “Embedded C Coding Standard” (the “Document”), you are agreeing to be bound by the terms of this Document License (“Agreement”). 1. RIGHTS GRANTED. For good and valuable consideration, the receipt, adequacy, and sufficiency of which is hereby acknowledged, Barr Group grants you a license to use the Document as follows: You may publish the Document for your own internal use and for the use of your internal staff in conducting your business only.
    [Show full text]
  • Ada for the Embedded C Developer Quentin Ochem Robert Tice Gustavo A
    Ada for the Embedded C Developer Quentin Ochem Robert Tice Gustavo A. Hoffmann Patrick Rogers Ada for the Embedded C Developer Release 2021-09 Quentin Ochem Robert Tice Gustavo A. Hoffmann Patrick Rogers. Sep 17, 2021 CONTENTS 1 Introduction 3 1.1 So, what is this Ada thing anyway? ............................... 3 1.2 Ada — The Technical Details .................................. 5 2 The C Developer's Perspective on Ada 7 2.1 What we mean by Embedded Software ............................ 7 2.2 The GNAT Toolchain ....................................... 7 2.3 The GNAT Toolchain for Embedded Targets ......................... 7 2.4 Hello World in Ada ........................................ 8 2.5 The Ada Syntax .......................................... 9 2.6 Compilation Unit Structure ................................... 10 2.7 Packages .............................................. 10 2.7.1 Declaration Protection ................................. 11 2.7.2 Hierarchical Packages ................................. 12 2.7.3 Using Entities from Packages ............................. 12 2.8 Statements and Declarations .................................. 13 2.9 Conditions ............................................. 18 2.10 Loops ............................................... 21 2.11 Type System ........................................... 27 2.11.1 Strong Typing ...................................... 27 2.11.2 Language-Defined Types ................................ 31 2.11.3 Application-Defined Types ............................... 31 2.11.4 Type
    [Show full text]
  • On Software Verification for Sensor Nodes
    On Software Veri!cation for Sensor Nodes a b Doina Bucur , Marta Kwiatkowska a Oxford University Computing Laboratory, Oxford, OX1 3QD, UK b Oxford University Computing Laboratory, Oxford, OX1 3QD, UK Abstract We consider software written for networked, wireless sensor nodes, and specialize software verification techniques for standard C programs in order to locate programming errors in sensor applications before the software’s deployment on motes. Ensuring the reliability of sensor applications is challenging: low- level, interrupt-driven code runs without memory protection in dynamic environments. The difficulties lie with (i) being able to automatically extract standard C models out of the particular "avours of embedded C used in sensor programming solutions, and (ii) decreasing the resulting program’s state space to a degree that allows practical verification times. We contribute a platform-dependent, OS-independent software verification tool for OS-wide programs written in MSP430 embedded C with asynchronous hardware interrupts. Our tool automatically translates the program into standard C by modelling the MCU’s memory map and direct memory access. To emulate the existence of hardware interrupts, calls to hardware interrupt handlers are added, and their occurrence is minimized with a double strategy: a partial-order reduction technique, and a supplementary reachability check to reduce overapproximation. This decreases the program’s state space, while preserving program semantics. Safety speci!cations are written as C assertions embedded in the code. The resulting sequential program is then passed to CBMC, a bounded software veri!er for sequential ANSI C. Besides standard errors (e.g., out-of-bounds arrays, null-pointer dereferences), this tool chain is able to verify application-speci!c assertions, including low-level assertions upon the state of the registers and peripherals.
    [Show full text]