Safe System-Level Concurrency on Resource-Constrained Nodes

Total Page:16

File Type:pdf, Size:1020Kb

Safe System-Level Concurrency on Resource-Constrained Nodes Safe System-level Concurrency on Resource-Constrained Nodes Accepted paper in SenSys’13 (preprint version) Francisco Sant’Anna Noemi Rodriguez Roberto Ierusalimschy [email protected] [email protected] [email protected] Departamento de Informatica´ – PUC-Rio, Brazil Olaf Landsiedel Philippas Tsigas olafl@chalmers.se [email protected] Computer Science and Engineering – Chalmers University of Technology, Sweden Abstract as an alternative, providing traditional structured program- Despite the continuous research in facilitating program- ming for WSNs [12, 7]. However, the development pro- ming WSNs, most safety analysis and mitigation efforts in cess still requires manual synchronization and bookkeeping concurrency are still left to developers, who must manage of threads [24]. Synchronous languages [2] have also been synchronization and shared memory explicitly. In this paper, adapted to WSNs and offer higher-level compositions of ac- we present a system language that ensures safe concurrency tivities, considerably reducing programming efforts [21, 22]. by handling threats at compile time, rather than at runtime. Despite the increase in development productivity, WSN The synchronous and static foundation of our design allows system languages still fail to ensure static safety properties for a simple reasoning about concurrency enabling compile- for concurrent programs. However, given the difficulty in time analysis to ensure deterministic and memory-safe pro- debugging WSN applications, it is paramount to push as grams. As a trade-off, our design imposes limitations on many safety guarantees to compile time as possible [25]. As the language expressiveness, such as doing computationally- an example, shared memory is widely used as a low-level intensive operations and meeting hard real-time responsive- communication mechanism, but current languages do not ness. We implement widespread network protocols and the go beyond runtime atomic access guarantees, either through CC2420 radio driver to show that the achieved expressive- synchronization primitives [7, 27], or by adopting coopera- ness and responsiveness is sufficient for a wide range of tive scheduling [21, 17]. Requiring explicit synchronization WSN applications. The implementations show a reduction primitives lead to potential safety hazards [24]. Enforcing around 25% in code complexity, with a penalty of mem- cooperative scheduling is no less questionable, as it assumes ory increase below 10% in comparison to nesC. Overall, we that all accesses are dangerous. The bottom line is that exist- ensure safety properties for programs relying on high-level ing languages cannot detect and enforce atomicity only when control abstractions that also lead to concise and readable they are required. code. In this work, we present the design of CEU´ 1, a syn- 1 Introduction chronous system-level programming language that provides a reliable yet powerful set of abstractions for the develop- System-level development for WSNs commonly fol- ment of control-intensive WSN applications. CEU´ is based lows three major programming models: event-driven, multi- on a small set of control primitives similar to Esterel’s, lead- threaded, and synchronous models. In event-driven pro- ing to implementations that more closely reflect program gramming [19, 11], each external event can be associated specifications [8]. In addition, CEU´ provides a disciplined with a short-lived function callback to handle a reaction to policy for typical system-level functionality, such as low- the environment. This model is efficient, but is known to be level access to C and shared memory concurrency. It also difficult to program [1, 12]. Multi-threaded systems emerged introduces the following new safety mechanisms: first-class timers to ensure that timers in parallel remain synchronized (not depending on internal reaction timings); finalization blocks for local pointers going out of scope; and stack-based communication that avoids cyclic dependencies. We propose Permission to make digital or hard copies of all or part of this work for personal or a static analysis that considers all language mechanisms and classroom use is granted without fee provided that copies are not made or distributed detects safety threats at compile time, such as concurrent for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute accesses to shared memory, and concurrent termination of to lists, requires prior specific permission and/or a fee. timers and threads. Our work focus on concurrency safety, ACM 1Ceu´ is the Portuguese word for sky. /* nesC */ /* Protothreads */ /* CEU´ */ event void Boot.booted () f int main () f par/or do call T1.startOneShot(0) PT INIT(&blink); loop do call T2.startOneShot(60000) timer set(&timeout, 60000); Leds led0On(); g while ( await 2s; event void T1.fired () f PT SCHEDULE(blink()) && Leds led0Off(); static int on = 0; !timer expired(timeout) await 1s; if (on) f ); end call Leds.led0Off(); leds off(LEDS RED); with call T1.startOneShot(1000); <...> // CONTINUE await 1min; g else f g end call Leds.led0On(); PT THREAD blink () f Leds led0Off(); call T1.startOneShot(2000); while (1) f <...> // CONTINUE g leds on(LEDS RED); on = !on timer set(&timer, 2000); g PT WAIT UNTIL(expired(&timer)); event void T2.fired() f leds off(LEDS RED); call T1.cancel(); timer set(&timer, 1000); call Leds.led0Off(); PT WAIT UNTIL(expired(&timer)); <...> // CONTINUE g } g Figure 1. “Blinking LED” in nesC [17], Protothreads [12], and CEU´ . The colors associate chunks of code with respective actions in the diagram. rather than type safety [9].2 tween sampling a sensor and broadcasting its readings has a In order to enable the static analysis, CEU´ programs must sequential pattern (with an enclosing loop); while including undergo some limitations. Computations that run in un- an 1-minute timeout to interrupt an activity denotes a parallel bounded time (e.g., compression, image processing) cannot pattern. be elegantly implemented [29], and dynamic support, such Figure 1 presents the three different programming mod- as dynamic loading is forbidden. However, we show that els commonly used in WSNs. It shows the implementations CEU´ is sufficiently expressive for the context of WSN ap- in nesC, Protothreads, and CEU´ for an application that con- plications. We successfully implemented the CC2420 radio tinuously lights on a LED for 2 seconds and off for 1 sec- driver, and the DRIP, SRP, and CTP network protocols [32] ond. After 1 minute of activity, the application turns off the in CEU´ . The implementations reduced code complexity by LED and proceeds to another activity (marked in the code as 25%, with an increase in ROM and RAM below 10% in com- <...>). The diagram on the right of Figure 1 describes the parison to nesC [17]. overall control behavior for the application. The sequential The rest of the paper is organized as follows: Section 2 programming pattern is represented by the LED alternating gives an overview on how different programming models between the two states, while the parallel pattern is repre- used in WSNs can express typical control patterns. Sec- sented by the 1-minute timeout. tion 3 details the design of CEU´ , motivating and discussing nesC the safety aspects of each relevant language feature. Sec- The first implementation in , which represents event-driven tion 4, evaluates the implementation of the network protocols the model, spawns two timers at boot time (Boot.booted): one to make the LED blink and another to wait in CEU´ and compares some aspects with nesC (e.g. memory usage and tokens count). We also evaluate the responsive- for 1 minute. The callback T1.fired continuously toggles the LED and resets the timer according to the state variable ness of the radio driver written in CEU´ . Section 5 discusses on. The callback T2.fired executes only once, canceling the related work to CEU´ . Section 6 concludes the paper and makes final remarks. blinking timer, and proceeds to <...>. Overall, we argue that this implementation has little structure: the blinking loop is 2 Overview of Programming Models not explicit, but instead, relies on a static state variable and WSN applications must handle a multitude of concurrent multiple invocations of the same callback. Furthermore, the events, such as timers and packet transmissions. Although timeout handler (T2.fired) requires specific knowledge about they may seem random and unrelated for an external ob- how to stop the blinking activity manually (T1.cancel()). server, a program must logically keep track of them accord- The second implementation in Protothreads, which rep- ing to its control specification. From a control perspective, resents the multi-threaded model [12, 7], uses a dedicated sequential programs are composed of two main patterns: , thread to make the LED blink in a loop. This brings more i.e., an activity with two or more states in sequence; and structure to the solution. The main thread also helps a reader parallel , i.e., unrelated activities that eventually need to syn- to identify the overall sequence of the program, which is not chronize. As an example, an application that alternates be- easily identifiable in the event-driven implementation with- 2We consider both safety aspects to be complimentary and orthogonal, out tracking the dependencies among callbacks. However, it i.e., type-safety techniques could also be applied to CEU´ . still
Recommended publications
  • Introduction to Embedded C
    INTRODUCTION TO EMBEDDED C by Peter J. Vidler Introduction The aim of this course is to teach software development skills, using the C programming language. C is an old language, but one that is still widely used, especially in embedded systems, where it is valued as a high- level language that provides simple access to hardware. Learning C also helps us to learn general software development, as many of the newer languages have borrowed from its concepts and syntax in their design. Course Structure and Materials This document is intended to form the basis of a self-study course that provides a simple introduction to C as it is used in embedded systems. It introduces some of the key features of the C language, before moving on to some more advanced features such as pointers and memory allocation. Throughout this document we will also look at exercises of varying length and difficulty, which you should attempt before continuing. To help with this we will be using the free RapidiTTy® Lite IDE and targeting the TTE®32 microprocessor core, primarily using a cycle-accurate simulator. If you have access to an FPGA development board, such as the Altera® DE2-70, then you will be able to try your code out in hardware. In addition to this document, you may wish to use a textbook, such as “C in a Nutshell”. Note that these books — while useful and well written — will rarely cover C as it is used in embedded systems, and so will differ from this course in some areas. Copyright © 2010, TTE Systems Limited 1 Getting Started with RapidiTTy Lite RapidiTTy Lite is a professional IDE capable of assisting in the development of high- reliability embedded systems.
    [Show full text]
  • Embedded C Programming I (Ecprogrami)
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • Porting Musl to the M3 Microkernel TU Dresden
    Porting Musl to the M3 microkernel TU Dresden Sherif Abdalazim, Nils Asmussen May 8, 2018 Contents 1 Abstract 2 2 Introduction 3 2.1 Background.............................. 3 2.2 M3................................... 4 3 Picking a C library 5 3.1 C libraries design factors . 5 3.2 Alternative C libraries . 5 4 Porting Musl 7 4.1 M3andMuslbuildsystems ..................... 7 4.1.1 Scons ............................. 7 4.1.2 GNUAutotools........................ 7 4.1.3 Integrating Autotools with Scons . 8 4.2 Repositoryconfiguration. 8 4.3 Compilation.............................. 8 4.4 Testing ................................ 9 4.4.1 Syscalls ............................ 9 5 Evaluation 10 5.1 PortingBusyboxcoreutils . 10 6 Conclusion 12 1 Chapter 1 Abstract Today’s processing workloads require the usage of heterogeneous multiproces- sors to utilize the benefits of specialized processors and accelerators. This has, in turn, motivated new Operating System (OS) designs to manage these het- erogeneous processors and accelerators systematically. M3 [9] is an OS following the microkernel approach. M3 uses a hardware/- software co-design to exploit the heterogeneous systems in a seamless and effi- cient form. It achieves that by abstracting the heterogeneity of the cores via a Data Transfer Unit (DTU). The DTU abstracts the heterogeneity of the cores and accelerators so that they can communicate systematically. I have been working to enhance the programming environment in M3 by porting a C library to M3. I have evaluated different C library implementations like the GNU C Library (glibc), Musl, and uClibc. I decided to port Musl as it has a relatively small code base with fewer configurations. It is simpler to port, and it started to gain more ground in embedded systems which are also a perfect match for M3 applications.
    [Show full text]
  • TASKING VX-Toolset for Tricore User Guide
    TASKING VX-toolset for TriCore User Guide MA160-800 (v3.2) February 25, 2009 TASKING VX-toolset for TriCore User Guide Copyright © 2009 Altium Limited. All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed. Table of Contents 1. C Language .................................................................................................................. 1 1.1. Data Types ......................................................................................................... 1 1.1.1. Bit Data Type ........................................................................................... 2 1.1.2. Fractional Types .......................................................................................
    [Show full text]
  • PDF, Postscript(Tm) and HTML Form
    T2 System Development Environment Creating custom Linux solutions (Compiled from r369) René Rebe Susanne Klaus T2 System Development Environment: Creating custom Linux solutions: (Compiled from r369) by René Rebe and Susanne Klaus Published (TBA) Copyright © 2002, 2003, 2004, 2005, 2006, 2007 René RebeSusanne Klaus This work is licensed under the Open Publication License, v1.0, including license option B: Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder. The latest version of the Open Publication License is presently available at ht- tp://www.opencontent.org/openpub/. Table of Contents Preface ....................................................................................................................x Audience ..........................................................................................................x How to Read this Book ...................................................................................... x Conventions Used in This Book ......................................................................... x Typographic Conventions .......................................................................... x Icons ........................................................................................................x Organization of This Book ................................................................................ xi This Book is Free ............................................................................................
    [Show full text]
  • 4. Nios II Software Build Tools
    4. Nios II Software Build Tools May 2011 NII52015-11.0.0 NII52015-11.0.0 This chapter describes the Nios® II Software Build Tools (SBT), a set of utilities and scripts that creates and builds embedded C/C++ application projects, user library projects, and board support packages (BSPs). The Nios II SBT supports a repeatable, scriptable, and archivable process for creating your software product. You can invoke the Nios II SBT through either of the following user interfaces: ■ The Eclipse™ GUI ■ The Nios II Command Shell The purpose of this chapter is to make you familiar with the internal functionality of the Nios II SBT, independent of the user interface employed. 1 Before reading this chapter, consider getting an introduction to the Nios II SBT by first reading one of the following chapters: ■ Getting Started with the Graphical User Interface chapter of the Nios II Software Developer’s Handbook ■ Getting Started from the Command Line chapter of the Nios II Software Developer’s Handbook This chapter contains the following sections: ■ “Road Map for the SBT” ■ “Makefiles” on page 4–3 ■ “Nios II Embedded Software Projects” on page 4–5 ■ “Common BSP Tasks” on page 4–8 ■ “Details of BSP Creation” on page 4–20 ■ “Tcl Scripts for BSP Settings” on page 4–27 ■ “Revising Your BSP” on page 4–30 ■ “Specifying BSP Defaults” on page 4–35 ■ “Device Drivers and Software Packages” on page 4–39 ■ “Boot Configurations for Altera Embedded Software” on page 4–40 ■ “Altera-Provided Embedded Development Tools” on page 4–42 ■ “Restrictions” on page 4–48 © 2011 Altera Corporation.
    [Show full text]
  • Programming Embedded Systems, Second Edition with C and GNU Development Tools
    Programming Embedded Systems Second Edition Programming Embedded Systems, Second Edition with C and GNU Development Tools Foreword If you mention the word embedded to most people, they'll assume you're talking about reporters in a war zone. Few dictionaries—including the canonical Oxford English Dictionary—link embedded to computer systems. Yet embedded systems underlie nearly all of the electronic devices used today, from cell phones to garage door openers to medical instruments. By now, it's nearly impossible to build anything electronic without adding at least a small microprocessor and associated software. Vendors produce some nine billion microprocessors every year. Perhaps 100 or 150 million of those go into PCs. That's only about one percent of the units shipped. The other 99 percent go into embedded systems; clearly, this stealth business represents the very fabric of our highly technological society. And use of these technologies will only increase. Solutions to looming environmental problems will surely rest on the smarter use of resources enabled by embedded systems. One only has to look at the network of 32-bit processors in Toyota's hybrid Prius to get a glimpse of the future. Page 1 Programming Embedded Systems Second Edition Though prognostications are difficult, it is absolutely clear that consumers will continue to demand ever- brainier products requiring more microprocessors and huge increases in the corresponding software. Estimates suggest that the firmware content of most products doubles every 10 to 24 months. While the demand for more code is increasing, our productivity rates creep up only slowly. So it's also clear that the industry will need more embedded systems people in order to meet the demand.
    [Show full text]
  • IAR Embedded Workbench®
    IAR Embedded Workbench® C-SPY® Debugging Guide for Renesas V850 Microcontroller Family UCSV850-1 UCSV850-1 COPYRIGHT NOTICE Copyright © 1998–2011 IAR Systems AB. No part of this document may be reproduced without the prior written consent of IAR Systems AB. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. DISCLAIMER The information in this document is subject to change without notice and does not represent a commitment on any part of IAR Systems. While the information contained herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors or omissions. In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. TRADEMARKS IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target, IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit, IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB. Microsoft and Windows are registered trademarks of Microsoft Corporation. Renesas is a registered trademark of Renesas Electronics Corporation. Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated. All other product names are trademarks or registered trademarks of their respective owners. EDITION NOTICE First edition: February 2011 Part number: UCSV850-1 The C-SPY® Debugging Guide for V850 replaces all debugging information in the IAR Embedded Workbench IDE User Guide and the hardware debugger guides for V850.
    [Show full text]
  • Embedded C Coding Standard Embedded C Coding Standard
    Keeps Bugs Out EmbeddedEmbedded CC CodingCoding StandardStandard by Michael Barr ® Edition: BARR-C: 2018 | barrgroup.com BARR-C:2018 Embedded C Coding Standard Embedded C Coding Standard ii Embedded C Coding Standard Embedded C Coding Standard by Michael Barr Edition: BARR-C:2018 | barrgroup.com iii Embedded C Coding Standard Embedded C Coding Standard by Michael Barr Copyright © 2018 Integrated Embedded, LLC (dba Barr Group). All rights reserved. Published by: Barr Group 20251 Century Blvd, Suite 330 Germantown, MD 20874 This book may be purchased in print and electronic editions. A free online edition is also available. For more information see https://barrgroup.com/coding-standard. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. Compliance with the coding standard rules in this book neither ensures against software defects nor legal liability. Product safety and security are your responsibility. Barr Group, the Barr Group logo, The Embedded Systems Experts, and BARR-C are trademarks or registered trademarks of Integrated Embedded, LLC. Any other trademarks used in this book are property of their respective owners. ISBN-13: 978-1-72112-798-6 ISBN-10: 1-72112-798-4 iv Embedded C Coding Standard Document License By obtaining Barr Group’s copyrighted “Embedded C Coding Standard” (the “Document”), you are agreeing to be bound by the terms of this Document License (“Agreement”). 1. RIGHTS GRANTED. For good and valuable consideration, the receipt, adequacy, and sufficiency of which is hereby acknowledged, Barr Group grants you a license to use the Document as follows: You may publish the Document for your own internal use and for the use of your internal staff in conducting your business only.
    [Show full text]
  • Ada for the Embedded C Developer Quentin Ochem Robert Tice Gustavo A
    Ada for the Embedded C Developer Quentin Ochem Robert Tice Gustavo A. Hoffmann Patrick Rogers Ada for the Embedded C Developer Release 2021-09 Quentin Ochem Robert Tice Gustavo A. Hoffmann Patrick Rogers. Sep 17, 2021 CONTENTS 1 Introduction 3 1.1 So, what is this Ada thing anyway? ............................... 3 1.2 Ada — The Technical Details .................................. 5 2 The C Developer's Perspective on Ada 7 2.1 What we mean by Embedded Software ............................ 7 2.2 The GNAT Toolchain ....................................... 7 2.3 The GNAT Toolchain for Embedded Targets ......................... 7 2.4 Hello World in Ada ........................................ 8 2.5 The Ada Syntax .......................................... 9 2.6 Compilation Unit Structure ................................... 10 2.7 Packages .............................................. 10 2.7.1 Declaration Protection ................................. 11 2.7.2 Hierarchical Packages ................................. 12 2.7.3 Using Entities from Packages ............................. 12 2.8 Statements and Declarations .................................. 13 2.9 Conditions ............................................. 18 2.10 Loops ............................................... 21 2.11 Type System ........................................... 27 2.11.1 Strong Typing ...................................... 27 2.11.2 Language-Defined Types ................................ 31 2.11.3 Application-Defined Types ............................... 31 2.11.4 Type
    [Show full text]
  • On Software Verification for Sensor Nodes
    On Software Veri!cation for Sensor Nodes a b Doina Bucur , Marta Kwiatkowska a Oxford University Computing Laboratory, Oxford, OX1 3QD, UK b Oxford University Computing Laboratory, Oxford, OX1 3QD, UK Abstract We consider software written for networked, wireless sensor nodes, and specialize software verification techniques for standard C programs in order to locate programming errors in sensor applications before the software’s deployment on motes. Ensuring the reliability of sensor applications is challenging: low- level, interrupt-driven code runs without memory protection in dynamic environments. The difficulties lie with (i) being able to automatically extract standard C models out of the particular "avours of embedded C used in sensor programming solutions, and (ii) decreasing the resulting program’s state space to a degree that allows practical verification times. We contribute a platform-dependent, OS-independent software verification tool for OS-wide programs written in MSP430 embedded C with asynchronous hardware interrupts. Our tool automatically translates the program into standard C by modelling the MCU’s memory map and direct memory access. To emulate the existence of hardware interrupts, calls to hardware interrupt handlers are added, and their occurrence is minimized with a double strategy: a partial-order reduction technique, and a supplementary reachability check to reduce overapproximation. This decreases the program’s state space, while preserving program semantics. Safety speci!cations are written as C assertions embedded in the code. The resulting sequential program is then passed to CBMC, a bounded software veri!er for sequential ANSI C. Besides standard errors (e.g., out-of-bounds arrays, null-pointer dereferences), this tool chain is able to verify application-speci!c assertions, including low-level assertions upon the state of the registers and peripherals.
    [Show full text]
  • Picolibc a C Library for Smaller Systems
    picolibc A C Library for Smaller Systems Keith Packard -9 Senior Principal Technologist Amazon [email protected] c Hello !y name is Keith Packard" # $ork in the De&ice 'S gro(p at Amazon as a Senior Principal )ngineer. Today" #*m going to talk abo(t picolibc" a C library designed for embedded +,- and ./- bit microcontrollers. picolibc ● 0hy start another C library pro1ect2 ● How picolibc $as de&eloped? ● 0hat are the results2 ● 0ho is using picolibc2 ● 0here is picolibc going in the future2 #n this presentation" #*ll describe $hat # see as the re3(irements for an embedded C library" the pieces from $hich picolibc $as b(ilt" ho$ de&elopment progressed" res(lts of that de&elopment along $ith se&eral pro1ects that ha&e picolibc s(pport integrated into them. Finally" #*ll brie5y to(ch on f(t(re $ork that # hope to see done in picolibc. Small System Considerations ● Small !emory 6think k7" not 879 – RA! is more constrained than :'! – A&oid using the heap ● Limited 5oating point – !ay have only +,-bit 5oats – !ay have none at all ● 8etting started is hard Small systems are small. They can be really small. The embedded hard$are # 5y (ses systems $ith +,k7 to ;,<k7 or :'! and /k7 to +,k7 of :A!. They often (se lo$-performance +,-bit cores" some have a +,-bit 4P=" b(t many ha&e no 4PU at all. De&elopers $riting long-r(nning embedded soft$are often $ant to a&oid depending on dynamic allocation as it*s easist to pro&e malloc $ill ne&er fail if malloc is not linked into the application.
    [Show full text]