Thirteenth Meeting of the GEBCO Sub-Committee on Undersea Feature Names (SCUFN)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Easter Island
Birdman or Birdbrain About the Show When The Book pages transform into rongorongo script, Freddi, Samantha, and Fred transport back to 1765 to Rapa Nui (a.k.a. Easter Island) and face to face with a 15-ton moai! It’s just another day at Curriculum Connections the beach as the trio jump off cliffs, swim through shark infested • ancient civilizations waters to the Birdman’s Island (Motu Nui), oh, and try to find The Book • archeology • Easter Island along the way! Subject Areas Introduction • language arts • social studies Historical mysteries are a sure-fire way to get students interested in the past. Studying the origins and meaning of the giant stone statues of Rapa Nui give students a wonderful opportunity to delve into a civilization that remains an enigma. Historical Background Rapa Nui, an island in the Pacific Ocean off the coast of Chile, is more than 1,000 miles away from the nearest inhabited island, Pitcairn Island. Rapa Nui received the name Easter Island from Admiral Jacob Roggeveen, who sailed a trade ship for the Dutch West India Company. He landed on the island on Easter Day, 1722, and named it in honor of the holiday. It is now a Chilean territory. A mere 66 square miles, Rapa Nui was inhabited for thousands of years by Polynesians who raised crops, built houses, and worshipped gods in nearly complete isolation from the rest of the world. They also created enormous stone statues, moai, that still stand. These statues are thought to honor sacred chiefs and gods and may have emerged out of friendly competitions between groups of craftsmen. -
Vaikava Rapa Nui Easter Island’S Rapa Nui People Uphold Tradition As Guardians of the Ocean
A fact sheet from The Pew Charitable Trusts and the Bertarelli Foundation March 2018 Vaikava Rapa Nui Easter Island’s Rapa Nui people uphold tradition as guardians of the ocean Easter Island, a territory of Chile that lies some 4,000 kilometers (2,485 miles) west of that country’s coast, is world famous for its Moai statues, which are recognized as a UNESCO World Heritage site. Now the treasures off the shores of this remote island are safeguarded as well with the creation of the Rapa Nui Marine Protected Area (MPA) in 2018. The surrounding waters, which contain unique biodiversity, feed the local Rapa Nui people and help them continue centuries-old cultural traditions. Though still largely unexplored, Easter Island’s waters are known to contain geological hot spots teeming with life in an area of the Pacific Ocean that is otherwise extremely poor in nutrients. A chain of underwater seamounts provides conditions that help sustain unique wildlife such as the Easter Island butterflyfish, or tipi tipi in local dialect, and the Nazca bigeye—two of the more than 140 species found only in Rapa Nui waters. The area also harbors 27 Threatened or Endangered species, according to the International Union for Conservation of Nature, and is an important spawning ground for many species, including tuna, marlins, and swordfish. The seafloor off the island is also home to the only hydrothermal vents in Chilean waters. Overfishing threatens the island’s biodiversity Increasingly, commercial fishing fleets are pushing into every nook of the world’s oceans. Left unchecked, this activity could quickly—and irreversibly—damage Easter Island’s special marine environment. -
Human Discovery and Settlement of the Remote Easter Island (SE Pacific)
quaternary Review Human Discovery and Settlement of the Remote Easter Island (SE Pacific) Valentí Rull Laboratory of Paleoecology, Institute of Earth Sciences Jaume Almera (ICTJA-CSIC), C. Solé i Sabarís s/n, 08028 Barcelona, Spain; [email protected] Received: 19 March 2019; Accepted: 27 March 2019; Published: 2 April 2019 Abstract: The discovery and settlement of the tiny and remote Easter Island (Rapa Nui) has been a classical controversy for decades. Present-day aboriginal people and their culture are undoubtedly of Polynesian origin, but it has been debated whether Native Americans discovered the island before the Polynesian settlement. Until recently, the paradigm was that Easter Island was discovered and settled just once by Polynesians in their millennial-scale eastward migration across the Pacific. However, the evidence for cultivation and consumption of an American plant—the sweet potato (Ipomoea batatas)—on the island before the European contact (1722 CE), even prior to the Europe-America contact (1492 CE), revived controversy. This paper reviews the classical archaeological, ethnological and paleoecological literature on the subject and summarizes the information into four main hypotheses to explain the sweet potato enigma: the long-distance dispersal hypothesis, the back-and-forth hypothesis, the Heyerdahl hypothesis, and the newcomers hypothesis. These hypotheses are evaluated in light of the more recent evidence (last decade), including molecular DNA phylogeny and phylogeography of humans and associated plants and animals, physical anthropology (craniometry and dietary analysis), and new paleoecological findings. It is concluded that, with the available evidence, none of the former hypotheses may be rejected and, therefore, all possibilities remain open. -
Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Natura 2000 Sites for Reefs and Submerged Sandbanks Volume II: Northeast Atlantic and North Sea
Implementation of the EU Habitats Directive Offshore: Natura 2000 sites for reefs and submerged sandbanks Volume II: Northeast Atlantic and North Sea A report by WWF June 2001 Implementation of the EU Habitats Directive Offshore: Natura 2000 sites for reefs and submerged sandbanks A report by WWF based on: "Habitats Directive Implementation in Europe Offshore SACs for reefs" by A. D. Rogers Southampton Oceanographic Centre, UK; and "Submerged Sandbanks in European Shelf Waters" by Veligrakis, A., Collins, M.B., Owrid, G. and A. Houghton Southampton Oceanographic Centre, UK; commissioned by WWF For information please contact: Dr. Sarah Jones WWF UK Panda House Weyside Park Godalming Surrey GU7 1XR United Kingdom Tel +441483 412522 Fax +441483 426409 Email: [email protected] Cover page photo: Trawling smashes cold water coral reefs P.Buhl-Mortensen, University of Bergen, Norway Prepared by Sabine Christiansen and Sarah Jones IMPLEMENTATION OF THE EU HD OFFSHORE REEFS AND SUBMERGED SANDBANKS NE ATLANTIC AND NORTH SEA TABLE OF CONTENTS TABLE OF CONTENTS ACKNOWLEDGEMENTS I LIST OF MAPS II LIST OF TABLES III 1 INTRODUCTION 1 2 REEFS IN THE NORTHEAST ATLANTIC AND THE NORTH SEA (A.D. ROGERS, SOC) 3 2.1 Data inventory 3 2.2 Example cases for the type of information provided (full list see Vol. IV ) 9 2.2.1 "Darwin Mounds" East (UK) 9 2.2.2 Galicia Bank (Spain) 13 2.2.3 Gorringe Ridge (Portugal) 17 2.2.4 La Chapelle Bank (France) 22 2.3 Bibliography reefs 24 2.4 Analysis of Offshore Reefs Inventory (WWF)(overview maps and tables) 31 2.4.1 North Sea 31 2.4.2 UK and Ireland 32 2.4.3 France and Spain 39 2.4.4 Portugal 41 2.4.5 Conclusions 43 3 SUBMERGED SANDBANKS IN EUROPEAN SHELF WATERS (A. -
Moai of Easter Island: a Quest for Ideal Proportions Paul Horley Chernivsi National University, Ukraine
Rapa Nui Journal: Journal of the Easter Island Foundation Volume 20 | Issue 1 Article 6 2006 Moai of Easter Island: A Quest for Ideal Proportions Paul Horley Chernivsi National University, Ukraine Follow this and additional works at: https://kahualike.manoa.hawaii.edu/rnj Part of the History of the Pacific slI ands Commons, and the Pacific slI ands Languages and Societies Commons Recommended Citation Horley, Paul (2006) "Moai of Easter Island: A Quest for Ideal Proportions," Rapa Nui Journal: Journal of the Easter Island Foundation: Vol. 20 : Iss. 1 , Article 6. Available at: https://kahualike.manoa.hawaii.edu/rnj/vol20/iss1/6 This Research Paper is brought to you for free and open access by the University of Hawai`i Press at Kahualike. It has been accepted for inclusion in Rapa Nui Journal: Journal of the Easter Island Foundation by an authorized editor of Kahualike. For more information, please contact [email protected]. Horley: Moai of Easter Island MOAI OF EASTER ISLAND: A QUEST FOR IDEAL PROPORTIONS Paul Horley Chernivsi National University, Ukraine HE MONOLITHIC SCULPT RE OF Ea ter I land is a key A we know, the head, in general, composes 1/3-1/2 Ta pect of its unique cultural heritage. Moai played a very (i.e. 0.33-0.5) of the total height of the moai (Van Tilburg important role in the prehistoric Rapanui society. The cere 1994: 131); other ource report the proportionality coeffi monial platfonns adorned with the stone giants were sacred cient 2/5 = 0.4 (Skj01 voId 1961 :346) and 3/7 = 0.429 places where the supernatural world met the world of hu (Metraux 1940:293). -
Rapa Nui Rulebook
A game by Fabrice Besson and Guillaume Montiage Illustrated by Miguel Coïmbra Be the chief of a Rapa Nui clan, and participate in the grand adventure of the moai builders. Use your wisdom and expertise to guide the workers of your villages, and become the most acclaimed chief of the isle! HISTORY From the 13th through the 17th Century, more than 900 monumental statues, moai, were erected on the Polynesian island Rapa Nui, also known as Easter Island. Moai stood on immense stone terraces, called ahu, along the coast, gazing inland; they were often topped with pukao, red stone headdresses. 1 CONCEPT AND GOAL OF THE GAME Sculpt, transport, and erect moai to gain resources, then transform these resources into offerings by adding headdresses to the statues. Whoever has accumulated the most valuable offerings at the end of the game wins! CONTENTS • 1 double-sided board representing the island of Rapa Nui 1 • 21 Moai figurines in 3 different sizes and colors (6 large, 7 medium, 8 small) 2 • 20 Pukao pieces 3 • 2 gray Villager figurines 4 2 3 14 • 27 Offering tiles 5 , including 7 Outstanding Offering tiles 6 9 • 29 Ahu tiles 7 4 11 12 • 2 Ahu & Improvement Tile summaries 8 • 1 Master Stone Carver token 9 10 13 In each player color: 16 17 • 7 figurines (5 Villagers 10 , 1 Sorcerer 11 , 1 Chief 12 ) • 1 player board 13 • 4 Improvement tiles 14 8 • 1 Rongorongo Tablet tile 15 7 • 4 Resource cubes 16 • 1 Animal Totem token 17 15 6 5 1 SETUP (illustration shows a 3-player setup) • Place the board 1 in the middle of the table, with the side corresponding to the num- • Place a random Ahu tile face down on each of the 21 Ahu spaces on the board 11 . -
Depositional Patterns Constrained by Slope Topography Changes On
www.nature.com/scientificreports OPEN Depositional patterns constrained by slope topography changes on seamounts Dewen Du1,2,3*, Shijuan Yan1, Gang Yang1, Fengdeng Shi1, Zhiwei Zhu1, Qinglei Song1, Fengli Yang1, Yingchun Cui1 & Xuefa Shi1 Slope topography is known to control the spatial distribution of deposits on intraplate seamounts; however, relatively little is known about how slope topography changes constrain those depositional patterns. In this study, we analyse data on four lithotypes found on seamount slopes, including colloidal chemical deposits comprising mainly cobalt-rich crusts, and examine the relationships between the spatial distribution of these lithotypes and current slope topography. We use these relationships to discuss depositional patterns constrained by slope topography changes. Some depositional units in drill core samples are interpreted to have resulted from past topographic changes that created the current slope topography. Two or more types of deposits that accumulated at the same location implies that the slope topography changed over time and that the depositional patterns on seamount slopes are constrained by changes in slope topography. Seamounts are frst-order deep-sea morphological elements 1 and have important oceanographic research value. Cobalt-rich crust deposits that may contain several strategic metals and thus be considered mineral resources are widely distributed on seamount slopes2–5. Terefore, many scientists have surveyed and explored seamounts since the 1980s6–9, acquiring a large amount of data and knowledge on seamounts. However, some questions, such as how topographical changes to seamounts constrain depositional patterns on their slopes and how to interpret depositional sequences in sections of shallow drill samples taken from seamount slopes, remain unanswered. -
Ahu Tongariki, Easter Island: Chronological and Sociopolitical Significance Claudio P
Rapa Nui Journal: Journal of the Easter Island Foundation Volume 13 Article 1 Issue 3 September 1999 Ahu Tongariki, Easter Island: Chronological and Sociopolitical Significance Claudio P. Cristino Institute for Easter Island Studies Patricia Vargas Casanova University of Chile Follow this and additional works at: https://kahualike.manoa.hawaii.edu/rnj Part of the History of the Pacific slI ands Commons, and the Pacific slI ands Languages and Societies Commons Recommended Citation Cristino, Claudio P. and Vargas Casanova, Patricia (1999) "Ahu Tongariki, Easter Island: Chronological and Sociopolitical Significance," Rapa Nui Journal: Journal of the Easter Island Foundation: Vol. 13 : Iss. 3 , Article 1. Available at: https://kahualike.manoa.hawaii.edu/rnj/vol13/iss3/1 This Research Paper is brought to you for free and open access by the University of Hawai`i Press at Kahualike. It has been accepted for inclusion in Rapa Nui Journal: Journal of the Easter Island Foundation by an authorized editor of Kahualike. For more information, please contact [email protected]. Cristino and Vargas Casanova: Ahu Tongariki, Easter Island: Chronological and Sociopolitical Si Ahu Tongariki, Easter Island: Chronological and Sociopolitical Significance Claudio P. Cristino 1 Patricia Vargas Casanovcl Institute for Easter Island Studies, University ofChile Hanga Nui Bay, on the eastern end of the southeast coast the post-contact period. After the toppling ofthe statues, most of of Easter Island, is currently the focal point of research in an these ruins continued to be used as burial sites, greatly altering intensively studied archaeological area that extends from the the original structure, until the conversion of the population to plains at the foot ofthe southwest slopes ofthe Poike Peninsula. -
The Underlying Causes of Morocco-Spain Maritime Dispute Off the Atlantic Coast
Policy Paper The Underlying Causes of Morocco-Spain Maritime Dispute off the Atlantic Coast By Samir Bennis 27 January 2020 Introduction The question of the delimitation of maritime boundaries between Morocco and Spain has always been a hot topic in the relations between the two countries. Because of the complexity of the issue and its legal and political ramifications, there are no formal maritime boundaries between Morocco and Spain, whether in the Mediterranean or off the Atlantic coast. The existence of a territorial dispute between Morocco and Spain over the Spanish enclaves of Ceuta and Melilla is just one of the factors at play that have made it impossible for the two countries to reach an agreement on the delimitation of their maritime boundaries in the Mediterranean. In waters off the Atlantic coast, however, the main bone of contention is the delimitation of the two countries’ respective Exclusive Economic Zones (EEZ) and their continental shelves. The existence of an overlap between Rabat and Madrid’s continental shelves, as well as their diverging views on which method should govern the delimitation process has doomed all attempts by the two countries to delimit their respective maritime boundaries to failure. While Spain calls for the application of the method of equidistance and median line, Morocco calls for the application of the method of equity, and stresses that any delimitation should result in an equitable outcome, in line with international law. What has made negotiations between the two countries more arduous is the fact that the overlap between their continental shelves lies in the water off the Sahara, which have been under Morocco’s de facto sovereignty since 1975. -
Compilation of Submissions
CBD Distr. GENERAL CBD/EBSA/WS/2019/1/2 18 September 2019 ENGLISH ONLY REGIONAL WORKSHOP TO FACILITATE THE DESCRIPTION OF ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS IN THE NORTH-EAST ATLANTIC OCEAN AND TRAINING SESSION ON ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS Stockholm, 22-27 September 2019 COMPILATION OF SUBMISSIONS OF SCIENTIFIC INFORMATION TO DESCRIBE AREAS MEETING THE SCIENTIFIC CRITERIA FOR ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS (EBSAS) IN THE NORTH-EAST ATLANTIC OCEAN Note by the Executive Secretary 1. The Executive Secretary is circulating herewith a compilation of scientific information in support of the Regional Workshop to Facilitate the Description of Ecologically or Biologically Significant Marine Areas (EBSAs) in the North-East Atlantic Ocean. 2. This compilation was prepared drawing on submissions made by Parties, other Governments and relevant organizations in response to notification 2019-050 (ref. no. SCBD/SPS/SBG/AS/JA/JG/88146), dated 28 May 2019 (https://www.cbd.int/doc/notifications/2019/ntf-2019-050-marine-ebsa-en.pdf). Submissions were received from Denmark, Germany, Iceland, Portugal, Spain, BirdLife International, Conservation of Arctic Flora and Fauna, Global Ocean Biodiversity Initiative, Institute of Marine Research – University of Azores / ATLAS Project, IUCN Joint SSC/WCPA Marine Mammal Protected Areas Task Force, International Seabed Authority and International WWF-Centre for Marine Conservation. They are made available through hyperlinks in the tables below. 3. The present compilation consists of the following: (a) scientific information submitted using the EBSA template (compiled in Table 1); and (b) scientific information submitted in the form of scientific articles, reports or websites (compiled in Table 2), as inputs to the workshop discussion. -
Rock Art of the Sacred Precinct at Mata Ngarau, 'Orongo
Rapa Nui Journal: Journal of the Easter Island Foundation Volume 22 Issue 2 October Article 6 2008 ROCK ART OF THE SACRED PRECINCT AT MATA NGARAU, 'ORONGO Paul Horley Yuri Fedkovych Chernivtsi National University Georgia Lee Easter Island Foundation Follow this and additional works at: https://kahualike.manoa.hawaii.edu/rnj Part of the History of the Pacific Islands Commons, and the Pacific Islands Languages and Societies Commons Recommended Citation Horley, Paul and Lee, Georgia (2008) "ROCK ART OF THE SACRED PRECINCT AT MATA NGARAU, 'ORONGO," Rapa Nui Journal: Journal of the Easter Island Foundation: Vol. 22 : Iss. 2 , Article 6. Available at: https://kahualike.manoa.hawaii.edu/rnj/vol22/iss2/6 This Research Paper is brought to you for free and open access by the University of Hawai`i Press at Kahualike. It has been accepted for inclusion in Rapa Nui Journal: Journal of the Easter Island Foundation by an authorized editor of Kahualike. For more information, please contact [email protected]. Horley and Lee: ROCK ART OF THE SACRED PRECINCT AT MATA NGARAU, 'ORONGO ROCK ART OF THE SACRED PRECINCT AT MATA NGARAU, 'ORONGO Paul Horley Yuri Fedkovych Chernivtsi National University Georgia Lee Easter island Foundation INTRODUCTION rock surfaces are covered with numerous petroglyphs, creating the highest concentration ofrock art on Easter Island (Lee he ceremonial village of 'Orongo is one of the most 1992: 137). Due to intensive activity over a significant fascinating and important sites on Easter Island. historical period, the rocks of Mata Ngarau present evidence TLocated at the top ofRano Kau's precipitous cliffs, ofre-use and re-carving, allowing us to trace the evolution of 'Orongo offers awe-inspiring views toward the three off-shore petroglyph motifs from simple, incised fom1s to elaborate, islets of Motu Kao Kao, Motu Iti, and Motu Nui.