GLI3: a Mediator of Genetic Diseases, Development and Cancer Stephan J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methylation Status of Vitamin D Receptor Gene Promoter in Adrenocortical Carcinoma
UNIVERSITÀ DEGLI STUDI DI PADOVA DEPARTMENT OF CARDIAC, THORACIC AND VASCULAR SCIENCES Ph.D Course Medical Clinical and Experimental Sciences Curriculum Clinical Methodology, Endocrinological, Diabetological and Nephrological Sciences XXIX° SERIES METHYLATION STATUS OF VITAMIN D RECEPTOR GENE PROMOTER IN ADRENOCORTICAL CARCINOMA Coordinator: Ch.mo Prof. Annalisa Angelini Supervisor: Ch.mo Prof. Francesco Fallo Ph.D Student: Andrea Rebellato TABLE OF CONTENTS SUMMARY 3 INTRODUCTION 4 PART 1: ADRENOCORTICAL CARCINOMA 4 1.1 EPIDEMIOLOGY 4 1.2 GENETIC PREDISPOSITION 4 1.3 CLINICAL PRESENTATION 6 1.4 DIAGNOSTIC WORK-UP 7 1.4.1 Biochemistry 7 1.4.2 Imaging 9 1.5 STAGING 10 1.6 PATHOLOGY 11 1.7 MOLECULAR PATHOLOGY 14 1.7.1 DNA content 15 1.7.2 Chromosomal aberrations 15 1.7.3 Differential gene expression 16 1.7.4 DNA methylation 17 1.7.5 microRNAs 18 1.7.6 Gene mutations 19 1.8 PATHOPHYSIOLOGY OF MOLECULAR SIGNALLING 21 PATHWAYS 1.8.1 IGF-mTOR pathway 21 1.8.2 WNTsignalling pathway 22 1.8.3 Vascular endothelial growth factor 23 1.9 THERAPY 24 1.9.1 Surgery 24 1.9.2 Adjuvant Therapy 27 1.9.2.1 Mitotane 27 1.9.2.2 Cytotoxic chemotherapy 30 1.9.2.3 Targeted therapy 31 1.9.2.4 Therapy for hormone excess 31 1.9.2.5 Radiation therapy 32 1.9.2.6 Other local therapies 32 1.10 PROGNOSTIC FACTORS AND PREDICTIVE MARKERS 32 PART 2: VITAMIN D 35 2.1 VITAMIN D AND ITS BIOACTIVATION 35 2.2 THE VITAMIN D RECEPTOR 37 2.3 GENOMIC MECHANISM OF 1,25(OH)2D3-VDR COMPLEX 38 2.4 CLASSICAL ROLES OF VITAMIN D 40 2.4.1 Intestine 40 2.4.2 Kidney 41 2.4.3 Bone 41 2.5 PLEIOTROPIC -
Non-Canonical Activation of Hedgehog in Prostate Cancer Cells Mediated by the Interaction of Transcriptionally Active Androgen Receptor Proteins with Gli3
Oncogene (2018) 37:2313–2325 https://doi.org/10.1038/s41388-017-0098-7 ARTICLE Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3 1 1,2 2 1 1 1 2,3 Na Li ● Sarah Truong ● Mannan Nouri ● Jackson Moore ● Nader Al Nakouzi ● Amy Anne Lubik ● Ralph Buttyan Received: 19 July 2017 / Revised: 18 October 2017 / Accepted: 29 November 2017 / Published online: 12 February 2018 © The Author(s) 2018. This article is published with open access Abstract Hedgehog (Hh) is an oncogenic signaling pathway that regulates the activity of Gli transcription factors. Canonical Hh is a Smoothened-(Smo-) driven process that alters the post-translational processing of Gli2/Gli3 proteins. Though evidence supports a role for Gli action in prostate cancer (PCa) cell growth and progression, there is little indication that Smo is involved. Here we describe a non-canonical means for activation of Gli transcription in PCa cells mediated by the binding of transcriptionally-active androgen receptors (ARs) to Gli3. Androgens stimulated reporter expression from a Gli-dependent promoter in a variety of AR + PCa cells and this activity was suppressed by an anti-androgen, Enz, or by AR knockdown. 1234567890();,: Androgens also upregulated expression of endogenous Gli-dependent genes. This activity was associated with increased intranuclear binding of Gli3 to AR that was antagonized by Enz. Fine mapping of the AR binding domain on Gli2 showed that AR recognizes the Gli protein processing domain (PPD) in the C-terminus. Mutations in the arginine-/serine repeat elements of the Gli2 PPD involved in phosphorylation and ubiquitinylation blocked the binding to AR. -
Evidence for Differential Alternative Splicing in Blood of Young Boys With
Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. -
The Role of Gli3 in Inflammation
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 2020 THE ROLE OF GLI3 IN INFLAMMATION Stephan Josef Matissek University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Matissek, Stephan Josef, "THE ROLE OF GLI3 IN INFLAMMATION" (2020). Doctoral Dissertations. 2552. https://scholars.unh.edu/dissertation/2552 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. THE ROLE OF GLI3 IN INFLAMMATION BY STEPHAN JOSEF MATISSEK B.S. in Pharmaceutical Biotechnology, Biberach University of Applied Sciences, Germany, 2014 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Biochemistry December 2020 This dissertation was examined and approved in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Biochemistry by: Dissertation Director, Sherine F. Elsawa, Associate Professor Linda S. Yasui, Associate Professor, Northern Illinois University Paul Tsang, Professor Xuanmao Chen, Assistant Professor Don Wojchowski, Professor On October 14th, 2020 ii ACKNOWLEDGEMENTS First, I want to express my absolute gratitude to my advisor Dr. Sherine Elsawa. Without her help, incredible scientific knowledge and amazing guidance I would not have been able to achieve what I did. It was her encouragement and believe in me that made me overcome any scientific struggles and strengthened my self-esteem as a human being and as a scientist. -
GLI3 Knockdown Decreases Stemness, Cell Proliferation and Invasion in Oral Squamous Cell Carcinoma
2458 INTERNATIONAL JOURNAL OF ONCOLOGY 53: 2458-2472, 2018 GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma MARIA FERNANDA SETÚBAL DESTRO RODRIGUES1,2, LUCYENE MIGUITA2, NATHÁLIA PAIVA DE ANDRADE2, DANIELE HEGUEDUSCH2, CAMILA OLIVEIRA RODINI3, RAQUEL AJUB MOYSES4, TATIANA NATASHA TOPORCOV5, RICARDO RIBEIRO GAMA6, ELOIZA ELENA TAJARA7 and FABIO DAUMAS NUNES2 1Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo 01504000; 2Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000; 3Department of Biological Sciences, Bauru School of Dentistry, Bauru 17012901; 4Department of Head and Neck Surgery, School of Medicine, 5School of Public Health, University of São Paulo, São Paulo 03178200; 6Department of Head and Neck Surgery, Barretos Cancer Hospital, Barretos 014784400; 7Department of Molecular Biology, School of Medicine of São José do Rio Preto, São José do Rio Preto 15090000, Brazil Received February 28, 2018; Accepted June 29, 2018 DOI: 10.3892/ijo.2018.4572 Abstract. Oral squamous cell carcinoma (OSCC) is an expression of the Involucrin (IVL) and S100A9 genes. Cellular extremely aggressive disease associated with a poor prognosis. proliferation and invasion were inhibited following GLI3 Previous studies have established that cancer stem cells (CSCs) knockdown. In OSCC samples, a high GLI3 expression was actively participate in OSCC development, progression and associated with tumour size but not with prognosis. On the resistance to conventional treatments. Furthermore, CSCs whole, the findings of this study demonstrate for the first time, frequently exhibit a deregulated expression of normal stem at least to the best of our knowledge, that GLI3 contributes cell signalling pathways, thereby acquiring their distinctive to OSCC stemness and malignant behaviour. -
Tamoxifen Resistance: Emerging Molecular Targets
International Journal of Molecular Sciences Review Tamoxifen Resistance: Emerging Molecular Targets Milena Rondón-Lagos 1,*,†, Victoria E. Villegas 2,3,*,†, Nelson Rangel 1,2,3, Magda Carolina Sánchez 2 and Peter G. Zaphiropoulos 4 1 Department of Medical Sciences, University of Turin, Turin 10126, Italy; [email protected] 2 Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 11001000, Colombia; [email protected] 3 Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá 11001000, Colombia 4 Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden; [email protected] * Correspondence: [email protected] (M.R.-L.); [email protected] (V.E.V.); Tel.: +39-01-1633-4127 (ext. 4388) (M.R.-L.); +57-1-297-0200 (ext. 4029) (V.E.V.); Fax: +39-01-1663-5267 (M.R.-L.); +57-1-297-0200 (V.E.V.) † These authors contributed equally to this work. Academic Editor: William Chi-shing Cho Received: 5 July 2016; Accepted: 16 August 2016; Published: 19 August 2016 Abstract: 17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. -
GLI2 but Not GLI1/GLI3 Plays a Central Role in the Induction of Malignant Phenotype of Gallbladder Cancer
ONCOLOGY REPORTS 45: 997-1010, 2021 GLI2 but not GLI1/GLI3 plays a central role in the induction of malignant phenotype of gallbladder cancer SHU ICHIMIYA1, HIDEYA ONISHI1, SHINJIRO NAGAO1, SATOKO KOGA1, KUKIKO SAKIHAMA2, KAZUNORI NAKAYAMA1, AKIKO FUJIMURA3, YASUHIRO OYAMA4, AKIRA IMAIZUMI1, YOSHINAO ODA2 and MASAFUMI NAKAMURA4 Departments of 1Cancer Therapy and Research, 2Anatomical Pathology, 3Otorhinolaryngology and 4Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan Received August 10, 2020; Accepted December 7, 2020 DOI: 10.3892/or.2021.7947 Abstract. We previously reported that Hedgehog (Hh) signal Introduction was enhanced in gallbladder cancer (GBC) and was involved in the induction of malignant phenotype of GBC. In recent Gallbladder cancer (GBC) is the seventh most common gastro- years, therapeutics that target Hh signaling have focused on intestinal carcinoma and accounts for 1.2% of all cancer cases molecules downstream of smoothened (SMO). The three tran- and 1.7% of all cancer-related deaths (1). GBC develops from scription factors in the Hh signal pathway, glioma-associated metaplasia to dysplasia to carcinoma in situ and then to invasive oncogene homolog 1 (GLI1), GLI2, and GLI3, function down- carcinoma over 5‑15 years (2). During this time, GBC exhibits stream of SMO, but their biological role in GBC remains few characteristic symptoms, and numerous cases have already unclear. In the present study, the biological significance of developed into locally advanced or metastasized cancer by the GLI1, GLI2, and GLI3 were analyzed with the aim of devel- time of diagnosis. Gemcitabine (GEM), cisplatin (CDDP), and oping novel treatments for GBC. -
COFACTORS of the P65- MEDIATOR COMPLEX
COFACTORS OF THE April 5 p65- MEDIATOR 2011 COMPLEX Honors Thesis Department of Chemistry and Biochemistry NICHOLAS University of Colorado at Boulder VICTOR Faculty Advisor: Dylan Taatjes, PhD PARSONNET Committee Members: Rob Knight, PhD; Robert Poyton, PhD Table of Contents Abstract ......................................................................................................................................................... 3 Introduction .................................................................................................................................................. 4 The Mediator Complex ............................................................................................................................. 6 The NF-κB Transcription Factor ................................................................................................................ 8 Hypothesis............................................................................................................................................... 10 Results ......................................................................................................................................................... 11 Discussion.................................................................................................................................................... 15 p65-only factors ...................................................................................................................................... 16 p65-enriched factors .............................................................................................................................. -
MED12 Related Disorders FTNW
MED12 related disorders rarechromo.org What are the MED12 related disorders? MED12 related disorders are a group of disorders that primarily affect boys. Most boys with MED12 related disorders have intellectual disability/ developmental delay, behavioural problems and low muscle tone. MED12 related disorders occur when the MED12 gene has lost its normal function. Genes are instructions which have important roles in our growth and development. They are made of DNA and are incorporated into organised structures called chromosomes. Chromosomes therefore contain our genetic information. Chromosomes are located in our cells, the building blocks of our bodies. The MED12 gene is located on the X chromosome. The X chromosome is one of the sex chromosomes that determine a person’s gender. Men have one X chromosome and one Y chromosome, while women have two X chromosomes. Because the MED12 gene is located on the X chromosome, men have only one copy of the gene, while women have two copies. A change in the MED12 gene can cause symptoms in men. Women with a change in the MED12 gene usually have no symptoms. They carry a second copy of the gene that does function normally. Women may show mild features such as learning difficulties. The MED12 related disorders are FG syndrome , Lujan syndrome and the X- linked recessive form of Ohdo syndrome . Although these syndromes differ, they also have the overlapping features listed on page 2. The way that these conditions are inherited is called ‘X-linked’ or ‘X-linked’ recessive. In 2007 it was discovered that changes in the MED12 gene were responsible for the symptoms and features in several boys with FG syndrome. -
What You Can Learn from One Gene: GLI3 L G Biesecker
465 REVIEW J Med Genet: first published as 10.1136/jmg.2004.029181 on 1 June 2006. Downloaded from What you can learn from one gene: GLI3 L G Biesecker ............................................................................................................................... J Med Genet 2006;43:465–469. doi: 10.1136/jmg.2004.029181 The study of patients with rare multiple congenital anomaly several genes that cause abnormal phenotypes in the human when mutated (for example, SHH, syndromes can provide illuminating insights into normal PTC1, and CBP).7 development and the pathogenesis of congenital The understanding of the pathogenesis of GLI3 anomalies. The GLI3 gene is a particularly good example was markedly facilitated by analyses of model organisms and comparing the model organism as it illuminates the phenomena of pleiotropy, data with the human data. The bifunctional phenocopies, syndrome families, and evolutionary nature of GLI3 was a hypothesis based on two conservation of pathogenesis, and raises questions about observations: the biological function of cubitus interruptus (ci, the homologue of the GLI gene how diagnoses are conceptualised. These topics are family in Drosophila) and the position of trunca- reviewed in turn, in the context of the clinical and biological tion mutations in GLI3 in humans. The key data derived from patients with mutations in GLI3 and biological insight was made by the Kornberg group, when they showed that ci, which nor- experimental work in model systems. mally localises to the cytoplasm, is under -
Mir-506 Acts As a Tumor Suppressor by Directly Targeting the Hedgehog Pathway Transcription Factor Gli3 in Human Cervical Cancer
Oncogene (2015) 34, 717–725 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer S-Y Wen1,2,3,8, Y Lin2,8, Y-Q Yu4, S-J Cao5, R Zhang6, X-M Yang3,JLi3, Y-L Zhang3, Y-H Wang3, M-Z Ma3, W-W Sun5, X-L Lou5, J-H Wang7, Y-C Teng1 and Z-G Zhang3 Although significant advances have recently been made in the diagnosis and treatment of cervical carcinoma, the long-term survival rate for advanced cervical cancer remains low. Therefore, an urgent need exists to both uncover the molecular mechanisms and identify potential therapeutic targets for the treatment of cervical cancer. MicroRNAs (miRNAs) have important roles in cancer progression and could be used as either potential therapeutic agents or targets. miR-506 is a component of an X chromosome- linked miRNA cluster. The biological functions of miR-506 have not been well established. In this study, we found that miR-506 expression was downregulated in approximately 80% of the cervical cancer samples examined and inversely correlated with the expression of Ki-67, a marker of cell proliferation. Gain-of-function and loss-of-function studies in human cervical cancer, Caski and SiHa cells, demonstrated that miR-506 acts as a tumor suppressor by inhibiting cervical cancer growth in vitro and in vivo. Further studies showed that miR-506 induced cell cycle arrest at the G1/S transition, and enhanced apoptosis and chemosensitivity of cervical cancer cell. -
MED12 Mutations Link Intellectual Disability Syndromes with Dysregulated GLI3-Dependent Sonic Hedgehog Signaling
MED12 mutations link intellectual disability syndromes with dysregulated GLI3-dependent Sonic Hedgehog signaling Haiying Zhoua, Jason M. Spaethb, Nam Hee Kimb, Xuan Xub, Michael J. Friezc, Charles E. Schwartzc, and Thomas G. Boyerb,1 aDepartment of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94270; bDepartment of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and cGreenwood Genetic Center, Greenwood, SC 29646 Edited by Robert G. Roeder, The Rockefeller University, New York, NY, and approved September 13, 2012 (received for review December 20, 2011) Recurrent missense mutations in the RNA polymerase II Mediator divergent “tail” and “kinase” modules through which most activa- subunit MED12 are associated with X-linked intellectual disability tors and repressors target Mediator. The kinase module, compris- (XLID) and multiple congenital anomalies, including craniofacial, ing MED12, MED13, CDK8, and cyclin C, has been ascribed both musculoskeletal, and behavioral defects in humans with FG (or activating and repressing functions and exists in variable association Opitz-Kaveggia) and Lujan syndromes. However, the molecular with Mediator, implying that its regulatory role is restricted to a mechanism(s) underlying these phenotypes is poorly understood. subset of RNA polymerase II transcribed genes. Here we report that MED12 mutations R961W and N1007S causing Within the Mediator kinase module, MED12 is a critical trans- FG and Lujan syndromes, respectively, disrupt a Mediator-imposed ducer of regulatory information conveyed by signal-activated transcription factors linked to diverse developmental pathways, constraint on GLI3-dependent Sonic Hedgehog (SHH) signaling. We including the EGF, Notch, Wnt, and Hedgehog pathways (10–12).