The Role of Med12 in Tumorigenesis

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Med12 in Tumorigenesis Helsinki Graduate Program in Biotechnology and Molecular Biology (GPBM)/ Integrative Life Sciences (ILS) Doctoral Program THE ROLE OF MED12 IN TUMORIGENESIS Kati Kämpjärvi Department of Medical and Clinical Genetics, Medicum & Genome-Scale Biology Research Program, Research Programs Unit Faculty of Medicine University of Helsinki Helsinki, Finland Academic dissertation To be publicly discussed, with the permission of the Faculty of Medicine, University of Helsinki, in Haartman Institute, Lecture Hall 1, Haartmaninkatu 3, Helsinki, on the 18th of November 2016, at 12 noon. Helsinki 2016 Supervised by Docent Pia Vahteristo, Ph.D. Department of Medical and Clinical Genetics, Medicum Genome-Scale Biology Research Program, Research Programs Unit Faculty of Medicine University of Helsinki Helsinki, Finland Academy Professor Lauri A. Aaltonen, M.D., Ph.D. Department of Medical and Clinical Genetics, Medicum Genome-Scale Biology Research Program, Research Programs Unit Faculty of Medicine University of Helsinki Helsinki, Finland Reviewed by Docent Miina Ollikainen, Ph.D. Institute for Molecular Medicine Finland, FIMM Department of Public Health, Clinicum Faculty of Medicine University of Helsinki Helsinki, Finland Docent Katri Pylkäs, Ph.D. Laboratory of Cancer Genetics and Tumor Biology Biocenter Oulu Faculty of Medicine University of Oulu Oulu, Finland Official opponent Professor Anne Kallioniemi, M.D., Ph.D. BioMediTech University of Tampere Tampere, Finland ISBN 978-951-51-2643-6 (paperback) ISBN 978-951-51-2644-3 (PDF) htpp://ethesis.helsinki.fi Unigrafia Helsinki 2016 TABLE OF CONTENTS ORIGINAL PUBLICATIONS .......................................................................... 6 ABBREVIATIONS ............................................................................................ 7 ABSTRACT ........................................................................................................ 8 REVIEW OF THE LITERATURE ................................................................ 10 1. Tumorigenesis ....................................................................................................................... 10 2. Genetics of cancer ................................................................................................................. 11 2.1 Genomic alterations ........................................................................................................ 12 2.2 Epigenetic and other changes in tumorigenesis ............................................................... 13 2.3 Cancer genes ................................................................................................................... 14 2.3.1 Oncogenes ................................................................................................................ 14 2.3.2 Tumor suppressor genes .......................................................................................... 15 2.3.3 Stability genes .......................................................................................................... 16 2.4 Inherited susceptibility for cancer ................................................................................... 16 2.5 Genome-wide methods in cancer genetics ...................................................................... 17 3. Uterine leiomyomas ............................................................................................................... 18 3.1 Development of uterine leiomyomas .............................................................................. 19 3.2 Chromosomal alterations in uterine leiomyomas ............................................................ 20 3.3 Hereditary leiomyomatosis and renal cell cancer syndrome ........................................... 21 3.4 MED12 mutations in uterine leiomyomas ....................................................................... 22 4. MED12 .............................................................................................................................. 23 4.1 MED12 as a subunit of the Mediator complex ................................................................ 25 4.2 MED12 in signaling pathways ........................................................................................ 27 4.3 MED12 mutations in the germ line ................................................................................. 28 4.4 Somatic MED12 mutations in other tumor types? .......................................................... 29 AIMS OF THE STUDY ................................................................................... 31 MATERIALS AND METHODS .................................................................... 32 1. Study subjects and samples .................................................................................................. 32 1.1 Tumor samples (I-V) ....................................................................................................... 32 1.2 Normal tissue samples (I-III) .......................................................................................... 35 1.3 Cell lines (II, V) .............................................................................................................. 35 2. Methods .................................................................................................................................. 36 2.1 Histopathological evaluation (I, III) ................................................................................ 36 2.2 DNA and RNA extraction (I-V) ...................................................................................... 36 2.3 Sanger sequencing (I-V) ................................................................................................. 37 3 2.3.1 Mutation screening and validation (I-V) ................................................................. 37 2.3.2 Loss of heterozygosity analysis (III) ........................................................................ 37 2.4 Gene expression analysis (II, III). ................................................................................... 38 2.5 Immunoprecipitation and kinase activity assay (II) ........................................................ 38 2.6 Western blotting (II, V) .................................................................................................. 38 2.7 Tissue microarray construction and immunohistochemistry (III) ................................... 39 2.8 Creating MED12-expressing Flp-In 293 T-Rex cell lines (V) ........................................ 39 2.9 Immunofluorescence (V) ................................................................................................ 39 2.10 Affinity purification and BioID -mass spectrometry (V) ................................................ 41 2.11 In silico prediction tools and online databases (I, IV, V) ................................................ 41 2.12 Statistical analyses (II-V)................................................................................................ 42 3. Ethical issues ......................................................................................................................... 43 RESULTS ......................................................................................................... 44 1. MED12 exon 2 mutations in uterine leiomyosarcoma and colorectal cancer (I) ............. 44 1.1 MED12 exon 2 mutations occur recurrently in uterine leiomyosarcoma ........................ 44 1.2 Rare MED12 exon 2 mutations in colorectal cancer ....................................................... 44 2. Mutations in exon 1 of MED12 (II) ..................................................................................... 46 2.1 MED12 exon 1 mutations in conventional uterine leiomyomas ..................................... 46 2.2 MED12 exon 1 mutations lead to similar gene expression profile as exon 2 mutations . 46 2.3 MED12 exon 1 mutations disrupt the Mediator kinase module integrity ....................... 47 3. The role of MED12 in HLRCC patients’ uterine leiomyomas (III) .................................. 48 3.1 MED12 mutations and FH deficiency are mutually exclusive in uterine leiomyomas ... 48 3.2 MED12 mutation-positive uterine leiomyomas from HLRCC patients display similar gene expression profile as sporadic MED12 mutation-positive tumors .......................... 51 3.3 HLRCC patient with multiple MED12 mutation-positive uterine leiomyomas .............. 51 4. MED12 mutations in chronic lymphocytic leukemia (IV) ................................................. 51 4.1 Somatic MED12 mutations are recurrent in CLL ........................................................... 52 4.2 Positive MED12 mutation status is associated with poor prognosis markers in CLL ..... 52 5. Somatic MED12 nonsense mutation in T-cell acute lymphoblastic leukemia (V) ........... 52 5.1 MED12 exon 1 nonsense mutation escapes nonsense mediated mRNA decay and encodes N-terminally truncated protein .......................................................................... 53 5.2 MED12 E33X mutation abolishes the interactions between MED12 and other Mediator components ..................................................................................................................... 55 5.3 MED12 E33X mutant derivative is missing the nuclear localization signal and remains in the cytoplasm ............................................................................................................... 55 DISCUSSION ..................................................................................................
Recommended publications
  • NIH Public Access Author Manuscript Pharmacogenomics
    NIH Public Access Author Manuscript Pharmacogenomics. Author manuscript; available in PMC 2014 June 12. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Pharmacogenomics. 2014 February ; 15(2): 137–146. doi:10.2217/pgs.13.213. Genome-wide Association and Pharmacological Profiling of 29 Anticancer Agents Using Lymphoblastoid Cell Lines Chad C. Brown1, Tammy M. Havener2, Marisa W. Medina3, John R. Jack1, Ronald M. Krauss3, Howard L. McLeod2, and Alison A. Motsinger-Reif1,2,* 1Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, 27607, USA 2Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA 3Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA Abstract Aims—Association mapping with lymphoblastoid cell lines (LCLs) is a promising approach in pharmacogenomics research, and in the current study we utilize this model to perform association mapping for 29 chemotherapy drugs. Materials and Methods—Currently, we use LCLs to perform genome-wide association mapping of the cytotoxic response of 520 European Americans to 29 different anticancer drugs, the largest LCL study to date. A novel association approach using a multivariate analysis of covariance design was employed with the software program MAGWAS, testing for differences in the dose-response profiles between genotypes without making assumptions about the response curve or the biological mode of association. Additionally, by classifying 25 of the 29 drugs into 8 families according to structural and mechanistic relationships, MAGWAS was used to test for associations that were shared across each drug family.
    [Show full text]
  • 1 Evidence for Gliadin Antibodies As Causative Agents in Schizophrenia
    1 Evidence for gliadin antibodies as causative agents in schizophrenia. C.J.Carter PolygenicPathways, 20 Upper Maze Hill, Saint-Leonard’s on Sea, East Sussex, TN37 0LG [email protected] Tel: 0044 (0)1424 422201 I have no fax Abstract Antibodies to gliadin, a component of gluten, have frequently been reported in schizophrenia patients, and in some cases remission has been noted following the instigation of a gluten free diet. Gliadin is a highly immunogenic protein, and B cell epitopes along its entire immunogenic length are homologous to the products of numerous proteins relevant to schizophrenia (p = 0.012 to 3e-25). These include members of the DISC1 interactome, of glutamate, dopamine and neuregulin signalling networks, and of pathways involved in plasticity, dendritic growth or myelination. Antibodies to gliadin are likely to cross react with these key proteins, as has already been observed with synapsin 1 and calreticulin. Gliadin may thus be a causative agent in schizophrenia, under certain genetic and immunological conditions, producing its effects via antibody mediated knockdown of multiple proteins relevant to the disease process. Because of such homology, an autoimmune response may be sustained by the human antigens that resemble gliadin itself, a scenario supported by many reports of immune activation both in the brain and in lymphocytes in schizophrenia. Gluten free diets and removal of such antibodies may be of therapeutic benefit in certain cases of schizophrenia. 2 Introduction A number of studies from China, Norway, and the USA have reported the presence of gliadin antibodies in schizophrenia 1-5. Gliadin is a component of gluten, intolerance to which is implicated in coeliac disease 6.
    [Show full text]
  • Genome-Wide Analysis of Saccharomyces Cerevisiae
    M BoC | ARTICLE Genome-wide analysis of Saccharomyces cerevisiae identifies cellular processes affecting intracellular aggregation of Alzheimer’s amyloid-β42: importance of lipid homeostasis S. Naira,*, M. Trainib,*, I. W. Dawesa,c, and G. G. Perroned aSchool of Biotechnology and Biomolecular Sciences and cRamaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, NSW 2052, Australia; bAtherosclerosis Laboratory, ANZAC Research Institute, Concord Hospital, Concord, NSW 2139, Australia; dSchool of Science and Health, University of Western Sydney, Penrith, NSW 1797, Australia ABSTRACT Amyloid-β (Aβ)–containing plaques are a major neuropathological feature of Al- Monitoring Editor zheimer’s disease (AD). The two major isoforms of Aβ peptide associated with AD are Aβ40 Charles Boone University of Toronto and Aβ42, of which the latter is highly prone to aggregation. Increased presence and aggre- gation of intracellular Aβ42 peptides is an early event in AD progression. Improved under- Received: Apr 26, 2013 standing of cellular processes affecting Aβ42 aggregation may have implications for develop- Revised: May 20, 2014 ment of therapeutic strategies. Aβ42 fused to green fluorescent protein (Aβ42-GFP) was Accepted: May 20, 2014 expressed in ∼4600 mutants of a Saccharomyces cerevisiae genome-wide deletion library to identify proteins and cellular processes affecting intracellular Aβ42 aggregation by assessing the fluorescence of Aβ42-GFP. This screening identified 110 mutants exhibiting intense Aβ42- GFP–associated fluorescence. Four major cellular processes were overrepresented in the data set, including phospholipid homeostasis. Disruption of phosphatidylcholine, phosphati- dylserine, and/or phosphatidylethanolamine metabolism had a major effect on intracellular Aβ42 aggregation and localization. Confocal microscopy indicated that Aβ42-GFP localiza- tion in the phospholipid mutants was juxtaposed to the nucleus, most likely associated with the endoplasmic reticulum (ER)/ER membrane.
    [Show full text]
  • Methylation Status of Vitamin D Receptor Gene Promoter in Adrenocortical Carcinoma
    UNIVERSITÀ DEGLI STUDI DI PADOVA DEPARTMENT OF CARDIAC, THORACIC AND VASCULAR SCIENCES Ph.D Course Medical Clinical and Experimental Sciences Curriculum Clinical Methodology, Endocrinological, Diabetological and Nephrological Sciences XXIX° SERIES METHYLATION STATUS OF VITAMIN D RECEPTOR GENE PROMOTER IN ADRENOCORTICAL CARCINOMA Coordinator: Ch.mo Prof. Annalisa Angelini Supervisor: Ch.mo Prof. Francesco Fallo Ph.D Student: Andrea Rebellato TABLE OF CONTENTS SUMMARY 3 INTRODUCTION 4 PART 1: ADRENOCORTICAL CARCINOMA 4 1.1 EPIDEMIOLOGY 4 1.2 GENETIC PREDISPOSITION 4 1.3 CLINICAL PRESENTATION 6 1.4 DIAGNOSTIC WORK-UP 7 1.4.1 Biochemistry 7 1.4.2 Imaging 9 1.5 STAGING 10 1.6 PATHOLOGY 11 1.7 MOLECULAR PATHOLOGY 14 1.7.1 DNA content 15 1.7.2 Chromosomal aberrations 15 1.7.3 Differential gene expression 16 1.7.4 DNA methylation 17 1.7.5 microRNAs 18 1.7.6 Gene mutations 19 1.8 PATHOPHYSIOLOGY OF MOLECULAR SIGNALLING 21 PATHWAYS 1.8.1 IGF-mTOR pathway 21 1.8.2 WNTsignalling pathway 22 1.8.3 Vascular endothelial growth factor 23 1.9 THERAPY 24 1.9.1 Surgery 24 1.9.2 Adjuvant Therapy 27 1.9.2.1 Mitotane 27 1.9.2.2 Cytotoxic chemotherapy 30 1.9.2.3 Targeted therapy 31 1.9.2.4 Therapy for hormone excess 31 1.9.2.5 Radiation therapy 32 1.9.2.6 Other local therapies 32 1.10 PROGNOSTIC FACTORS AND PREDICTIVE MARKERS 32 PART 2: VITAMIN D 35 2.1 VITAMIN D AND ITS BIOACTIVATION 35 2.2 THE VITAMIN D RECEPTOR 37 2.3 GENOMIC MECHANISM OF 1,25(OH)2D3-VDR COMPLEX 38 2.4 CLASSICAL ROLES OF VITAMIN D 40 2.4.1 Intestine 40 2.4.2 Kidney 41 2.4.3 Bone 41 2.5 PLEIOTROPIC
    [Show full text]
  • Evidence for Differential Alternative Splicing in Blood of Young Boys With
    Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling.
    [Show full text]
  • The Role of Gli3 in Inflammation
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 2020 THE ROLE OF GLI3 IN INFLAMMATION Stephan Josef Matissek University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Matissek, Stephan Josef, "THE ROLE OF GLI3 IN INFLAMMATION" (2020). Doctoral Dissertations. 2552. https://scholars.unh.edu/dissertation/2552 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. THE ROLE OF GLI3 IN INFLAMMATION BY STEPHAN JOSEF MATISSEK B.S. in Pharmaceutical Biotechnology, Biberach University of Applied Sciences, Germany, 2014 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Biochemistry December 2020 This dissertation was examined and approved in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Biochemistry by: Dissertation Director, Sherine F. Elsawa, Associate Professor Linda S. Yasui, Associate Professor, Northern Illinois University Paul Tsang, Professor Xuanmao Chen, Assistant Professor Don Wojchowski, Professor On October 14th, 2020 ii ACKNOWLEDGEMENTS First, I want to express my absolute gratitude to my advisor Dr. Sherine Elsawa. Without her help, incredible scientific knowledge and amazing guidance I would not have been able to achieve what I did. It was her encouragement and believe in me that made me overcome any scientific struggles and strengthened my self-esteem as a human being and as a scientist.
    [Show full text]
  • COFACTORS of the P65- MEDIATOR COMPLEX
    COFACTORS OF THE April 5 p65- MEDIATOR 2011 COMPLEX Honors Thesis Department of Chemistry and Biochemistry NICHOLAS University of Colorado at Boulder VICTOR Faculty Advisor: Dylan Taatjes, PhD PARSONNET Committee Members: Rob Knight, PhD; Robert Poyton, PhD Table of Contents Abstract ......................................................................................................................................................... 3 Introduction .................................................................................................................................................. 4 The Mediator Complex ............................................................................................................................. 6 The NF-κB Transcription Factor ................................................................................................................ 8 Hypothesis............................................................................................................................................... 10 Results ......................................................................................................................................................... 11 Discussion.................................................................................................................................................... 15 p65-only factors ...................................................................................................................................... 16 p65-enriched factors ..............................................................................................................................
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • MED12 Related Disorders FTNW
    MED12 related disorders rarechromo.org What are the MED12 related disorders? MED12 related disorders are a group of disorders that primarily affect boys. Most boys with MED12 related disorders have intellectual disability/ developmental delay, behavioural problems and low muscle tone. MED12 related disorders occur when the MED12 gene has lost its normal function. Genes are instructions which have important roles in our growth and development. They are made of DNA and are incorporated into organised structures called chromosomes. Chromosomes therefore contain our genetic information. Chromosomes are located in our cells, the building blocks of our bodies. The MED12 gene is located on the X chromosome. The X chromosome is one of the sex chromosomes that determine a person’s gender. Men have one X chromosome and one Y chromosome, while women have two X chromosomes. Because the MED12 gene is located on the X chromosome, men have only one copy of the gene, while women have two copies. A change in the MED12 gene can cause symptoms in men. Women with a change in the MED12 gene usually have no symptoms. They carry a second copy of the gene that does function normally. Women may show mild features such as learning difficulties. The MED12 related disorders are FG syndrome , Lujan syndrome and the X- linked recessive form of Ohdo syndrome . Although these syndromes differ, they also have the overlapping features listed on page 2. The way that these conditions are inherited is called ‘X-linked’ or ‘X-linked’ recessive. In 2007 it was discovered that changes in the MED12 gene were responsible for the symptoms and features in several boys with FG syndrome.
    [Show full text]
  • Regulatory Functions of the Mediator Kinases CDK8 and CDK19 Charli B
    TRANSCRIPTION 2019, VOL. 10, NO. 2, 76–90 https://doi.org/10.1080/21541264.2018.1556915 REVIEW Regulatory functions of the Mediator kinases CDK8 and CDK19 Charli B. Fant and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, CO, USA ABSTRACT ARTICLE HISTORY The Mediator-associated kinases CDK8 and CDK19 function in the context of three additional Received 19 September 2018 proteins: CCNC and MED12, which activate CDK8/CDK19 kinase function, and MED13, which Revised 13 November 2018 enables their association with the Mediator complex. The Mediator kinases affect RNA polymerase Accepted 20 November 2018 II (pol II) transcription indirectly, through phosphorylation of transcription factors and by control- KEYWORDS ling Mediator structure and function. In this review, we discuss cellular roles of the Mediator Mediator kinase; enhancer; kinases and mechanisms that enable their biological functions. We focus on sequence-specific, transcription; RNA DNA-binding transcription factors and other Mediator kinase substrates, and how CDK8 or CDK19 polymerase II; chromatin may enable metabolic and transcriptional reprogramming through enhancers and chromatin looping. We also summarize Mediator kinase inhibitors and their therapeutic potential. Throughout, we note conserved and divergent functions between yeast and mammalian CDK8, and highlight many aspects of kinase module function that remain enigmatic, ranging from potential roles in pol II promoter-proximal pausing to liquid-liquid phase separation. Introduction and MED13L associate in a mutually exclusive fash- ion with MED12 and MED13 [12], and their poten- The CDK8 kinase exists in a 600 kDa complex tial functional distinctions remain unclear. known as the CDK8 module, which consists of four CDK8 is considered both an oncogene [13–15] proteins (CDK8, CCNC, MED12, MED13).
    [Show full text]
  • MED12 Mutations Link Intellectual Disability Syndromes with Dysregulated GLI3-Dependent Sonic Hedgehog Signaling
    MED12 mutations link intellectual disability syndromes with dysregulated GLI3-dependent Sonic Hedgehog signaling Haiying Zhoua, Jason M. Spaethb, Nam Hee Kimb, Xuan Xub, Michael J. Friezc, Charles E. Schwartzc, and Thomas G. Boyerb,1 aDepartment of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94270; bDepartment of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and cGreenwood Genetic Center, Greenwood, SC 29646 Edited by Robert G. Roeder, The Rockefeller University, New York, NY, and approved September 13, 2012 (received for review December 20, 2011) Recurrent missense mutations in the RNA polymerase II Mediator divergent “tail” and “kinase” modules through which most activa- subunit MED12 are associated with X-linked intellectual disability tors and repressors target Mediator. The kinase module, compris- (XLID) and multiple congenital anomalies, including craniofacial, ing MED12, MED13, CDK8, and cyclin C, has been ascribed both musculoskeletal, and behavioral defects in humans with FG (or activating and repressing functions and exists in variable association Opitz-Kaveggia) and Lujan syndromes. However, the molecular with Mediator, implying that its regulatory role is restricted to a mechanism(s) underlying these phenotypes is poorly understood. subset of RNA polymerase II transcribed genes. Here we report that MED12 mutations R961W and N1007S causing Within the Mediator kinase module, MED12 is a critical trans- FG and Lujan syndromes, respectively, disrupt a Mediator-imposed ducer of regulatory information conveyed by signal-activated transcription factors linked to diverse developmental pathways, constraint on GLI3-dependent Sonic Hedgehog (SHH) signaling. We including the EGF, Notch, Wnt, and Hedgehog pathways (10–12).
    [Show full text]
  • Structure and Mechanism of the RNA Polymerase II Transcription Machinery
    Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Structure and mechanism of the RNA polymerase II transcription machinery Allison C. Schier and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA RNA polymerase II (Pol II) transcribes all protein-coding ingly high resolution, which has rapidly advanced under- genes and many noncoding RNAs in eukaryotic genomes. standing of the molecular basis of Pol II transcription. Although Pol II is a complex, 12-subunit enzyme, it lacks Structural biology continues to transform our under- the ability to initiate transcription and cannot consistent- standing of complex biological processes because it allows ly transcribe through long DNA sequences. To execute visualization of proteins and protein complexes at or near these essential functions, an array of proteins and protein atomic-level resolution. Combined with mutagenesis and complexes interact with Pol II to regulate its activity. In functional assays, structural data can at once establish this review, we detail the structure and mechanism of how enzymes function, justify genetic links to human dis- over a dozen factors that govern Pol II initiation (e.g., ease, and drive drug discovery. In the past few decades, TFIID, TFIIH, and Mediator), pausing, and elongation workhorse techniques such as NMR and X-ray crystallog- (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis raphy have been complemented by cryoEM, cross-linking for Pol II transcription regulation has advanced rapidly mass spectrometry (CXMS), and other methods. Recent in the past decade, largely due to technological innova- improvements in data collection and imaging technolo- tions in cryoelectron microscopy.
    [Show full text]