U.S. Tropical Pacific Seabird Surveying Guide Version 1.0, May 2018

Total Page:16

File Type:pdf, Size:1020Kb

U.S. Tropical Pacific Seabird Surveying Guide Version 1.0, May 2018 U.S. Tropical Pacific Seabird Surveying Guide Version 1.0, May 2018 Dr. Eric A. VanderWerf and Dr. Lindsay C. Young Pacific Rim Conservation, PO Box 61827, Honolulu, HI 96839 Prepared for the U.S. Fish and Wildlife Service, National Wildlife Refuge System, Office of Migratory Birds, and the Inventory & Monitoring Program Disclaimer: ‘‘The findings and conclusions in this document are those of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service.’’ Suggested citation: VanderWerf, E. A., and L. C. Young. 2018. U.S. Tropical Pacific seabird surveying guide. Report prepared for the U.S. Fish and Wildlife Service, Region 1, Portland, OR. Pacific Rim Conservation, Honolulu, HI. 55 pp., 3 tables, 1 figure. Cover photos by E. VanderWerf: Clockwise from top left - Black-footed Albatross, Hawaiian Petrel, White Tern, and Red-tailed Tropicbird. TABLE OF CONTENTS Table of contents ...........................................................................................................................2 List of tables ..................................................................................................................................3 List of figures ................................................................................................................................3 List of abbreviations used in the text ............................................................................................3 Executive summary .......................................................................................................................4 Introduction ...................................................................................................................................5 Establishing a monitoring program ...............................................................................................7 Defining goals and objectives ...........................................................................................7 Priority survey needs in the USTP ....................................................................................8 Designing a monitoring program ......................................................................................8 Survey resources needed .......................................................................................8 Training, accuracy, and precision .........................................................................9 Biological and site considerations ................................................................................................9 Biology of USTP seabirds ..............................................................................................10 Foraging guilds ...................................................................................................10 Life span..............................................................................................................10 Breeding phenology and synchrony....................................................................11 Breeding frequency .............................................................................................12 Age at first breeding............................................................................................13 Metapopulations ..................................................................................................13 Site considerations ..........................................................................................................13 Timing and number of surveys .......................................................................................14 Monitoring methods ....................................................................................................................14 Selecting methods and designing protocols ....................................................................14 Population size ................................................................................................................15 Censuses: total colony & nest counts..................................................................16 Mean incubation counts ......................................................................................16 Nesting, roosting, and fly-by counts ...................................................................16 Plot-based designs ...............................................................................................17 Distance-based methods......................................................................................18 Mark-recapture and survival ...............................................................................18 Aerial surveys .....................................................................................................19 Other measures of abundance .........................................................................................20 At-sea counts from shore ...................................................................................20 At-sea counts from vessels..................................................................................20 Nest/burrow occupancy ......................................................................................21 Radar ...................................................................................................................21 Acoustic monitoring............................................................................................22 Automated cameras .............................................................................................22 Population trend ..............................................................................................................22 Distribution .....................................................................................................................23 Mapping colony boundaries ................................................................................23 Photo points ........................................................................................................23 Acoustic monitoring............................................................................................24 At-sea tracking ....................................................................................................24 2 Banding/mark-recapture .....................................................................................25 Breeding biology .............................................................................................................25 Hatching success .................................................................................................25 Fledging success .................................................................................................25 Overall breeding success.....................................................................................25 Daily nest survival probability ............................................................................25 Nesting phenology ..............................................................................................26 Effects of threats and management .................................................................................26 Predation and predator control ............................................................................26 Habitat disturbance and management .................................................................27 Marine pollution, plastics, and contaminants .....................................................28 Scenario-based surveying ...........................................................................................................29 Rapid assessments/reconnaissance surveys ....................................................................29 Whole-island and species-specific surveying .................................................................30 Albatrosses ..........................................................................................................31 Burrowing shearwaters and petrels - coastal species ..........................................31 Burrowing shearwaters and petrels - montane species .......................................32 Boobies, frigatebirds, and tropicbirds .................................................................33 Terns - ground nesters .........................................................................................35 Terns - tree nesters ..............................................................................................36 Terns - cliff nesters .............................................................................................37 Species Prioritization ..................................................................................................................38 Acknowledgments.......................................................................................................................41 Literature cited ............................................................................................................................41 List of Tables Table 1. Summary of seabird monitoring methods and questions they can answer ...................15 Table 2. Methods recommended for monitoring different seabird groups .................................30 Table 3. Monitoring prioritization scores for seabirds in the U.S. Tropical Pacific. ..................39 List of Figures Figure 1 Map of the U.S. Tropical Pacific ....................................................................................5
Recommended publications
  • Print 04/02 April
    From the Rarities Committee’s files: Rare seabirds and a record of Herald Petrel Ian Lewington ABSTRACT Rare seabirds are often extremely hard to identify, and a significant part of the problem is that, when observed from land, circumstances are typically very difficult. In many cases, one or more of the following drawbacks applies: the weather conditions are poor, views are distant and brief, and photographic evidence is impossible. For these same reasons, records of rare seabirds are also difficult to assess, particularly so if they concern what would be a ‘first for Britain’ for the species in question.This was the case when a probable Herald Petrel Pterodroma arminjoniana was seen off Dungeness, Kent, in January 1998. In this paper, the circumstances and the assessment of that record are described, and, more generally, the level of supporting evidence which is necessary for acceptance of records of rare seabirds is discussed. 156 © British Birds 95 • April 2002 • 156-165 Rare seabirds and a record of Herald Petrel are seabirds present difficulties in many panic was beginning to set in. Had we missed ways. They are difficult to find, and most it? A few seconds later, the mystery seabird Robservers will spend hundreds of hours came into our field of view, trailing behind a ‘sifting through’ common species before Northern Gannet Morus bassanus and flying encountering a rarity. They are difficult to iden- steadily west, low over the water, about 400 m tify, not least because the circumstances in offshore. which they are seen usually mean that, com- At the time of the observation the light was pared with most other birding situations, views dull but clear, in fact excellent for observing are both distant and brief, and the observer is colour tones.
    [Show full text]
  • Conservation Planning and the IUCN Red List
    Vol. 6: 113–125, 2008 ENDANGERED SPECIES RESEARCH Printed December 2008 doi: 10.3354/esr00087 Endang Species Res Published online May 7, 2008 Contribution to the Theme Section ‘The IUCN Red List of Threatened Species: assessing its utility and value’ OPENPEN ACCESSCCESS REVIEW Conservation planning and the IUCN Red List M. Hoffmann1, 2,*, T. M. Brooks1, 3, 4, G. A. B. da Fonseca5, 6, C. Gascon 7, A. F. A. Hawkins7, R. E. James8, P. Langhammer9, R. A. Mittermeier7, J. D. Pilgrim10, A. S. L. Rodrigues11, J. M. C. Silva12 1Center for Applied Biodiversity Science, Conservation International, 2011 Crystal Drive Suite 500, Arlington, Virginia 22202, USA 2IUCN Species Programme, IUCN — International Union for the Conservation of Nature, Rue Mauverney, 1196 Gland, Switzerland 3World Agroforestry Center (ICRAF), University of the Philippines Los Baños, Laguna 4031, Philippines 4School of Geography and Environmental Studies, University of Tasmania, Hobart, Tasmania 7001, Australia 5Global Environment Facility, 1818 H Street NW, Washington, DC 20433, USA 6Departamento de Zoologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil 7Conservation International, 2011 Crystal Drive Suite 500, Arlington, Virginia 22202, USA 8Conservation International Melanesia Centre for Biodiversity Conservation, PO Box 106, Waigani, NCD, Papua New Guinea 9School of Life Sciences, Arizona State University, PO Box 874501, Tempe, Arizona 85287-4501, USA 10BirdLife International in Indochina, N6/2+3, Ngo 25, Lang Ha, Ba Dinh, Hanoi, Vietnam 11Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK 12Conservation International — Brazil, Av. Gov. José Malcher 652, 2o. Andar, Ed. CAPEMI, Bairro: Nazaré, 66035-100, Belém, Pará, Brazil ABSTRACT: Systematic conservation planning aims to identify comprehensive protected area net- works that together will minimize biodiversity loss.
    [Show full text]
  • Pterodromarefs V1-5.Pdf
    Index The general order of species follows the International Ornithological Congress’ World Bird List. A few differences occur with regard to the number and treatment of subspecies where some are treated as full species. Version Version 1.5 (5 May 2011). Cover With thanks to Kieran Fahy and Dick Coombes for the cover images. Species Page No. Atlantic Petrel [Pterodroma incerta] 5 Barau's Petrel [Pterodroma baraui] 17 Bermuda Petrel [Pterodroma cahow] 11 Black-capped Petrel [Pterodroma hasitata] 12 Black-winged Petrel [Pterodroma nigripennis] 18 Bonin Petrel [Pterodroma hypoleuca] 19 Chatham Islands Petrel [Pterodroma axillaris] 19 Collared Petrel [Pterodroma brevipes] 20 Cook's Petrel [Pterodroma cookii] 20 De Filippi's Petrel [Pterodroma defilippiana] 20 Desertas Petrel [Pterodroma deserta] 11 Fea's Petrel [Pterodroma feae] 8 Galapágos Petrel [Pterodroma phaeopygia] 17 Gould's Petrel [Pterodroma leucoptera] 19 Great-winged Petrel [Pterodroma macroptera] 3 Grey-faced Petrel [Pterodroma gouldi] 4 Hawaiian Petrel [Pterodroma sandwichensis] 17 Henderson Petrel [Pterodroma atrata] 16 Herald Petrel [Pterodroma heraldica] 14 Jamaica Petrel [Pterodroma caribbaea] 13 Juan Fernandez Petrel [Pterodroma externa] 13 Kermadec Petrel [Pterodroma neglecta] 14 Magenta Petrel [Pterodroma magentae] 6 Mottled Petrel [Pterodroma inexpectata] 18 Murphy's Petrel [Pterodroma ultima] 6 Phoenix Petrel [Pterodroma alba] 16 Providence Petrel [Pterodroma solandri] 5 Pycroft's Petrel [Pterodroma pycrofti] 21 Soft-plumaged Petrel [Pterodroma mollis] 7 Stejneger's Petrel [Pterodroma longirostris] 21 Trindade Petrel [Pterodroma arminjoniana] 15 Vanuatu Petrel [Pterodroma occulta] 13 White-headed Petrel [Pterodroma lessonii] 4 White-necked Petrel [Pterodroma cervicalis] 18 Zino's Petrel [Pterodroma madeira] 9 1 General Bailey, S.F. et al 1989. Dark Pterodroma petrels in the North Pacific: identification, status, and North American occurrence.
    [Show full text]
  • Seabirds in Southeastern Hawaiian Waters
    WESTERN BIRDS Volume 30, Number 1, 1999 SEABIRDS IN SOUTHEASTERN HAWAIIAN WATERS LARRY B. SPEAR and DAVID G. AINLEY, H. T. Harvey & Associates,P.O. Box 1180, Alviso, California 95002 PETER PYLE, Point Reyes Bird Observatory,4990 Shoreline Highway, Stinson Beach, California 94970 Waters within 200 nautical miles (370 km) of North America and the Hawaiian Archipelago(the exclusiveeconomic zone) are consideredas withinNorth Americanboundaries by birdrecords committees (e.g., Erickson and Terrill 1996). Seabirdswithin 370 km of the southern Hawaiian Islands (hereafterreferred to as Hawaiian waters)were studiedintensively by the PacificOcean BiologicalSurvey Program (POBSP) during 15 monthsin 1964 and 1965 (King 1970). Theseresearchers replicated a tracklineeach month and providedconsiderable information on the seasonaloccurrence and distributionof seabirds in these waters. The data were primarily qualitative,however, because the POBSP surveyswere not basedon a strip of defined width nor were raw counts corrected for bird movement relative to that of the ship(see Analyses). As a result,estimation of density(birds per unit area) was not possible. From 1984 to 1991, using a more rigoroussurvey protocol, we re- surveyedseabirds in the southeasternpart of the region (Figure1). In this paper we providenew informationon the occurrence,distribution, effect of oceanographicfactors, and behaviorof seabirdsin southeasternHawai- ian waters, includingdensity estimatesof abundant species. We also document the occurrenceof six speciesunrecorded or unconfirmed in thesewaters, the ParasiticJaeger (Stercorarius parasiticus), South Polar Skua (Catharacta maccormicki), Tahiti Petrel (Pterodroma rostrata), Herald Petrel (P. heraldica), Stejneger's Petrel (P. Iongirostris), and Pycroft'sPetrel (P. pycrofti). STUDY AREA AND SURVEY PROTOCOL Our studywas a piggybackproject conducted aboard vessels studying the physicaloceanography of the easterntropical Pacific.
    [Show full text]
  • US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
    U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Important Bird Areas in Hawaii Elepaio Article
    Globally Important Bird Areas in the Hawaiian Islands: Final Report Dr. Eric A. VanderWerf Pacific Rim Conservation 3038 Oahu Avenue Honolulu, HI 96822 9 June 2008 Prepared for the National Audubon Society, Important Bird Areas Program, Audubon Science, 545 Almshouse Road, Ivyland, PA 18974 3 of the 17 globally Important Bird Areas in Hawai`i, from top to bottom: Lehua Islet Hanawī Natural Area Reserve, Maui Hanalei National Wildlife Refuge, Kauai All photos © Eric VanderWerf Hawaii IBAs VanderWerf - 2 INTRODUCTION TO THE IMPORTANT BIRD AREAS PROGRAM The Important Bird Areas (IBA) Program is a global effort developed by BirdLife International, a global coalition of partner organizations in more than 100 countries, to assist with identification and conservation of areas that are vital to birds and other biodiversity. The IBA Program was initiated by BirdLife International in Europe in the 1980's. Since then, over 8,000 sites in 178 countries have been identified as Important Bird Areas, with many national and regional IBA inventories published in 19 languages. Hundreds of these sites and millions of acres have received better protection as a result of the IBA Program. As the United States Partner of BirdLife International, the National Audubon Society administers the IBA Program in the U.S., which was launched in 1995 (see http://www.audubon.org/bird/iba/index.html). Forty-eight states have initiated IBA programs, and more than 2,100 state-level IBAs encompassing over 220 million acres have been identified across the country. Information about these sites will be reviewed by the U.S. IBA Committee to confirm whether they qualify for classification as sites of continental or global significance.
    [Show full text]
  • Potential for Rat Predation to Cause Decline of the Globally Threatened
    Vol. 11: 47–59, 2010 ENDANGERED SPECIES RESEARCH Published online March 10 doi: 10.3354/esr00249 Endang Species Res OPENPEN ACCESSCCESS Potential for rat predation to cause decline of the globally threatened Henderson petrel Pterodroma atrata: evidence from the field, stable isotopes and population modelling M. de L. Brooke1,*, T. C. O’Connell2, David Wingate3, Jeremy Madeiros3, Geoff M. Hilton4, 6, Norman Ratcliffe5 1Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 2McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK 3Department of Conservation Services, Ministry of the Environment, PO Box FL117, Flatts, Bermuda 4Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK 5British Antarctic Survey, High Cross, Cambridge CB3 0ET, UK 6Wildfowl and Wetlands Trust, Slimbridge, Gloucestershire GL2 7BT, UK ABSTRACT: Past studies have indicated that Pacific rats Rattus exulans are significant predators of the chicks of surface-breeding seabirds, namely gadfly petrels Pterodroma spp., on Henderson Island, central South Pacific. Further fieldwork in 2003 confirmed the heavy predation of chicks of Murphy’s petrel P. ultima by rats. By extension, heavy predation is also likely each year on the endan- gered Henderson petrel P. atrata, for which Henderson Island is the only confirmed breeding site. To assess how important petrels are in the overall diet of rats, we conducted stable isotope analyses of rats from the shore, where petrels are most concentrated, and from about 1 km inland, where fewer nest. The carbon isotope results suggested that inland rats obtain about 30% of their food from marine sources, while the figure for shore rats was about 40%.
    [Show full text]
  • Metabolic Rate of Laysan Albatross and Bonin Petrel Chicks on Midway Atoll!
    Pacific Science (1984), vol. 38, no. 2 © 1984 by the University of Hawaii Press. All rights reserved Metabolic Rate of Laysan Albatross and Bonin Petrel Chicks on Midway Atoll! 2 2 GILBERT S. GRANT ,3 AND G. CAUSEY WHiTTOW ABSTRACT: The resting metabolic rates ofLaysan albatross and Bonin petrel chicks of known age were measured on Midway Atoll in the North Pacific Ocean. The mass-specific metabolism peaked at hatching and then declined to adult levels in Laysan albatross nestlings . The mass specific metabolism of hatchling Bonin petrels was similar to that of adults, but it tripled shortly after hatching. Fasting and feeding episodes affected day-to-day changes in petrel chick metabolism. THE RESTING METABOLIC RATES of chicks rep­ METHODS resent the major part of their energy expen­ diture, as they do not fly and their level of The metabolic rates of Laysan albatross activity .is generally low (Blem 1978). The chicks ofknown age on Sand Island, Midway metabolic rate increases as the chick grows Atoll (28°13' N, 177°23' W) were measured in but the relationship between metabolic rate a building immediately adjacent to the nesting and body mass var ies during growth, the par­ sites. The chicks were placed in a small plexi­ ticular pattern of variation depending on a glas chamber or in an air-tight wooden box number of factors (Ricklefs 1974). In the (0.7 m on all sides), depending on the size of Procellariiformes, which have relatively long the chick. In the latter instance, a plexiglas nestling periods, the metabolic rate of grow­ cover allowed observation during a series of ing chicks is known only for Leach's storm­ measurements.
    [Show full text]
  • The Role of Seabirds in Hawaiian Subsistence: Implications for Interpreting Avian Extinction and Extirpation in Polynesia
    The Role of Seabirds in Hawaiian Subsistence: Implications for Interpreting Avian Extinction and Extirpation in Polynesia JADELYN J. MONIZ SCIENTISTS ESTIMATE THAT ABOUT ONE-FIFTH of the species of birds that existed in the world a few thousand years ago has disappeared as a result of human activ­ ities (Diamond 1989). Subfossil and archaeological evidence suggests that before human occupation was established, the native fauna throughout Polynesia was taxonomically more diverse than historical documents reflect (James 1983; James et al. 1987; Kirch 1982; Olson and James 1982,1984,1991; Steadman 1989, 1991, 1992, 1993). Archaeologists have documented extinct avian species in western Polynesia and throughout eastern Polynesia including Pitcairn Island and the islands of the Marquesas, the Societies, the Cooks, and Hawai'i (Steadman 1989, 1991,1992,1993). Today, researchers commonly refer to the state of Hawai'i as "the endangered species capital of the nation" (National Geographic, September 1995). The Hawai­ ian Islands lay claim to nearly one-third of all the species listed on the endangered and threatened species list in the United States. Hawaiian taxa account for nearly three-quarters of the nation's extinct species. This count includes plants, land snails, insects, birds, and other organisms. Recent subfossil discoveries have added to the number of known endemic bird species that once inhabited these islands. In 1926 scientists found the first avian subfossil species on the island of Hawai'i in a tunnel under 75 feet of lava (Wetmore 1943). Wetmore identified this spe­ cies as Geochen rhuax, a member of the goose family, Anatidae. It was larger than the only known living goose in the Hawaiian Islands, the Nene.
    [Show full text]
  • Egg Dimensions and Shell Characteristics of Bulwer's Petrels, Bulweria Bulwerii, on Laysan Island, Northwestern Hawaiian Islands!
    Pacific Science, vol. 54, no. 2: 183-188 © 2000 by University of Hawai'i Press. All rights reserved Egg Dimensions and Shell Characteristics of Bulwer's Petrels, Bulweria bulwerii, on Laysan Island, Northwestern Hawaiian Islands! 2 3 2 G. C. WmTTow • AND T. N. PETrn ABSTRACT: Measured values for Bulwer's Petrel eggs and eggshells from Laysan Island, Northwestern Hawaiian Islands, were within 10% of predicted values available in the literature. In the absence of published predictive equa­ tions for egg volume, fresh-egg contents, and total functional pore area of the shell, in Procellariiformes, new logarithmic relationships were developed for tropical Procellariiformes. Data are now needed for species breeding at higher latitudes to determine if these relationships are representative of all Procellarii­ formes. BULWER'S PETREL IS a small, procellariiform placing the air ill the aircell with distilled seabird of the tropical Atlantic, Pacific, and water (Grant et al. 1982a). Egg volumes were Indian Oceans (Warham 1990, Megyesi and measured by weighing the eggs in air and in O'Daniel 1997). In the Hawaiian Archipel­ water (Rahn et al. 1976). Shell weight and ago, it breeds on islands from Pearl and shell thickness were determined on shells that Hermes Reef in the Northwestern Hawaiian had been dried in a desiccator for at least 3 Islands, to offshore islands of Hawai'i in the days. Shell weight was measured by weighing main Hawaiian Islands (Harrison 1990). the dried shells on a Mettler balance (Model Previously, data were presented for, inter H6) to the nearest 0.1 mg. Shell thickness was alia, the incubation period and the incuba­ determined with micrometer calipers (Starrett tion weight loss of eggs on Manana, a small No.
    [Show full text]
  • Draft Programmatic Environmental Impact Statement October 27, 2005
    Draft Programmatic Environmental Impact Statement Towards an Ecosystem Approach for the Western Pacific Region: From Species-based Fishery Management Plans to Place-based Fishery Ecosystem Plans October 27, 2005 Draft Programmatic Environmental Impact Statement Towards an Ecosystem Approach for the Western Pacific Region: From Species-based Fishery Management Plans to Place-based Fishery Ecosystem Plans October 27, 2005 ______________________________________________________________________________ Responsible Agency: National Marine Fisheries Service Pacific Islands Region 1601 Kapiolani Blvd., Ste. 1101 Honolulu, HI 96814 (808) 944-2200 Responsible Official: William L. Robinson Regional Administrator For Further Information Contact: William L. Robinson Kitty M. Simonds NMFS- Pacific Islands Region Western Pacific Fishery Managemnt Council 1601 Kapiolani Blvd., Suite 1110 1164 Bishop St., Ste. 1400 Honolulu, HI. 96814-4700 Honolulu, HI 96813 (808) 944-2200 ph. (808) 973-2941 fax (808) 522-8220 ph. (808) 522-8226 fax Abstract: This document analyzes the impacts on the human environment resulting from step one of the implementation of an ecosystem approach to fisheries management in the Western Pacific Region (American Samoa, Guam, Hawaii, the Commonwealth of the Northern Mariana Islands, and the U.S. Pacific Remote Island Areas1). The alternatives analyzed in this document are linked to the following five issues: the establishment of fishery ecosystem plan boundaries; the determination of appropriate management unit species; modifications
    [Show full text]