Marine Wood Maintenance

Total Page:16

File Type:pdf, Size:1020Kb

Marine Wood Maintenance !q ARCH BULLETIN 48 OCTOBER 1984 MARINE WOODMAINTENANCE MANUAL: AGUIDE FORPROPER USE OF DOUGLAS-FIRIN MARINE EXPOSURES JEFFERY J. MORRELL GUY G. HELSING ROBERT 0. GRAHAM FOREn REJEARCHLAB COLLEGE OF FORESTRY AND SEA GaoNT coLLEGE PROGRAM OREGON STATE UNIVERSITY The Forest Research Laboratory of Oregon Forestry, Oregon State University,Corva StateUniversity was establishedbythe lis, OR 97331. Guy G. Helsing is president Oregon Legislatureto conduct research National Wood Treating Co., P.O. Box 1946 leading to expanded forest yields, increased Corvallis, OR 97339.Robert D. Graham use of forest products, and accelerated eco- professoremeritus,DepartmentofForest nomic development of the State. Its scien- Products, College of Forestry, OregonState tistsconduct thisresearchinlaboratories University. and forests administered by the University and cooperating agenciesand industries throughout Oregon. Research results are made LEGAL NOTICE availabletopotentialusersthroughthe University's educational programs and through The Forest Research Laboratory at Onego Laboratory publications such as this, which State University (OSU) prepared this man are directed as appropriate to forest land-with the support of the Sea GrantCol le owners and managers, manufacturers and users Program of OSU. Neither OSU nor SeaGra I of forest products, leaders of government and nor any person acting on behalf ofsuch industry, the scientific community, and the (a) makes any warranty orrepresentatlon4 general public. expressorimplied,withrespecttoth accuracy, completeness, orusefulness of As aresearchbulletin,thispublicationis theinformationcontainedinthisreport; one of a series that comprehensively and in (b) claims that the use of any informatio'ny detaildiscusses along,complex study or apparatus, method, or process disclosed summarizes available information on a topic. this report does not infringe privately own I rights;or(c) assumes anyliabilitieswltht respect to the use of, or for damagesresult,, DISCLAIMER ing from the use of, any information, appara- tus,method,orprocessdisclosedinth The mentionof trade names or commercial report. products in this publication does not consti- tute endorsement or recommendation for use. ACKNOWLEDGMENTS TO ORDER COPIES: The authors wish to acknowledge the Sea C,ra College Program of Oregon State UniveVsity Copiesofthis and other Forest Research (Grant R/CP-18) for providing financialsups Laboratory publications are available from: port; John D. Lew, University of CalIfornla Forest Products Laboratory, for hisinstrur Forestry Business Office tions on culturing fungi from wood; an";di the College of Forestry AmericanWood-Preservers'Associationfor Oregon State University permitting us to reprint its standards.,TO Corvallis, Oregon 97331 manual could not have been completedwithom the careful review and useful suggestions a Pleaseinclude author(s),title,and publi- Dr. Robert A. Zabel, SUNY College of Envimw cation number if known. mental Science and Forestry, Syracuse, Ne York; Dr. Thomas O'Neill, NavalConstruction Battalion Center, Port Hueneme,California, THE AUTHORS and Paul F. Coyne, Manager, Port of Sluslaw Florence, Oregon. We appreciate theireffort$ JeffreyD.Morrellisassistantprofessor, to make this manual a more useabletool for Department of Forest Products,College of marine wood maintenance. MARINE WOOD MAINTENANCE MANUAL: A GUIDE FOR PROPER USE OF DOUGLAS-FIR IN MARINE EXPOSURES JEFFERY J. MORRELL GUY G. HELSING ROBERT 0. GRAHAM 0 0z 1La WN W2aHmz Ll z 0 W0EZ 0 ml-w a aa Waam Q01-1-Oz 0 aQHOVWUJr-W QH NN007 WaaNhaw W NwwwmY0r00000 r r r r a3t!1N?p0rN wr mr or wr NOe-GNU N Nr pwH N o1WUQ?QJNNNNN N W-3 N 0 mmN 0 N0 2WHI0IX UN NaILMIVIn N0 Y0za4w NJ N0 w?mtoto NU lDID Na N I 0p2 02 0a N 11 avu QW oaw uU.0 (W0N z aILv0Nazo13 W waN00LL 00 0 W20>0Waz2O 044a0W 2 Oa)W213IL wJ aIL 0-3OTjO,NH asWOm0°Z aoY Z Zto wQ-0 r.a0va' 1-zO00WNaLL0WILaaw2 aw wm FawwW CLva w2aLL =LL 13J0ZOVaWaJa0WQCLW 0W waa2wI- F.wo Z aZwQ w0(9 LLa?aF WaQ WN40a40)0 Q w az cc T Zw Wawwz 0 0X-" aNwONuxJQ rntnxQ 0. N,a2aamWW aN U Na m3oai-a0ZW013 UQ I-Fa u:3 =aW 0 N N NN N NOV)om ?a0w nMM th1 V7to thwto th MN NJ UI N4 to FOREWORD Because ofitshigh strength, renewability, and wood-destroying organisms that harbor- andrelatively lowcost,Douglas-firisan masters, port managers, and maintenanceper- ideal choice for many important uses. Prop- sonnel can use in making wise decisions erly designed, constructed, and maintained, maintaining on thewaterfrontstructures in structuresofthiswood can provide long their charge. Designers and buildersmay also service, even in the ocean's harsh environ- findthismanualhelpfulin;voiding ment. con- structionpractices thatcontribute towood deterioration.The savings could amount This manual, cosponsored by the Forest Re- many millions of dollars annually. to search Laboratory and the Sea Grant College Program of Oregon State University,isa You, the well-trained inspector, playa major companion to the previously published "Wood role in achieving these savings. Earlyrecog- Pole Maintenance Manual" (Graham and Helsing nitionofdeteriorationleadsto more eco- 1979).It is directed to inspectors of marine nomicalrepairs andremedialtreatmentsto wood and provides basic information on wood control the problem. INTRODUCTION The WestCoast maritime industry includes Wood-destroying organisms and evidencesof extensive docks,pilings,and other marine their damage structures, many built with wood. Their sound Other wood-destroying agents and howto design and proper maintenance is essential to recognize them the safe and economical operation of the in- Inspection methods fordetermining wood dustry. To be effective, this maintenance re- condition above and below the waterline quires efficient inspection programs so that Remedial treatments for controlling deteri- deterioratingstructuresare bothdetected oration of wood already in service andprotectedbeforereplacementbecomes necessary.Inspectionofwood structures After studying this material, you should read should be a continuing responsibility of port the references citedin the text,as well as personnel at about 5-year intervals. those listed in Appendix A, so that you can select the inspection and maintenance proce- Although detecting badly deteriorated wood is dures bestsuited to the waterfront struc- fairlystraightforward,determining whether tures in your charge. wood isin earlier decay stages is more dif- Before inspecting wood structures inplace, ficult. The success or failure of the mainte- we recommendthatyoucarefullyinspect nance program willrest squarely upon you, members removed from service. Pay particular the inspector, and your ability to assess the attentiontothelocationofdeteriorated condition of the wood before serious damage areas;these can indicate problemsincon- has occurred. This is no easy task. struction and maintenance that need to be corrected. The best way to learn how to in- spect wood in serviceis to cut up members This manual has been developed inresponse to from sound and failing structures. Cut these the need for information on maintaining wood members intoshortsections and longitudi- structures in marine environments. Although nally split each section so that you can see itpresupposes that the readerisfamiliar thepatternsofpreservativepenetration, with the care of land-based polesas outlined decay, and marine borer attack. Sacrificing a in the "Wood Pole Maintenance Manual" (Graham few good members is a small price to pay for and Helsing 1979),it examines in detail the a valuable experience that will help you make many problems of controlling wood deteriora- better-informed decisions later. Informed tion in maritime settings. decisions can savelives and reduce costs; I incorrectdecisions can endangerlivesand In this manual, you will learn about: waste money. Wood characteristics of Douglas-fir Finally, as a reminder of the safe practices Designsthatpreventdamagebywood- you should follow when inspecting andtreat- destroying organisms ing waterfront structures, we have included a 4 checklist at the end of this manual that can thismanual,takethetimetotestyour be reproduced and carried by maintenance per- knowledge of waterfront maintenance by re- sonnel. And when you have finished reading viewing the key words in the Glossary. BACKGROUND Since people first ventured forth on the seas The emergence in the 19th century of creo- in wooden ships to fish and trade, they have sote, a byproductof the destructive dis- been accompanied by organisms that feed on tillationofcoal,helpedusherin a ren- and livein wood. The struggle to prevent aissanceinwood preservation.Noteworthy marine borers and decay fungi from consuming achievementsinthisperiodincludedthe wood used in marine environments has contin- development of pressure-treating with creo- ued,with varying degrees of success,for sote by John Bethel, the development of the thousands of years. Nearly 2,000 years ago, germ theory of disease by Pasteur,and im- builders already knew the importance of keep- proved microscopes that permitted Hartig to ing wood dry and using durable heartwoods. associate fungi with wood decay. They were aware of marine borers and decay and attempted to protect wood by treating it Inthe 20th century,avirtualinformation with crude extracts and chemicals. As theexplosion has led to effective wood designs world drifted into the Dark Ages, even thisand improved protection practices that min- knowledge was lost, and it was not until the imize biodeterioration. Thisinformation, 18th and19thcenturies that
Recommended publications
  • TSUNODA, Kunio; NISHIMOTO, Koichi
    Studies on the Shipworms I : The Occurrence and Seasonal Title Settlement of Shipworms. Author(s) TSUNODA, Kunio; NISHIMOTO, Koichi Wood research : bulletin of the Wood Research Institute Kyoto Citation University (1972), 53: 1-8 Issue Date 1972-08-31 URL http://hdl.handle.net/2433/53408 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Studies on the Shipworms I The Occurrence and Seasonal Settlement of Shipworms. Kunio TSUNODA* and Koichi NISHIMOTO* Abstract--The previous investigation on the occurrence of shipworms in December, 1971 indicated the co-existence of three species of shipworms: Bankia bipalmulata LAMARCK, Teredo navalis LINNAEUS and Lyrodus pedicellatus QUATREFAGES. However, the absence of B. bipalmulata was found in this investigation carried out from February, 1971 to January, 1972. Of these three species, T. navalis was the commonest. In this survey of larval settlement on floating wood surfaces, there was no settlement from January to May, and the first settlement of larvae was not observed until June, when water temperature was over 20°C. The explosive settlement was observed in September. After June, boring damage always occurred when wood blocks were submerged in the sea for over 60 days. Introduction The import of logs into Japan has enormously increased in recent years, and this trend will continue for some time. The imported logs are transported by ship into 85 international trading ports along Japanese coasts. For the last three years the annual amount has been not 3 less than 50,000,000 m , which is equivalent to more than 50 percent of Japan's total wood supply.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Bivalvia: Teredinidae) in Drifted Eelgrass
    Short Notes 263 The Rhizome-Boring Shipworm Zachsia zenkewitschi (Bivalvia: Teredinidae) in Drifted Eelgrass Takuma Haga Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan The shipworm Zachsia zenkewitschi Bulatoff & free-swimming larval stage. Turner & Yakovlev Rjabtschikoff, 1933 lives inside the rhizomes of the (1983) observed that the larvae swam mostly near eelgrasses Phyllospadix and Zostera (Helobiales; the bottom of a culture dish in their laboratory. Zosteraceae) and has sporadic distribution records They hypothesized that in natural environments the from Primorskii Krai (=Primoriye Region) to larvae can swim only for short distances within the Siberia in the Russian Far East and in Japanese eelgrass beds and that wide dispersal might have waters (Higo et al., 1999). Its detailed distribution been achieved through long-distance transporta- and habitats have been surveyed in detail only tion of the host eelgrass by accidental drifting. locally along the coast of Vladivostok in Primoriye However, this hypothesis has not been verified to (Turner et al., 1983; Fig. 1F). In Japanese waters, date. this species has been recorded in only three cata- This report is the first documentation of Z. logues of local molluscan faunas (Fig. 1; Inaba, zenkewitschi in drifted rhizomes of eelgrass, and 1982; Kano, 1981; Kuroda & Habe, 1981). These describes the soft animal morphology of this spe- catalogues, however, did not provide information cies. on detailed collecting sites and habitats. This rare species was recently rediscovered along the coast Zachsia zenkewitschi in drift eelgrass of Miyagi Prefecture, northeast Japan (Sasaki et al., 2006; Fig.
    [Show full text]
  • The ECPHORA the Newsletter of the Calvert Marine Museum Fossil Club Volume 26  Number 1 March 2011
    The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 26 Number 1 March 2011 Stranded Beaked Whale Features Shark Tooth Hill, California Homage to Jean Hooper Calvert Cliffs at Last Serpulid Worm Shells, Corrected Inside May 21 Lecture by Catalina Pimiento ―Giant Shark Babies from Panama‖ Dolphin Limb Donated by USNMNH President’s Message CMMFC Shirt Order(See Page 12) Unfortunately, this adult male beaked whale, Mesoplodon grayi, stranded Fossil Club Field Trips in western Victoria, Australia in January. Museum Victoria collected the and Events whole animal for future research. See an up-close image of the beak on Stranded Beaked Whale page 11. Photo © by Sean Wright; submitted by Erich Fitzgerald. ☼ The Smithsonian Institution recently donated these small dolphin flipper bones to the comparative osteology collection at the Calvert Marine Museum. Many thanks to Charley Potter for arranging/facilitating the donation. ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora March 2011 President's Message in 2009. The phosphate is used for fertilizer and animal feed; the phosphoric acid ends up in that cold bottle of Coca Cola you swig after a day of The weather is warming up in eastern North collecting. Carolina, but it's been a tough 12 months for Much of the demand comes from the collecting south of the border. PCS Aurora skyrocketing need for fertilizer, especially overseas (Miocene) is still closed to fossil collecting as is the in India and China. Late last year rumors circulated Martin Marietta mine in Belgrade (Late Oligocene, that the Chinese were trying to buy the company.
    [Show full text]
  • Connecticut Aquatic Nuisance Species Management Plan
    CONNECTICUT AQUATIC NUISANCE SPECIES MANAGEMENT PLAN Connecticut Aquatic Nuisance Species Working Group TABLE OF CONTENTS Table of Contents 3 Acknowledgements 5 Executive Summary 6 1. INTRODUCTION 10 1.1. Scope of the ANS Problem in Connecticut 10 1.2. Relationship with other ANS Plans 10 1.3. The Development of the CT ANS Plan (Process and Participants) 11 1.3.1. The CT ANS Sub-Committees 11 1.3.2. Scientific Review Process 12 1.3.3. Public Review Process 12 1.3.4. Agency Review Process 12 2. PROBLEM DEFINITION AND RANKING 13 2.1. History and Biogeography of ANS in CT 13 2.2. Current and Potential Impacts of ANS in CT 15 2.2.1. Economic Impacts 16 2.2.2. Biodiversity and Ecosystem Impacts 19 2.3. Priority Aquatic Nuisance Species 19 2.3.1. Established ANS Priority Species or Species Groups 21 2.3.2. Potentially Threatening ANS Priority Species or Species Groups 23 2.4. Priority Vectors 23 2.5. Priorities for Action 23 3. EXISTING AUTHORITIES AND PROGRAMS 30 3.1. International Authorities and Programs 30 3.2. Federal Authorities and Programs 31 3.3. Regional Authorities and Programs 37 3.4. State Authorities and Programs 39 3.5. Local Authorities and Programs 45 4. GOALS 47 3 5. OBJECTIVES, STRATEGIES, AND ACTIONS 48 6. IMPLEMENTATION TABLE 72 7. PROGRAM MONITORING AND EVALUATION 80 Glossary* 81 Appendix A. Listings of Known Non-Native ANS and Potential ANS in Connecticut 83 Appendix B. Descriptions of Species Identified as ANS or Potential ANS 93 Appendix C.
    [Show full text]
  • ^^®Fe Ojiioxq © Springer-Verlag 1987
    Polar Biol (1987) 7:11-24 ^^®fe OJiioXq © Springer-Verlag 1987 On the Reproductive Biology of Ceratoserolis trilobitoides (Crustacea: Isopoda): Latitudinal Variation of Fecundity and Embryonic Development Johann-Wolfgang Wagele Arbeitsgruppe Zoomorphologie, Fachbereich 7, Universitat Oldenburg, Postfach 2503, D-2900 Oldenburg, Federal Republic of Germany Received 21 February 1986; accepted 1 July 1986 Summary. The embryonic development of Ceratoserolis Material and Methods trilobitoides (Crustacea: Isopoda) is described. It is estimated that breeding lasts nearly 2 years. In compari­ During the expedition "Antarktis III" of RVPolarstern several samples were taken in the area of the Antarctic Peninsula, South Shetlands, son with non-polar isopods 3 causes for the retardation South Orkneys and the Eastern and Southern Weddell Sea by means of of embryonic development are discussed: genetically an Agassiztrawl (localities with C trilobitoides: see Wagele, in press). fixed adaptations to the polar environment, the physio­ Females used for the study of latitudinal variations of fecundity and logical effect of temperature and the effect of egg size. egg size (Fig. 6) were collected from the following sites: 62°8.89'S The latter seems to be of minor importance. Intraspecific 58°0.46'W, 449 m (King George Island); 60°42.40'S 45°33.07'W, 86 m (Signy Island); 73°39.7'S 20°59.76'W, 100m (off Riiser-Larsen Ice variations of fecundity are found in populations from the Shelf, near Camp Norway); 72°30.35'S 17°29.88'W, 250 m (off Riiser- Weddell Sea, the largest eggs occur in the coldest region. Larsen Ice Shelf); 73°23.36'S 21°30.37'W, 470 m (off Riiser-Larsen Ice The distribution of physiological races corresponds to the Shelf);'^77°18.42'S 41°25.79'W, 650m (Gould Bay); 77°28.85'S distribution of morphotypes.
    [Show full text]
  • The Ecology of Chemical Defence in a Filamentous
    THE ECOLOGY OF CHEMICAL DEFENCE IN A FILAMENTOUS MARINE RED ALGA NICHOLAS A. PAUL A thesis submitted to the University of New South Wales for the degree of Doctor of Philosophy July 2006 i ACKNOWLEDGEMENTS··························································································································· iii CHAPTER 1. GENERAL INTRODUCTION ..........................................................................1 NATURAL PRODUCTS CHEMISTRY OF MACROALGAE ...............................................................2 THE RED ALGAE ........................................................................................................................2 ECOLOGICAL ROLES OF SECONDARY METABOLITES ................................................................3 i) Chemical mediation of interactions with herbivores ........................................................3 ii) Chemical mediation of interactions with fouling organisms ............................................4 ULTRASTRUCTURE OF SPECIALISED CELLS AND STRUCTURES.................................................5 RESOURCE ALLOCATION TO SECONDARY METABOLITE PRODUCTION.....................................6 THESIS AIMS ..............................................................................................................................7 CHAPTER 2. CHEMICAL DEFENCE AGAINST BACTERIA IN ASPARAGOPSIS ARMATA: LINKING STRUCTURE WITH FUNCTION.......................................................9 INTRODUCTION ..........................................................................................................................9
    [Show full text]
  • Distel Et Al
    Discovery of chemoautotrophic symbiosis in the giant PNAS PLUS shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory Daniel L. Distela,1, Marvin A. Altamiab, Zhenjian Linc, J. Reuben Shipwaya, Andrew Hand, Imelda Fortezab, Rowena Antemanob, Ma. Gwen J. Peñaflor Limbacob, Alison G. Teboe, Rande Dechavezf, Julie Albanof, Gary Rosenbergg, Gisela P. Concepcionb,h, Eric W. Schmidtc, and Margo G. Haygoodc,1 aOcean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, MA 01908; bMarine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines; cDepartment of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112; dSecond Genome, South San Francisco, CA 94080; ePasteur, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, Pierre and Marie Curie University Paris 06, CNRS, 75005 Paris, France; fSultan Kudarat State University, Tacurong City 9800, Sultan Kudarat, Philippines; gAcademy of Natural Sciences of Drexel University, Philadelphia, PA 19103; and hPhilippine Genome Center, University of the Philippines System, Diliman, Quezon City 1101, Philippines Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 21, 2017 (received for review December 15, 2016) The “wooden-steps” hypothesis [Distel DL, et al. (2000) Nature Although few other marine invertebrates are known to consume 403:725–726] proposed that large chemosynthetic mussels found at wood as food, an increasing number are believed to use waste deep-sea hydrothermal vents descend from much smaller species as- products associated with microbial degradation of wood on the sociated with sunken wood and other organic deposits, and that the seafloor.
    [Show full text]
  • Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas
    EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS Edited by Yuvenaly ZAITSEV and Bayram ÖZTÜRK EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation (TÜDAV) Copyright :Türk Deniz Araştırmaları Vakfı (Turkish Marine Research Foundation) ISBN :975-97132-2-5 This publication should be cited as follows: Zaitsev Yu. and Öztürk B.(Eds) Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas. Published by Turkish Marine Research Foundation, Istanbul, TURKEY, 2001, 267 pp. Türk Deniz Araştırmaları Vakfı (TÜDAV) P.K 10 Beykoz-İSTANBUL-TURKEY Tel:0216 424 07 72 Fax:0216 424 07 71 E-mail :[email protected] http://www.tudav.org Printed by Ofis Grafik Matbaa A.Ş. / İstanbul -Tel: 0212 266 54 56 Contributors Prof. Abdul Guseinali Kasymov, Caspian Biological Station, Institute of Zoology, Azerbaijan Academy of Sciences. Baku, Azerbaijan Dr. Ahmet Kıdeys, Middle East Technical University, Erdemli.İçel, Turkey Dr. Ahmet . N. Tarkan, University of Istanbul, Faculty of Fisheries. Istanbul, Turkey. Prof. Bayram Ozturk, University of Istanbul, Faculty of Fisheries and Turkish Marine Research Foundation, Istanbul, Turkey. Dr. Boris Alexandrov, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine. Odessa, Ukraine. Dr. Firdauz Shakirova, National Institute of Deserts, Flora and Fauna, Ministry of Nature Use and Environmental Protection of Turkmenistan. Ashgabat, Turkmenistan. Dr. Galina Minicheva, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine.
    [Show full text]
  • Limnoria Tripunctata Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Limnoria tripunctata Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Peracarida, Isopoda, Limnoriidea A gribble Family: Limnorioidea, Limnoriidae Taxonomy: Limnoria was described in 1813 ball and are easily recognizable by their small by Leach and has been placed in a variety size and wood-boring habits (Brusca 1980). of isopod families since (e.g. Asellidae), until Cephalon: Smooth, rounded and modified for Harger erected the family Limnoriidae for it, boring (Fig. 1). in 1880 (Menzies 1957). It was divided into Eyes: Lateral and anterior (Fig. 1). two subgenera on the basis of boring sub- Antenna 1: First antenna flagellum strate and associated mouthparts (Cookson with four articles and peduncle with three (Fig. 1991). Limnoria Limnoria were the wood- 3). Both antennae are reduced, separated at borers while Limnoria Phycolimnoria were midline, and positioned in a nearly transverse the algae-borers (Menzies 1957; Brusca line (Fig. 1). 1980). Thus, Limnoria Limnoria tripunctata Antenna 2: Second antenna flagellum is sometimes seen, although these subge- with five articles (Fig. 4). neric names are rarely used today (Cookson Mouthparts: Mandibles with file-like 1991; Brusca et al. 2007). ridges (right) and rasping surface (left), but lack lacina mobilis and molar processes Description (Brusca 1980). Size: Limnoriids are small and L. tripunctata Rostrum: is no exception, reaching maximum lengths Pereon: of 2.5 mm. Pereonites: Seven total segments, the Color: Light tan, whitish and often encrusted first of which is widest (Figs. 1, 2) and coxal with debris. plates are present on pereonites 2–7 (Brusca General Morphology: Isopod bodies are 1980). dorso-ventrally flattened and can be divided Pereopods: In mature females, leaf- into a compact cephalon, with eyes, two an- like ooestegites are present at the base of tennae and mouthparts, and a pereon each of first four pairs of legs and forms a (thorax) with eight segments, each bearing brood pouch or marsupium (see Fig.
    [Show full text]
  • 1St Black Sea Conference on Ballast Water Control and Management Conference Report
    1st Black Sea Conference 1st Black Sea Conference Global Ballast Water Management Programme on Ballast Water Control and Management on Ballast Water GLOBALLAST MONOGRAPH SERIES NO.3 1st Black Sea Conference on Ballast Water Control and Management Conference Report ODESSA, UKRAINE, 10-12 OCT 2001 Conference Report Roman Bashtannyy, Leonard Webster & Steve Raaymakers GLOBALLAST MONOGRAPH SERIES More Information? Programme Coordination Unit Global Ballast Water Management Programme International Maritime Organization 4 Albert Embankment London SE1 7SR United Kingdom Tel: +44 (0)20 7587 3247 or 3251 Fax: +44 (0)20 7587 3261 Web: http://globallast.imo.org NO.3 A cooperative initiative of the Global Environment Facility, United Nations Development Programme and International Maritime Organization. Cover designed by Daniel West & Associates, London. Tel (+44) 020 7928 5888 www.dwa.uk.com (+44) 020 7928 5888 www.dwa.uk.com & Associates, London. Tel Cover designed by Daniel West GloBallast Monograph Series No. 3 1st Black Sea Conference on Ballast Water Control and Management Odessa, Ukraine 10-12 October 2001 Conference Report International Maritime Organization ISSN 1680-3078 Published in November 2002 by the Programme Coordination Unit Global Ballast Water Management Programme International Maritime Organization 4 Albert Embankment, London SE1 7SR, UK Tel +44 (0)20 7587 3251 Fax +44 (0)20 7587 3261 Email [email protected] Web http://globallast.imo.org The correct citation of this report is: Bashtannyy, R., Webster, L. & Raaymakers, S. 2002. 1st Black Sea Conference on Ballast Water Control and Management, Odessa, Ukraine, 10-12 October 2001: Conference Report. GloBallast Monograph Series No. 3. IMO London. The Global Ballast Water Management Programme (GloBallast) is a cooperative initiative of the Global Environment Facility (GEF), United Nations Development Programme (UNDP) and International Maritime Organization (IMO) to assist developing countries to reduce the transfer of harmful organisms in ships’ ballast water.
    [Show full text]