The Chemokine, CCL3, and Its Receptor, CCR1, Mediate Thoracic Radiation–Induced Pulmonary Fibrosis

Total Page:16

File Type:pdf, Size:1020Kb

The Chemokine, CCL3, and Its Receptor, CCR1, Mediate Thoracic Radiation–Induced Pulmonary Fibrosis The Chemokine, CCL3, and Its Receptor, CCR1, Mediate Thoracic Radiation–Induced Pulmonary Fibrosis Xuebin Yang1, William Walton1, Donald N. Cook2, Xiaoyang Hua3, Stephen Tilley3, Christopher A. Haskell4, Richard Horuk5, A. William Blackstock6, and Suzanne L. Kirby1* 1Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; 2Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; 3Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; 4Bayer Healthcare Pharmaceuticals, Davis, California; 5Department of Pharmacology, University of California at Davis, Davis, California; and 6Department of Radiation Oncology, Wake Forest University, Winston-Salem, North Carolina Patients receiving thoracic radiation often develop pulmonary injury and fibrosis. Currently, there are no effective measures to prevent or CLINICAL RELEVANCE treat these conditions. We tested whether blockade of the chemo- kine, CC chemokine ligand (CCL) 3, and its receptors, CC chemokine Our research demonstrates the requirement of the chemo- receptor (CCR) 1 and CCR5, can prevent radiation-induced lung kine, CC chemokine ligand 3, and its receptor, CC chemokine inflammation and fibrosis. C57BL/6J mice received thoracic radia- receptor (CCR) 1, in radiation-induced lung inflammation tion, and the interaction of CCL3 with CCR1 or CCR5 was blocked and fibrosis. A small molecule inhibitor of CCR1 prevented using genetic techniques, or by pharmacologic intervention. Lung fibrosis in mice, and might therefore have a similar benefit in inflammation was assessed by histochemical staining of lung tissue humans. and by flow cytometry. Fibrosis was measured by hydroxyproline assays and collagen staining, and lung function was studied by invasive procedures. Irradiated mice lacking CCL3 or its receptor, irradiation, and is characterized by alveolar cell depletion and CCR1, did not develop the lung inflammation, fibrosis, and decline in inflammatory cell accumulation. The fibroproliferative phase oc- lung function seen in irradiated wild-type mice. Pharmacologic curs approximately 6 months after irradiation, and includes fibro- treatment of wild-type mice with a small molecule inhibitor of blast proliferation, collagen accumulation, and alveolar septal CCR1 also prevented lung inflammation and fibrosis. By contrast, thickening (2). Although the pulmonary inflammation seen dur- mice lacking CCR5 were not protected from radiation-induced injury and fibrosis. The selective interaction of CCL3 with its receptor, ing the early phase is thought to trigger the later fibroprolifer- CCR1, is critical for radiation-induced lung inflammation and fibro- ative phase, the specific leukocyte subsets and molecules that sis, and these conditions can be largely prevented by a small link these two phases have not been identified (3, 4). molecule inhibitor of CCR1. Chemokines are low–molecular weight, secreted proteins that promote directional chemotaxis of leukocyte migration through Keywords: chemokine; fibrosis; radiation; lung; inflammation 7-TM–spanning, G protein–coupled receptors (5). Chemokines are divided into four subgroups based on the organization of the Thoracic radiation is commonly used to treat cancers of the lung, first pair of conserved cysteine motifs (6). Blocking leukocyte esophagus, thymus, breast, and lymph nodes. Whereas radiation recruitment to inflamed tissue should, therefore, be beneficial in treatments can reduce or eliminate tumor burden, many patients some inflammatory diseases (6–8). Certainly, chemokines are im- also develop lung inflammation and fibrosis, which is associated portant mediators in the pathogenesis of lung injury in several with considerable morbidity and mortality. The histopathologic settings (9–11). For example, binding of the chemokine, CXC, to changes to the irradiated lung are well described, and include its receptor, CXCR2, drives neutrophil recruitment in hypoxia- oxidative damage to fibroblasts and the vascular endothelium, induced lung injuries (11). We and others have also found that followed by vascular congestion, inflammation, mesenchymal cell a different chemokine, CC chemokine ligand (CCL) 3, is required proliferation, extracellular matrix deposition, and extensive pa- for leukocyte recruitment in several models of lung inflammation, renchymal remodeling (1). As with other forms of fibrosis, the including infections with influenza virus (12) or Aspergillus cellular and molecular events that give rise to these conditions are fumigatus (13), and in graft-versus-host disease (14). Here, we poorly understood, and there are currently no effective treatments show that both CCL3 and its receptor, CC chemokine receptor for them. Although corticosteroids are frequently administered to (CCR) 1, are required for radiation-induced lung inflammation these patients, this approach often fails to improve the prognosis and fibrosis, and that these conditions can be largely prevented for many patients, and is associated with numerous side effects. with a small molecule inhibitor of CCR1. Radiation-induced lung injury can be divided into two phases: an early inflammatory phase, and a late fibroproliferative phase. The inflammatory phase generally occurs within 1–3 months after MATERIALS AND METHODS Animals (Received in original form June 25, 2010 and in final form September 10, 2010) All animal studies were approved by the institutional animal care and This work was supported by National Institutes of Health grants 5R0 1CA098641- use committee at University of North Carolina at Chapel Hill (Chapel 02 and 5-U19-AI067798. Hill, NC). All mice were on a fully backcrossed C57Bl/6 background with age-matched controls. Ccl32/2 mice were described previously Correspondence and requests for reprints should be addressed to Suzanne L. 2/2 Kirby, M.D., Ph.D., Department of Pathology, University of North Carolina at (12). Ccr1 mice were purchased from Jackson Laboratories (Bar 2/2 Chapel Hill, Chapel Hill, NC 27599. E-mail: [email protected] Harbor, ME), and Ccr5 mice were obtained from Dr. William Kuziel (Protein Design Laboratories, Incline Village, NV). This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org Thoracic Irradiation Am J Respir Cell Mol Biol Vol 45. pp 127–135, 2011 Originally Published in Press as DOI: 10.1165/rcmb.2010-0265OC on September 24, 2010 Anesthetized mice at the age of 10–12 weeks were immobilized, with Internet address: www.atsjournals.org a lead shield excluding all but the thoracic cavity. Animals were then 128 AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY VOL 45 2011 irradiated with a single dose of 14.5 Gy from a cesium source (J. L. noma cells, with a single dose of 5 Gy and supernatants ware Shepherd and Associates, San Fernando, CA) at a dose rate of 1.65 Gy/min. collected 12 hours later for CCL3 protein quantitation. Al- LD50 for C57BL/6J mice is 14.5 Gy. At this dose, survival is sufficient to though not detectable (,1.5 pg/ml) before irradiation, CCL3 permit adequate numbers of animals for long-term analyses. production increased significantly in both the MRC5 (5.22 6 Histopathology and Morphometric Analyses 1.23 pg/ml) and SKLu-1 (8.12 6 2.49 pg/ml) cell lines after irradiation. Thus, CCL3 is increased by radiation in both normal Lung sections were stained with hematoxylin and eosin for routine and malignant lung-derived cell lines. histology, and with Masson’s trichrome for collagen analysis. A total of We next investigated if pulmonary levels of CCL3 are also 10 representative 53 images were analyzed in a blinded fashion for septal thickening using ImageJ software (National Institutes of Health, induced in vivo by thoracic irradiation. C57Bl/6J mice were Bethesda, MD) software, as previously described (15). irradiated and harvested at various time points thereafter for analysis of lung CCL3 protein. By 1 week after irradiation, CCL3 Quantification of Lung Hydroxyproline levels dropped to below levels seen in untreated mice (possibly The right lung was acid digested and hydroxyproline content was an- due to the death of chemokine-producing cells). By 2 weeks after alyzed as previously (16) (see the online supplement for details). irradiation, CCL3 had returned to baseline levels, and continued to rise further, reaching a peak at 4 weeks, and a second peak at Measurements of Lung Mechanics 20 weeks after irradiation (Figure 1A). The mRNA expression of Anesthetized mice were mechanically ventilated on a computer- CCL3 showed a similar pattern in lungs of irradiated mice with controlled small-animal ventilator (Scireq, Montreal, PQ, Canada) at peak expression at 4 and 20 weeks after irradiation (Figure 1B). 350 breaths/min, 6 ml/kg tidal volume, and positive end-expiratory To investigate the relevance of CCL3 expression to radiation- pressure of 3–4 cm H2O. Lung mechanics measurements were per- induced lung injury, we compared radiation-induced responses in formed as previously described (17). WT and CCL3-deficient mice. As expected, about half of the WT mice died by 32 weeks after irradiation (Figure 2A). Flow Cytometric Analyses However, only 16% of the Ccl32/2 mice died after thoracic Excised lungs were minced and digested in collagenase A for 1 hour. Red blood cells were lysed with ACK buffer, and resultant nucleated cells separated on a 20% Percoll gradient were stained with PE- or FITC-labeled monoclonal antibodies to Gr1, FoxP3, CD3,
Recommended publications
  • Enhanced Monocyte Migration to CXCR3 and CCR5 Chemokines in COPD
    ERJ Express. Published on March 10, 2016 as doi: 10.1183/13993003.01642-2015 ORIGINAL ARTICLE IN PRESS | CORRECTED PROOF Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD Claudia Costa1, Suzanne L. Traves1, Susan J. Tudhope1, Peter S. Fenwick1, Kylie B.R. Belchamber1, Richard E.K. Russell2, Peter J. Barnes1 and Louise E. Donnelly1 Affiliations: 1Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK. 2Chest Clinic, King Edward King VII Hospital, Windsor, UK. Correspondence: Louise E. Donnelly, Airway Disease, National Heart and Lung Institute, Dovehouse Street, London, SW3 6LY, UK. E-mail: [email protected] ABSTRACT Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression.
    [Show full text]
  • Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells
    Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells This information is current as Hyung W. Lim, Jeeho Lee, Peter Hillsamer and Chang H. of September 28, 2021. Kim J Immunol 2008; 180:122-129; ; doi: 10.4049/jimmunol.180.1.122 http://www.jimmunol.org/content/180/1/122 Downloaded from References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/180/1/122.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3؉ Regulatory T Cells1 Hyung W. Lim,* Jeeho Lee,* Peter Hillsamer,† and Chang H. Kim2* It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites.
    [Show full text]
  • CCR5 Deficiency Impairs CD4+ T Cell Memory Responses and Antigenic Sensitivity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.14.948893; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CCR5 deficiency impairs CD4+ T cell memory responses and antigenic sensitivity through increased ceramide synthesis Ana Martín-Leal1§, Raquel Blanco1§, Josefina Casas2,3, María E. Sáez4, Elena Rodríguez- Bovolenta5, Itziar de Rojas6, Carina Drechsler7,8,9, Luis Miguel Real10,11, Gemma Fabrias2,3, Agustín Ruíz6,12, Mario Castro13, Wolfgang W.A. Schamel7,8,14, Balbino Alarcón5, Hisse M. van Santen5, Santos Mañes1* 1Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain; 2Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain and 3CIBER Liver and Digestive Diseases (CIBER-EDH), Instituto de Salud Carlos III, Madrid, Spain; 4Centro Andaluz de Estudios Bioinformáticos (CAEBi), Seville, Spain; 5Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO/CSIC), Madrid, Spain; 6Alzheimer Research Center and Memory Clinic of the Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain; 7Signaling Research Centers BIOSS and CIBSS, 8Department of Immunology, Faculty of Biology and 9Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; 10Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme,
    [Show full text]
  • Role of Chemokines and Chemokine Receptors in Shaping the Effector Phase of the Antitumor Immune Response
    Published OnlineFirst December 7, 2012; DOI: 10.1158/0008-5472.CAN-12-2027 Cancer Review Research Role of Chemokines and Chemokine Receptors in Shaping the Effector Phase of the Antitumor Immune Response Katarzyna Franciszkiewicz1, Alexandre Boissonnas2, Marie Boutet1, Christophe Combadiere 2, and Fathia Mami-Chouaib1 Abstract Immune system–mediated eradication of neoplastic cells requires induction of a strong long-lasting antitumor T-cell response. However, generation of tumor-specific effector T cells does not necessarily result in tumor clearance. CTL must firstbeabletomigratetothetumorsite,infiltrate the tumor tissue, and interact with the target to finally trigger effector functions indispensable for tumor destruction. Chemokines are involved in circulation, homing, retention, and activation of immunocompetent cells. Although some of them are known to contribute to tumor growth and metastasis, others are responsible for changes in the tumor microenvironment that lead to extensive infiltration of lymphocytes, resulting in tumor eradication. Given their chemoattractive and activating properties, a role for chemokines in the development of the effector phase of the antitumor immune response has been suggested. Here, we emphasize the role of the chemokine–chemokine receptor network at multiple levels of the T-cell–mediated antitumor immune response. The identification of chemokine-dependent molecular mechanisms implicated in tumor-specific CTL trafficking, retention, and regulation of their in situ effector functions may offer new perspectives for development of innovative immunotherapeutic approaches to cancer treatment. Cancer Res; 72(24); 1–8. Ó2012 AACR. Introduction critical step in optimization of current cancer immunotherapy The identification of tumor-associated antigens (TAA) and protocols. the isolation of tumor-specific cytotoxic T cells have led to Chemokines coordinate circulation, homing, and retention great efforts in developing immunotherapeutic approaches to of immune cells.
    [Show full text]
  • Structural Basis of the Activation of the CC Chemokine Receptor 5 by a Chemokine Agonist
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401117; this version posted November 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist One-sentence summary: The structure of CCR5 in complex with the chemokine agonist [6P4]CCL5 and the heterotrimeric Gi protein reveals its activation mechanism Authors: Polina Isaikina1, Ching-Ju Tsai2, Nikolaus Dietz1, Filip Pamula2,3, Anne Grahl1, Kenneth N. Goldie4, Ramon Guixà-González2, Gebhard F.X. Schertler2,3,*, Oliver Hartley5,*, 4 1,* 2,* 1,* Henning Stahlberg , Timm Maier , Xavier Deupi , and Stephan Grzesiek Affiliations: 1 Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland 2 Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 3 Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland 4 Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland 5 Department of Pathology and Immunology, Faculty of Medicine, University of Geneva *Address correspondence to: Stephan Grzesiek Focal Area Structural Biology and Biophysics, Biozentrum University of Basel, CH-4056 Basel, Switzerland Phone: ++41 61 267 2100 FAX: ++41 61 267 2109 Email: [email protected] Xavier Deupi Email: [email protected] Timm Maier Email: [email protected] Oliver Hartley Email: [email protected] Gebhard F.X. Schertler Email: [email protected] Keywords: G protein coupled receptor (GPCR); CCR5; chemokines; CCL5/RANTES; CCR5- gp120 interaction; maraviroc; HIV entry; AIDS; membrane protein structure; cryo-EM; GPCR activation.
    [Show full text]
  • CXCR6 Within T-Helper (Th) and T-Cytotoxic
    European Journal of Endocrinology (2005) 152 635–643 ISSN 0804-4643 EXPERIMENTAL STUDY CXCR6 within T-helper (Th) and T-cytotoxic (Tc) type 1 lymphocytes in Graves’ disease (GD) G Aust, M Kamprad1, P Lamesch2 and E Schmu¨cking Institute of Anatomy, 1Department of Clinical Immunology and Transfusion Medicine and 2Department of Surgery, University of Leipzig, Phillipp-Rosenthal-Str. 55, Leipzig, 04103, Germany (Correspondence should be addressed to G Aust; Email: [email protected]) Abstract Objective: In Graves’ disease (GD), stimulating anti-TSH receptor antibodies are responsible for hyperthyroidism. T-helper 2 (Th2) cells were expected to be involved in the underlying immune mech- anism, although this is still controversial. The aim of this study was to examine the expression of CXCR6, a chemokine receptor that marks functionally specialized T-cells within the Th1 and T-cyto- toxic 1 (Tc1) cell pool, to gain new insights into the running immune processes. Methods: CXCR6 expression was examined on peripheral blood lymphocytes (PBLs) and thyroid- derived lymphocytes (TLs) of GD patients in flow cytometry. CXCR6 cDNA was quantified in thyroid tissues affected by GD (n ¼ 16), Hashimoto’s thyroiditis (HT; n ¼ 2) and thyroid autonomy (TA; n ¼ 11) using real-time reverse transcriptase PCR. Results: The percentages of peripheral CXCR6þ PBLs did not differ between GD and normal subjects. CXCR6 was expressed by small subsets of circulating T-cells and natural killer (NK) cells. CXCR6þ cells were enriched in thyroid-derived T-cells compared with peripheral CD4þ and CD8þ T-cells in GD. The increase was evident within the Th1 (CD4þ interferon-gþ (IFN-gþ)) and Tc1 (CD8þIFN- gþ) subpopulation and CD8þ granzyme Aþ T-cells (cytotoxic effector type).
    [Show full text]
  • Haplotypes in CCR5-CCR2, CCL3 and CCL5 Are Associated with Natural Resistance to HIV-1 Infection in a Colombian Cohort Jorge A
    Biomédica 2017;37:267-73 Haplotypes associated with resistance to HIV-1 doi: http://dx.doi.org/10.7705/biomedica.v37i3.3237 BRIEF COMMUNICATION Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort Jorge A. Vega1,2,3, Simón Villegas-Ospina1, Wbeimar Aguilar-Jiménez1, María T. Rugeles1, Gabriel Bedoya3, Wildeman Zapata1,4 1 Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia 2 Laboratorio de Genética, Dirección Regional Noroccidente, Instituto Nacional de Medicina Legal y Ciencias Forenses, Medellín, Colombia 3 Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia 4 Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia Introduction: Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. Objective: To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. Materials and methods: Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p’ value <0.05 after Bonferroni correction was considered significant. Results: Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility.
    [Show full text]
  • Temporal Expression and Cellular Origin of CC Chemokine Receptors
    Journal of Neuroinflammation BioMed Central Research Open Access Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE Sana Eltayeb1, Anna-Lena Berg*2, Hans Lassmann3, Erik Wallström1, Maria Nilsson4, Tomas Olsson1, Anders Ericsson-Dahlstrand4 and Dan Sunnemark4 Address: 1Department of Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunology Unit, Karolinska Institute, S-171 76 Stockholm, Sweden, 2Department of Pathology, Safety Assessment, AstraZeneca R&D Södertälje, S-15185 Södertälje, Sweden, 3Brain Research Institute, University of Vienna, Vienna, Austria and 4Department of Disease Biology, Local Discovery Research Area CNS and Pain Control, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden Email: Sana Eltayeb - [email protected]; Anna-Lena Berg* - [email protected]; Hans Lassmann - [email protected]; Erik Wallström - [email protected]; Maria Nilsson - [email protected]; Tomas Olsson - [email protected]; Anders Ericsson-Dahlstrand - [email protected]; Dan Sunnemark - [email protected] * Corresponding author Published: 7 May 2007 Received: 5 February 2007 Accepted: 7 May 2007 Journal of Neuroinflammation 2007, 4:14 doi:10.1186/1742-2094-4-14 This article is available from: http://www.jneuroinflammation.com/content/4/1/14 © 2007 Eltayeb et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The CC chemokine receptors CCR1, CCR2 and CCR5 are critical for the recruitment of mononuclear phagocytes to the central nervous system (CNS) in multiple sclerosis (MS) and other neuroinflammatory diseases.
    [Show full text]
  • Polyclonal Anti-CCR1 Antibody
    FabGennix International, Inc. 9191 Kyser Way Bldg. 4 Suite 402 Frisco, TX 75033 Tel: (214)-387-8105, 1-800-786-1236 Fax: (214)-387-8105 Email: [email protected] Web: www.FabGennix.com Polyclonal Anti-CCR1 antibody Catalog Number: CCR1-112AP General Information Product CCR1 Antibody Affinity Purified Description Chemokine (C-C motif) receptor 1 Antibody Affinity Purified Accession # Uniprot: P32246 GenBank: AAH64991 Verified Applications ELISA, WB Species Cross Reactivity Human Host Rabbit Immunogen Synthetic peptide taken within amino acid region 1-50 on human CCR1 protein. Alternative Nomenclature C C chemokine receptor type 1 antibody, C C CKR 1 antibody, CCR1 antibody, CD191 antibody, CMKBR 1 antibody, CMKR1 antibody, HM145 antibody, LD78 receptor antibody, Macrophage inflammatory protein 1 alpha /Rantes receptor antibody, MIP-1alpha-R antibody, MIP1aR antibody, RANTES receptor antibody, SCYAR1 antibody Physical Properties Quantity 100 µg Volume 200 µl Form Affinity Purified Immunoglobulins Immunoglobulin & Concentration 0.65-0.75 mg/ml IgG in antibody stabilization buffer Storage Store at -20⁰C for long term storage. Recommended Dilutions DOT Blot 1:10,000 ELISA 1:10,000 Western Blot 1:500 Related Products Catalog # FITC-Conjugated CCR1.112-FITC Antigenic Blocking Peptide P-CCR1.112 Western Blot Positive Control PC-CCR1.112 Tel: (214)-387-8105, 1-800-786-1236 Fax: (214)-387-8105 Email: [email protected] Web: www.FabGennix.com Overview: Chemokine receptors represent a subfamily of ~20 GPCRs that were originally identified by their roles in immune cell trafficking. Macrophage inflammatory protein-1 alpha (MIP-1 alpha) and RANTES, members of the beta chemokine family of leukocyte chemo- attractants, bind to a common seven-transmembrane-domain human receptor.
    [Show full text]
  • CXCR6 Deficiency Impairs Cancer Vaccine Efficacy and CD8+ Resident Memory T-­Cell Recruitment in Head and Neck and Lung Tumors
    Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-001948 on 10 March 2021. Downloaded from CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T- cell recruitment in head and neck and lung tumors Soumaya Karaki,1,2 Charlotte Blanc,1,2 Thi Tran,1,2 Isabelle Galy- Fauroux,1,2 Alice Mougel,1,2 Estelle Dransart,3 Marie Anson,1,2 Corinne Tanchot,1,2 Lea Paolini,1,2 Nadege Gruel,4,5 Laure Gibault,6 Francoise Lepimpec- Barhes,7 Elizabeth Fabre,8 Nadine Benhamouda,9 Cecile Badoual,6 Diane Damotte,10 11 12,13 14 Emmanuel Donnadieu , Sebastian Kobold, Fathia Mami- Chouaib, 15 3 1,2,9 Rachel Golub, Ludger Johannes, Eric Tartour To cite: Karaki S, Blanc C, ABSTRACT explains why the intranasal route of vaccination is the Tran T, et al. CXCR6 deficiency most appropriate strategy for inducing these cells in the Background Resident memory T lymphocytes (TRM) impairs cancer vaccine efficacy are located in tissues and play an important role in head and neck and pulmonary mucosa, which remains a and CD8+ resident memory immunosurveillance against tumors. The presence of T major objective to overcome resistance to anti- PD-1/PD- T- cell recruitment in head and RM prior to treatment or their induction is associated to the L1, especially in cold tumors. neck and lung tumors. Journal for ImmunoTherapy of Cancer response to anti- Programmed cell death protein 1 (PD- 2021;9:e001948. doi:10.1136/ 1)/Programmed death- ligand 1 (PD- L1) immunotherapy jitc-2020-001948 and the efficacy of cancer vaccines.
    [Show full text]
  • Part One Fundamentals of Chemokines and Chemokine Receptors
    Part One Fundamentals of Chemokines and Chemokine Receptors Chemokine Receptors as Drug Targets. Edited by Martine J. Smit, Sergio A. Lira, and Rob Leurs Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32118-6 j3 1 Structural Aspects of Chemokines and their Interactions with Receptors and Glycosaminoglycans Amanda E. I. Proudfoot, India Severin, Damon Hamel, and Tracy M. Handel 1.1 Introduction Chemokines are a large subfamily of cytokines (50 in humans) that can be distinguished from other cytokines due to several features. They share a common biological activity, which is the control of the directional migration of leukocytes, hence their name, chemoattractant cytokines. They are all small proteins (approx. 8 kDa) that are highly basic, with two exceptions (MIP-1a, MIP-1b). Also, they have a highly conserved monomeric fold, constrained by 1–3 disulfides which are formed from a conserved pattern of cysteine residues (the majority of chemokines have four cysteines). The pattern of cysteine residues is used as the basis of their division into subclasses and for their nomenclature. The first class, referred to as CXC or a-chemokines, have a single residue between the first N-terminal Cys residues, whereas in the CC class, or b-chemokines, these two Cys residues are adjacent. While most chemokines have two disulfides, the CC subclass also has three members that contain three. Subsequent to the CC and CXC families, two fi additional subclasses were identi ed, the CX3C subclass [1, 2], which has three amino acids separating the N-terminal Cys pair, and the C subclass, which has a single disulfide.
    [Show full text]
  • Plasma Macrophage-Derived Chemokine (CCL22) and Its
    Egypt J Pediatr Allergy Immunol 2005; 3(1): 20-31. Original article Plasma macrophage-derived chemokine (CCL22) and its receptor CCR4 on peripheral blood T lymphocytes of asthmatic children Background: The macrophage-derived chemokine (MDC/CCL22) acts on Mohamed H. Ezzat, CC chemokine receptor-4 (CCR4) to direct trafficking and recruitment of T Karim Y. Shaheen*. helper-2 (TH2) cells into sites of allergic inflammation. It was previously found overexpressed in lesional samples from adult asthmatics. Objective: This study is aimed to investigate the participation of CCR4/MDC axis in the development of TH2-dominated allergen-induced From the Departments childhood asthma in relation to disease activity, attack severity, and of Pediatrics and response to therapy, and to outline its value in differentiating atopic asthma Clinical Pathology*, from infection-associated airway reactivity. Faculty of Medicine, Methods: Proportion of CCR4-expressing peripheral blood T lymphocytes Ain Shams University, + (CCR4 PBTL%) were purified and quantitated by negative selection from Cairo, Egypt. peripheral blood mononuclear cells by flow cytometry, and the concentration of MDC in plasma was measured by ELISA in 32 children with atopic asthma (during exacerbation and remission), as well as in 12 children with acute lower respiratory tract infections (ALRTI), and 20 healthy children serving as controls. Results: The mean plasma MDC level (925±471.5 pg/ml) and CCR4+PBTL% (55.3±23.6%) were significantly higher in asthmatic children during acute attacks in comparison to children with ALRTI (109±27.3 pg/ml and 27.6±7.5%) and healthy controls (99.6±25.6 pg/ml and 24.2±4.1%).
    [Show full text]