CCR5 in T Cell-Mediated Liver Diseases: What's Going On? Maureen N

Total Page:16

File Type:pdf, Size:1020Kb

CCR5 in T Cell-Mediated Liver Diseases: What's Going On? Maureen N CCR5 in T Cell-Mediated Liver Diseases: What's Going On? Maureen N. Ajuebor, Jillian A. Carey and Mark G. Swain This information is current as J Immunol 2006; 177:2039-2045; ; of September 29, 2021. doi: 10.4049/jimmunol.177.4.2039 http://www.jimmunol.org/content/177/4/2039 Downloaded from References This article cites 62 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/177/4/2039.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY BRIEF REVIEWS CCR5 in T Cell-Mediated Liver Diseases: What’s Going On?1 Maureen N. Ajuebor, Jillian A. Carey, and Mark G. Swain2 The chemokine receptor CCR5 came into worldwide Over the past 10 years, chemokines have been the focus of a prominence a decade ago when it was identified as one of great deal of research pertaining to their role in promoting leu- the major coreceptors for HIV infectivity. However, sub- kocyte trafficking and recruitment during inflammatory re- sequent studies suggested an important modulatory role sponses. It is perhaps not surprising that chemokines are often for CCR5 in the inflammatory response. Specifically, regarded as “the commander-in-chief” of leukocyte migration. CCR5 has been reported to directly regulate T cell func- tion in autoimmune diseases, including multiple sclerosis, Chemokines Downloaded from rheumatoid arthritis, and type 1 diabetes. Moreover, T Chemokines are a large family of specialized heparin-binding cell-mediated immune responses are proposed to be critical proteins, the primary and traditional function of which is to in the pathogenesis of autoimmune and viral liver dis- regulate the trafficking of leukocytes (5, 6). These proteins can eases, and recent clinical and experimental studies have promote T cell differentiation to either Th1- or Th2-type re- sponses by augmenting or directionally differentiating T cells also implicated CCR5 in the pathogenesis of autoimmune http://www.jimmunol.org/ and viral liver diseases. Therefore, in this brief review, we toward polarized type 1 or type 2 responses (5). Chemokines highlight the evidence that supports an important role of are subdivided into four subfamilies (C-X-C, C-C, C, and CCR5 in the pathophysiology of T cell-mediated liver dis- C-X3-C) based on their amino-terminal cysteine residues eases with specific emphasis on autoimmune and viral (6–8). To date, 43 human chemokines have been described previously (7, 8). liver diseases. The Journal of Immunology, 2006, 177: The biological actions of chemokines are mediated through a 2039–2045. family of seven transmembrane G protein-coupled receptors (GPCRs) present on the surface of target cells (6–9). Chemo- he liver contains a large population of resident lympho- kine receptors belong to a large superfamily of GPCRs, a diverse by guest on September 29, 2021 ϩ ϩ cytes, including CD8 and CD4 T cells; T cells that class of cell surface receptors that include receptors for neuro- T are crucial elements in the adaptive immune response. transmitters and proteinases. Presently, 19 different human Furthermore, NK and NKT cells, which are key components of chemokine receptors have been characterized (6–9). Specifi- the innate immune system, are highly enriched in the liver cally, 6 C-X-C chemokine receptors, designated CXCR1 to (Refs. 1 and 2; Fig. 1). Thus, the liver plays a critical role in the CXCR7, and 11 C-C chemokine receptors, denoted CCR1 to first-line host defense against incoming foreign Ags absorbed CCR11, are known (6–9). Receptors for lymphotactin (XCR1) from gut, where it maintains a balance between tolerance and and fractalkine (CX3CR1) have also been characterized (7, 8). generation of an immune response. Disruption of this balance through multiple mechanisms, including T cell activation, CCR5 chemokine receptor could potentially lead to the development of liver diseases. T The CCR5 chemokine receptor is a CC chemokine receptor cell-mediated liver diseases, including viral liver diseases (such that is expressed on many cell types, including NKT cells, 3 ϩ ϩ as hepatitis B virus (HBV) and hepatitis C virus (HCV)), au- CD4 T cells, CD8 T cells, and macrophages (7, 8, 10, 11). toimmune hepatitis (AIH), and graft-vs-host disease CCR5 mediates its biological effects by interacting with any of (GVHD)), affect Ͼ300 million people worldwide (3, 4) What- these three ligands: CCL3, CCL4, and CCL5 (6, 8, 11). CCR5 ever the stimulus for development of T cell-mediated liver dis- is preferentially expressed on Th1 cells (11, 12), suggesting that eases, the final common pathway is an influx and activation of T this receptor may be important in the recruitment of IFN-␥- ϩ ϩ ϩ cells (CD4 , CD8 , NKT cells, and regulatory T (Treg) cells) producing CD4 T cells to inflammatory sites; however, this in the liver. remains controversial (13). Gastrointestinal Research Group, Faculty of Medicine, University of Calgary, Calgary, Al- for Medical Research Senior Scholar and a CIHR/Health Canada Hepatitis C Initiative berta, Canada Investigator. J.A.C. is supported by a Canadian Liver Foundation studentship. Received for publication April 25, 2006. Accepted for publication May 26, 2006. 2 Address correspondence and reprint requests to Dr. Mark G. Swain, Faculty of Medicine, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Can- The costs of publication of this article were defrayed in part by the payment of page charges. ada. E-mail address: [email protected] This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. 3 Abbreviations used in this paper: HBV, hepatitis B virus; HCV, hepatitis C virus; AIH, autoimmune hepatitis; GVHD, graft-vs-host disease; Treg, regulatory T; GPCR, G pro- 1 Our work cited in this review was funded by the Canadian Institutes for Health Research tein-coupled receptor; KO, knockout; FasL, Fas ligand. (CIHR)/Health Canada Hepatitis C Initiative. M.G.S. is an Alberta Heritage Foundation Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 2040 BRIEF REVIEWS: CCR5 IN T CELL-MEDIATED LIVER DISEASE—WHAT’S GOING ON? FIGURE 1. Lymphocyte composition in the mouse and human liver as determined by specific cell surface markers and analyzed by flow cytometry. Adapted from Refs. 1, 2, 4. Downloaded from The CCR5 receptor came to worldwide attention about a de- with particular emphasis on viral liver disease (HCV), AIH, and cade ago after being identified as one of the major coreceptors GVHD. Specifically, we provide information from the clinical for HIV infectivity, and CCR5 ligands were noted to possess and experimental setting demonstrating the beneficial (good) anti-HIV activity (14). The observation that Caucasian indi- or detrimental (bad) role of CCR5 during T cell-mediated he- http://www.jimmunol.org/ viduals who have a natural CCR5 mutation, CCR5⌬32 (i.e., a patic inflammatory response. 32-bp deletion in this gene results in a nonfunctioning receptor that is trapped in the endoplasmic reticulum and therefore not Autoimmune hepatitis expressed at the cell surface), resist HIV infection (14, 15) fur- AIH is a progressive inflammatory liver disease that predomi- ther highlighted the fundamental role of CCR5 in HIV patho- nantly affects women. Although the factors that initiate and genesis. In the last decade, significant progress has also been regulate AIH remain poorly defined, there is evidence AIH is ϩ made in the development of CCR5 antagonist as potential ther- primarily initiated by CD4 T cells and to a lesser extent by ϩ apies for HIV infectivity. Regrettably, recent early clinical trials CD8 T cells that recognize self-Ag (4). It is well established by guest on September 29, 2021 ϩ of some CCR5 antagonists were abruptly halted due to pro- that CD4 T cells primarily function as regulators of other im- found hepatotoxicity (16–18), implicating CCR5 as poten- mune cells, either through secreted cytokines (e.g., Th1 or Th2) tially modulating the hepatic inflammatory response. In agree- or by direct cell-cell contact (23). However, splitting complex ment with CCR5 deficiency modulating the hepatic diseases such as AIH, in terms of Th1 and Th2 patterns, is likely inflammatory response, the CCR5⌬32 mutation was recently an oversimplification. Importantly, IL-4 (a cytokine classically reported to exacerbate the severity of hepatic inflammation and grouped as Th2) exerts proinflammatory effects in the liver. For injury in some T cell-mediated liver diseases (discussed below). example, direct expression of IL-4 in the liver of mice using re- In addition, CCR5 has also been implicated in the pathology of combinant adenoviruses coding for mouse IL-4 causes a lethal numerous autoimmune diseases, including multiple sclerosis, and dose-dependent hepatitis (24), and rIL-4 treatment of rheumatoid arthritis, and type 1 diabetes (19). mouse primary hepatocytes is known to cause apoptosis of these cells in vitro (24). Furthermore, T cell subtypes other than ϩ The role of CCR5 in T cell-mediated liver diseases: “the good and the bad” CD4 T cells can also produce both IFN-␥ and IL-4.
Recommended publications
  • Enhanced Monocyte Migration to CXCR3 and CCR5 Chemokines in COPD
    ERJ Express. Published on March 10, 2016 as doi: 10.1183/13993003.01642-2015 ORIGINAL ARTICLE IN PRESS | CORRECTED PROOF Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD Claudia Costa1, Suzanne L. Traves1, Susan J. Tudhope1, Peter S. Fenwick1, Kylie B.R. Belchamber1, Richard E.K. Russell2, Peter J. Barnes1 and Louise E. Donnelly1 Affiliations: 1Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK. 2Chest Clinic, King Edward King VII Hospital, Windsor, UK. Correspondence: Louise E. Donnelly, Airway Disease, National Heart and Lung Institute, Dovehouse Street, London, SW3 6LY, UK. E-mail: [email protected] ABSTRACT Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression.
    [Show full text]
  • Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells
    Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells This information is current as Hyung W. Lim, Jeeho Lee, Peter Hillsamer and Chang H. of September 28, 2021. Kim J Immunol 2008; 180:122-129; ; doi: 10.4049/jimmunol.180.1.122 http://www.jimmunol.org/content/180/1/122 Downloaded from References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/180/1/122.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3؉ Regulatory T Cells1 Hyung W. Lim,* Jeeho Lee,* Peter Hillsamer,† and Chang H. Kim2* It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites.
    [Show full text]
  • CCR5 Deficiency Impairs CD4+ T Cell Memory Responses and Antigenic Sensitivity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.14.948893; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CCR5 deficiency impairs CD4+ T cell memory responses and antigenic sensitivity through increased ceramide synthesis Ana Martín-Leal1§, Raquel Blanco1§, Josefina Casas2,3, María E. Sáez4, Elena Rodríguez- Bovolenta5, Itziar de Rojas6, Carina Drechsler7,8,9, Luis Miguel Real10,11, Gemma Fabrias2,3, Agustín Ruíz6,12, Mario Castro13, Wolfgang W.A. Schamel7,8,14, Balbino Alarcón5, Hisse M. van Santen5, Santos Mañes1* 1Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain; 2Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain and 3CIBER Liver and Digestive Diseases (CIBER-EDH), Instituto de Salud Carlos III, Madrid, Spain; 4Centro Andaluz de Estudios Bioinformáticos (CAEBi), Seville, Spain; 5Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO/CSIC), Madrid, Spain; 6Alzheimer Research Center and Memory Clinic of the Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain; 7Signaling Research Centers BIOSS and CIBSS, 8Department of Immunology, Faculty of Biology and 9Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; 10Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme,
    [Show full text]
  • Role of Chemokines and Chemokine Receptors in Shaping the Effector Phase of the Antitumor Immune Response
    Published OnlineFirst December 7, 2012; DOI: 10.1158/0008-5472.CAN-12-2027 Cancer Review Research Role of Chemokines and Chemokine Receptors in Shaping the Effector Phase of the Antitumor Immune Response Katarzyna Franciszkiewicz1, Alexandre Boissonnas2, Marie Boutet1, Christophe Combadiere 2, and Fathia Mami-Chouaib1 Abstract Immune system–mediated eradication of neoplastic cells requires induction of a strong long-lasting antitumor T-cell response. However, generation of tumor-specific effector T cells does not necessarily result in tumor clearance. CTL must firstbeabletomigratetothetumorsite,infiltrate the tumor tissue, and interact with the target to finally trigger effector functions indispensable for tumor destruction. Chemokines are involved in circulation, homing, retention, and activation of immunocompetent cells. Although some of them are known to contribute to tumor growth and metastasis, others are responsible for changes in the tumor microenvironment that lead to extensive infiltration of lymphocytes, resulting in tumor eradication. Given their chemoattractive and activating properties, a role for chemokines in the development of the effector phase of the antitumor immune response has been suggested. Here, we emphasize the role of the chemokine–chemokine receptor network at multiple levels of the T-cell–mediated antitumor immune response. The identification of chemokine-dependent molecular mechanisms implicated in tumor-specific CTL trafficking, retention, and regulation of their in situ effector functions may offer new perspectives for development of innovative immunotherapeutic approaches to cancer treatment. Cancer Res; 72(24); 1–8. Ó2012 AACR. Introduction critical step in optimization of current cancer immunotherapy The identification of tumor-associated antigens (TAA) and protocols. the isolation of tumor-specific cytotoxic T cells have led to Chemokines coordinate circulation, homing, and retention great efforts in developing immunotherapeutic approaches to of immune cells.
    [Show full text]
  • CXCR6 Within T-Helper (Th) and T-Cytotoxic
    European Journal of Endocrinology (2005) 152 635–643 ISSN 0804-4643 EXPERIMENTAL STUDY CXCR6 within T-helper (Th) and T-cytotoxic (Tc) type 1 lymphocytes in Graves’ disease (GD) G Aust, M Kamprad1, P Lamesch2 and E Schmu¨cking Institute of Anatomy, 1Department of Clinical Immunology and Transfusion Medicine and 2Department of Surgery, University of Leipzig, Phillipp-Rosenthal-Str. 55, Leipzig, 04103, Germany (Correspondence should be addressed to G Aust; Email: [email protected]) Abstract Objective: In Graves’ disease (GD), stimulating anti-TSH receptor antibodies are responsible for hyperthyroidism. T-helper 2 (Th2) cells were expected to be involved in the underlying immune mech- anism, although this is still controversial. The aim of this study was to examine the expression of CXCR6, a chemokine receptor that marks functionally specialized T-cells within the Th1 and T-cyto- toxic 1 (Tc1) cell pool, to gain new insights into the running immune processes. Methods: CXCR6 expression was examined on peripheral blood lymphocytes (PBLs) and thyroid- derived lymphocytes (TLs) of GD patients in flow cytometry. CXCR6 cDNA was quantified in thyroid tissues affected by GD (n ¼ 16), Hashimoto’s thyroiditis (HT; n ¼ 2) and thyroid autonomy (TA; n ¼ 11) using real-time reverse transcriptase PCR. Results: The percentages of peripheral CXCR6þ PBLs did not differ between GD and normal subjects. CXCR6 was expressed by small subsets of circulating T-cells and natural killer (NK) cells. CXCR6þ cells were enriched in thyroid-derived T-cells compared with peripheral CD4þ and CD8þ T-cells in GD. The increase was evident within the Th1 (CD4þ interferon-gþ (IFN-gþ)) and Tc1 (CD8þIFN- gþ) subpopulation and CD8þ granzyme Aþ T-cells (cytotoxic effector type).
    [Show full text]
  • Haplotypes in CCR5-CCR2, CCL3 and CCL5 Are Associated with Natural Resistance to HIV-1 Infection in a Colombian Cohort Jorge A
    Biomédica 2017;37:267-73 Haplotypes associated with resistance to HIV-1 doi: http://dx.doi.org/10.7705/biomedica.v37i3.3237 BRIEF COMMUNICATION Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort Jorge A. Vega1,2,3, Simón Villegas-Ospina1, Wbeimar Aguilar-Jiménez1, María T. Rugeles1, Gabriel Bedoya3, Wildeman Zapata1,4 1 Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia 2 Laboratorio de Genética, Dirección Regional Noroccidente, Instituto Nacional de Medicina Legal y Ciencias Forenses, Medellín, Colombia 3 Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia 4 Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia Introduction: Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. Objective: To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. Materials and methods: Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p’ value <0.05 after Bonferroni correction was considered significant. Results: Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility.
    [Show full text]
  • Polyclonal Anti-CCR1 Antibody
    FabGennix International, Inc. 9191 Kyser Way Bldg. 4 Suite 402 Frisco, TX 75033 Tel: (214)-387-8105, 1-800-786-1236 Fax: (214)-387-8105 Email: [email protected] Web: www.FabGennix.com Polyclonal Anti-CCR1 antibody Catalog Number: CCR1-112AP General Information Product CCR1 Antibody Affinity Purified Description Chemokine (C-C motif) receptor 1 Antibody Affinity Purified Accession # Uniprot: P32246 GenBank: AAH64991 Verified Applications ELISA, WB Species Cross Reactivity Human Host Rabbit Immunogen Synthetic peptide taken within amino acid region 1-50 on human CCR1 protein. Alternative Nomenclature C C chemokine receptor type 1 antibody, C C CKR 1 antibody, CCR1 antibody, CD191 antibody, CMKBR 1 antibody, CMKR1 antibody, HM145 antibody, LD78 receptor antibody, Macrophage inflammatory protein 1 alpha /Rantes receptor antibody, MIP-1alpha-R antibody, MIP1aR antibody, RANTES receptor antibody, SCYAR1 antibody Physical Properties Quantity 100 µg Volume 200 µl Form Affinity Purified Immunoglobulins Immunoglobulin & Concentration 0.65-0.75 mg/ml IgG in antibody stabilization buffer Storage Store at -20⁰C for long term storage. Recommended Dilutions DOT Blot 1:10,000 ELISA 1:10,000 Western Blot 1:500 Related Products Catalog # FITC-Conjugated CCR1.112-FITC Antigenic Blocking Peptide P-CCR1.112 Western Blot Positive Control PC-CCR1.112 Tel: (214)-387-8105, 1-800-786-1236 Fax: (214)-387-8105 Email: [email protected] Web: www.FabGennix.com Overview: Chemokine receptors represent a subfamily of ~20 GPCRs that were originally identified by their roles in immune cell trafficking. Macrophage inflammatory protein-1 alpha (MIP-1 alpha) and RANTES, members of the beta chemokine family of leukocyte chemo- attractants, bind to a common seven-transmembrane-domain human receptor.
    [Show full text]
  • CXCR6 Deficiency Impairs Cancer Vaccine Efficacy and CD8+ Resident Memory T-­Cell Recruitment in Head and Neck and Lung Tumors
    Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-001948 on 10 March 2021. Downloaded from CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T- cell recruitment in head and neck and lung tumors Soumaya Karaki,1,2 Charlotte Blanc,1,2 Thi Tran,1,2 Isabelle Galy- Fauroux,1,2 Alice Mougel,1,2 Estelle Dransart,3 Marie Anson,1,2 Corinne Tanchot,1,2 Lea Paolini,1,2 Nadege Gruel,4,5 Laure Gibault,6 Francoise Lepimpec- Barhes,7 Elizabeth Fabre,8 Nadine Benhamouda,9 Cecile Badoual,6 Diane Damotte,10 11 12,13 14 Emmanuel Donnadieu , Sebastian Kobold, Fathia Mami- Chouaib, 15 3 1,2,9 Rachel Golub, Ludger Johannes, Eric Tartour To cite: Karaki S, Blanc C, ABSTRACT explains why the intranasal route of vaccination is the Tran T, et al. CXCR6 deficiency most appropriate strategy for inducing these cells in the Background Resident memory T lymphocytes (TRM) impairs cancer vaccine efficacy are located in tissues and play an important role in head and neck and pulmonary mucosa, which remains a and CD8+ resident memory immunosurveillance against tumors. The presence of T major objective to overcome resistance to anti- PD-1/PD- T- cell recruitment in head and RM prior to treatment or their induction is associated to the L1, especially in cold tumors. neck and lung tumors. Journal for ImmunoTherapy of Cancer response to anti- Programmed cell death protein 1 (PD- 2021;9:e001948. doi:10.1136/ 1)/Programmed death- ligand 1 (PD- L1) immunotherapy jitc-2020-001948 and the efficacy of cancer vaccines.
    [Show full text]
  • HIV-1 Infection: the Functional Importance of SDF1, CCR2 And
    : Curre re nt a R C e h v t i l e a w Mahla, Health Care Current Reviews 2015, 3:2 e s H Health Care: Current Reviews DOI: 10.4172/2375-4273.1000150 ISSN: 2375-4273 Review Article Open Access HIV-1 Infection: The Functional Importance of SDF1, CCR2 and CCR5 in Protection and Therapeutics Ranjeet Singh Mahla* Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India Abstract The acute or chronic infection of HIV1 resulting to AIDS pandemics is one of the major causes of morbidity and mortality worldwide. The infection, prevalence and propagation of HIV1 depend both on adaptive mutation in virus and host genetic factors. Virus infection to human CD4+ immune cells together is assisted and restricted by various host factors. Presence of mutations in CCR2, CCR5 and CXCR4 ligands SDF1 are associated to protection against HIV1 infection and restriction to AIDS progression. Globally, individuals in various populations harbouring CCR2 (64I), CCR5 (Δ32) and SDF1-3’A mutations are less susceptible to HIV1 infection and decipher delayed onset of AIDS. This review emphasizes the distribution and functional importance of CCR2 (64I), CCR5 (Δ32) and SDF1 (3’A) mutations in protection against HIV1 infection. Lastly the review discuss how CCR2, CCR5 and SDF1 can be explored for development of antagonistic for protection against HIV1 infection. Keywords: HIV1; Host genetic factors; Chemokine receptors; SDF1 and HIV1 Therapeutics The chemokine SDF1 is natural ligand of C-X-C chemokine Introduction receptor type 4 (CXCR4) has been investigated for its inhibitory role onto entry of HIV1 into its target CD4+ cells through bindings to Infection of human immunodeficiency virus (HIV)-1, the causative CXCR4 which is a co receptor for T tropic HIV1 entry.
    [Show full text]
  • Origin of CCR5-Delta 32 Mutation
    Origin of CCR5-Delta 32 Mutation Name Date What is the CCR5-Delta 32 Mutation anyway? “The transmembrane CCR5 chemokine receptor is used by HIV strains to enter cells of the immune system such as macrophages and CD4+ T cells. The CCR5-Δ32 deletion prevents the expression of the receptor on the cell surface and provides almost complete resistance to HIV-1 infection in homozygous individuals and partial resistance in the heterozygous state.” The average occurrence of the CCR5-Delta 32 deletion allele is estimated to be 10% in Caucasian European inhabitants, but it is almost absent among native Sub-Saharan African, Asian, and American Indian populations. Thesis: The origin of CCR5-Delta 32 and the reason of why only such selective group of Europeans carry this mutation has now been a topic of discussion. When it was first discovered, scientists believed that the bubonic plague, also known as the Black Death (1346-50 approx.), was the answer to the mutation. Recent studies have suggested that this mutation has been present since before the bubonic plague, being the Black Death only part of the history behind the origin of CCR5-Delta 32. Previous Theories: The single pandemic of the Black Death, which killed Theory 1 about 40% of the population of Europe. Epidemics of bubonic plague every 10 years for Theory 2 400 years. Smallpox epidemics every five years in Europe Theory 3 for at least 620 years from 1347 to 1970. Theory One: “The single pandemic of the Black Death, which killed about 40% of the population of Europe.” This theory is perhaps the most popular, but studies have demonstrated that the mutation did not result form a single disease strike, but from recurrence over several centuries.
    [Show full text]
  • Hiv Coreceptors: from Discovery and Designation to New Paradigms and Promise
    October 15, 2007 EU RO PE AN JOUR NAL OF MED I CAL RE SEARCH 375 Eur J Med Res (2007) 12: 375-384 © I. Holzapfel Publishers 2007 HIV CORECEPTORS: FROM DISCOVERY AND DESIGNATION TO NEW PARADIGMS AND PROMISE Ghalib Alkhatib1 and Edward A. Berger2 1Department of Microbiology and Immunology and the Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN, 2Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA Abstract which engages target cell receptors, and the gp41 sub- Just over a decade ago, the specific chemokine recep- unit, which promotes the membrane fusion reaction tors CXCR4 and CCR5 were identified as the essential [5, 6]. coreceptors that function along with CD4 to enable Despite the rapid identification of CD4 as the “pri- human immunodeficiency virus (HIV) entry into tar- mary receptor” for HIV, it soon became clear that the get cells. The coreceptor discoveries immediately pro- complexities of virus entry and tropism could not be vided a molecular explanation for the distinct tropisms explained by CD4 expression alone; several lines of of different HIV-1 isolates for different CD4-positive evidence suggested that additional molecular compo- target cell types, and revealed fundamentally new in- nents of the entry process were yet to be uncovered. sights into host and viral factors influencing HIV For one, expression of recombinant human CD4 on transmission and disease. The sequential 2-step mech- otherwise CD4-negative human cell types rendered anism by which the HIV envelope glycoprotein (Env) them permissive for HIV infection; however efficient interacts first with CD4, then with coreceptor, re- human CD4 expression on murine cells failed to con- vealed a major mechanism by which conserved Env fer infection permissiveness, apparently due to a block epitopes are protected from antibody-mediated neu- at a very early step in the replication cycle [7].
    [Show full text]
  • Mice Chemokine Receptors CCR2 and CCR5 in Expression and Characterization Of
    Expression and Characterization of the Chemokine Receptors CCR2 and CCR5 in Mice This information is current as Matthias Mack, Josef Cihak, Christopher Simonis, Bruno of September 28, 2021. Luckow, Amanda E. I. Proudfoot, Jir?í Plachý, Hilke Brühl, Michael Frink, Hans-Joachim Anders, Volker Vielhauer, Jochen Pfirstinger, Manfred Stangassinger and Detlef Schlöndorff J Immunol 2001; 166:4697-4704; ; Downloaded from doi: 10.4049/jimmunol.166.7.4697 http://www.jimmunol.org/content/166/7/4697 References This article cites 40 articles, 27 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/166/7/4697.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Expression and Characterization of the Chemokine Receptors CCR2 and CCR5 in Mice1 Matthias Mack,2* Josef Cihak,† Christopher Simonis,* Bruno Luckow,* Amanda E. I.
    [Show full text]