Tutorial on Wireless Communications and Electronic Tacking

Total Page:16

File Type:pdf, Size:1020Kb

Tutorial on Wireless Communications and Electronic Tacking This page intentionally left blank PREFACE This document is being provided to the mining industry as a working draft. The intent is to make information available to labor, industry, regulators, and academia that is relevant to the Communications and Tracking systems that are being installed for compliance with the MINER Act. As a working draft, the document has not yet been through the rigorous external peer review process that NIOSH publications require before being distributed as an official NIOSH document. The document has been reviewed internally; however, it was determined that NIOSH review and release process would not likely be completed for the June 15, 2009 compliance date that is required by the MINER Act. Therefore, the decision was made to distribute this document as a working draft and to follow with a final publication as quickly as possible. We would like to acknowledge the contributions of the Defense Information Systems Agency, Joint Spectrum Center, Annapolis, MD which prepared much of the material contained in this document under an Inter-Agency Agreement (IAA) with NIOSH. We also want to acknowledge the contributions of the NIOSH research staff, whose extraordinary effort made this document possible in an exceptionally short period of time. Tutorial on Wireless Communications & Electronic Tracking TABLE OF CONTENTS 1. INTRODUCTION ...................................................................................................4 2. CT TECHNOLOGY OVERVIEW............................................................................6 2. 1 COMMUNICATIONS BASICS ....................................................................................6 2.1.1 Physical Communications Links .......................................................................7 2.1.2 Networks ...........................................................................................................8 2.1.3 Wireless versus Wired Systems ......................................................................10 2.2 COMMUNICATIONS SYSTEMS PRINCIPLES OF OPERATION ........................11 2.2.1 Hardwired Systems ..................................................................... 11 2.2.2 Wireless Systems ........................................................................ 12 2.3 TRACKING SYSTEMS PRINCIPLES OF OPERATIONS ......................................24 2.3.1 Manual Tracking Systems ............................................................... 24 2.3.2 Reader-based Tracking Systems ........................................................ 24 2.3.3 Radio Node-Based Tracking Systems ................................................. 28 2.4 NETWORK OPTIONS .................................................................................................29 2.5 MINE OPERATIONS CENTER ..................................................................................31 2.5.1 Tracking Displays ......................................................................... 31 2.5.2 Surface Communications ................................................................. 32 3. COMMUNICATIONS SYSTEM PERFORMANCE ..............................................34 3.1 GENERAL PERFORMANCE CONSIDERATIONS ..................................................34 3.1.1 Physical Communications Link ......................................................... 34 3.1.2 Network Performance ..................................................................... 42 3.1.3 Management of the Electromagnetic Spectrum ...................................... 43 3.1.4 Modeling and Analysis ................................................................... 44 3.1.5 Maintenance and Testing ................................................................. 46 3.1.6 Performance Goals and Metrics ........................................................ 46 3.1.7 Wireless Systems Considerations ...................................................... 50 3.2 Point-to-Point Communications ................................................................. 51 3.3 Wired Communications ................................................................................................51 3.3.1 Twisted Pair ................................................................................. 51 3.3.2 Ethernet Cable .............................................................................. 51 3.3.3 Fiber Optic Cable .......................................................................... 52 3.4 LEAKY FEEDER SYSTEMS.......................................................................................52 3.4.1 Description .................................................................................. 52 3.4.2 Components ................................................................................. 53 3.4.3 Transmission Media ....................................................................... 55 3.4.4 Network Operations ....................................................................... 57 3.4.5 System Implementation ................................................................... 58 3.4.6 Maintenance and Inspection ............................................................. 60 3.4.7 Performance & Limitations .............................................................. 61 3.5 MEDIUM FREQUENCY SYSTEMS...........................................................................62 3.5.1 Description .................................................................................. 62 3.5.2 Components ................................................................................. 64 i Tutorial on Wireless Communications & Electronic Tracking 3.5.3 Transmission Media ....................................................................... 65 3.5.4 Network Operations ....................................................................... 66 3.5.5 System Implementation ................................................................... 66 3.5.6 Maintenance and Inspection ............................................................. 71 3.5.7 Performance & Limitations .............................................................. 72 3.6 NODE-BASED SYSTEMS ..........................................................................................74 3.6.1 Description .................................................................................. 74 3.6.2 Components ................................................................................. 79 3.6.3 Transmission Media ....................................................................... 80 3.6.4 Network Operations............................................................................................82 3.6.5 System Implementation .....................................................................................84 3.6.6 Maintainability and Inspection .......................................................... 85 3.6.7 Performance and Limitations ............................................................ 86 3.7 THROUGH-THE-EARTH SYSTEMS ........................................................................89 3.7.1 Description .........................................................................................................89 3.7.2 Components .......................................................................................................91 3.7.3 Transmission Media ...........................................................................................91 3.7.4 Network Operations ...........................................................................................92 3.7.5 System Implementation .....................................................................................92 3.7.6 Maintenance and Inspection ..............................................................................93 3.7.7 Performance and Limitations .............................................................................94 3.8. Communications Technology Comparisons ............................................................. 95 3.8.1 Comparison Matrix ............................................................................................96 4. ELECTRONIC TRACKING SYSTEM PERFORMANCE ....................................96 4.1 Tracking Techniques .....................................................................................................97 4.2 Reader-Based ................................................................................................................98 4.2.1 Zone-Based RFID ..............................................................................................98 4.2.2 Reverse RFID ...................................................................................................107 4.3 Node-Based Communications with Integrated Tracking ............................................116 4.3.1 Description .......................................................................................................116 4.3.2 Components .....................................................................................................117 4.3.3 Transmission Media .........................................................................................117 4.3.4 Network Operations .........................................................................................117 4.3.5 System Implementation ...................................................................................118 4.3.6 Maintainability and Inspection ........................................................................118 4.3.7
Recommended publications
  • Maintenance of Remote Communication Facility (Rcf)
    ORDER rlll,, J MAINTENANCE OF REMOTE commucf~TIoN FACILITY (RCF) EQUIPMENTS OCTOBER 16, 1989 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION AbMINISTRATION Distribution: Selected Airway Facilities Field Initiated By: ASM- 156 and Regional Offices, ZAF-600 10/16/89 6580.5 FOREWORD 1. PURPOSE. direction authorized by the Systems Maintenance Service. This handbook provides guidance and prescribes techni- Referenceslocated in the chapters of this handbook entitled cal standardsand tolerances,and proceduresapplicable to the Standardsand Tolerances,Periodic Maintenance, and Main- maintenance and inspection of remote communication tenance Procedures shall indicate to the user whether this facility (RCF) equipment. It also provides information on handbook and/or the equipment instruction books shall be special methodsand techniquesthat will enablemaintenance consulted for a particular standard,key inspection element or personnel to achieve optimum performancefrom the equip- performance parameter, performance check, maintenance ment. This information augmentsinformation available in in- task, or maintenanceprocedure. struction books and other handbooks, and complements b. Order 6032.1A, Modifications to Ground Facilities, Order 6000.15A, General Maintenance Handbook for Air- Systems,and Equipment in the National Airspace System, way Facilities. contains comprehensivepolicy and direction concerning the development, authorization, implementation, and recording 2. DISTRIBUTION. of modifications to facilities, systems,andequipment in com- This directive is distributed to selectedoffices and services missioned status. It supersedesall instructions published in within Washington headquarters,the FAA Technical Center, earlier editions of maintenance technical handbooksand re- the Mike Monroney Aeronautical Center, regional Airway lated directives . Facilities divisions, and Airway Facilities field offices having the following facilities/equipment: AFSS, ARTCC, ATCT, 6. FORMS LISTING. EARTS, FSS, MAPS, RAPCO, TRACO, IFST, RCAG, RCO, RTR, and SSO.
    [Show full text]
  • Introducing a Digital Distributed Antenna System (DAS) for Public Safety In-Building Communications
    Introducing A Digital Distributed Antenna System (DAS) For Public Safety In-Building Communications THE NEXT GENERATION DIGITAL PUBLIC SAFETY SOLUTION Dali Wireless | Whitepaper | March 2016 DALI WIRELESS © MARCH 2016 | Whitepaper www.daliwireless.com Introduction Reliable public safety in-building radio communications are vital in today’s emergency services operation, from dispatch to mission critical situations, and from voice only capabilities to voice and data. Public safety communications have evolved from fire call boxes, analog mobile radios to digital mobile radios and trunked radio systems. This evolution was mainly driven by technological advancements and the need for higher reliability. Traditionally, public safety uses lower frequency bands such as 150 MHz and 450 MHz. As the public safety network operations move to higher spectrum bands such as 700MHz or 800 MHz, the propagation characteristics of spectrum limits the in-building signal penetration. In addition, with more complex building environments such as dense building materials like aluminum or steel, energy efficient windows and green buildings meeting LEED standards, signals can be even further reduced or blocked which can impair effective communications between the first responders. Improving public safety coverage indoors is a long-standing challenge. An evolution in the in-building public safety infrastructure (Figure 1) is required to allow two-way radios or trunked radio systems to work seamlessly and reliably inside buildings and in underground tunnels, metros or mines and remote or isolated areas. Digital RF distribution Distributed system for in- Antenna building and System individual state (DAS) for in- requirements Off-air building Repeaters for Coverage in-building coverage Voting Receivers Driven by the need to support both current and future requirements Figure 1.
    [Show full text]
  • Task 3 Tompkins County
    q NYS TEC New York State Technology Enterprise Corporation presents its Options for a Public Safety Wireless Communications System: Synthesis and Evaluation Report for the Tompkins County Radio System Project February 28, 2001 Version 2 Options for a Public Safety Wireless Radio Communication System: NYS TEC Synthesis and Evaluation Report Tompkins County Radio System Project Table of Contents 1. OVERVIEW ..................................................................................................................................................1 2. WIDE-AREA WIRELESS MOBILE TECHNOLOGY ............................................................................3 2.1 RADIO FREQUENCIES .......................................................................................................................................3 2.2 CONVENTIONAL RADIO SYSTEMS ..................................................................................................................10 2.3 DIGITAL VOICE, DATA AND ENCRYPTION......................................................................................................13 2.4 VOTING SYSTEMS ..........................................................................................................................................17 2.5 TRUNKED RADIO SYSTEMS ............................................................................................................................17 2.6 SIMULCAST ....................................................................................................................................................24
    [Show full text]
  • Microwave Radio Transmission Design Guide
    Microwave Radio Transmission Design Guide Second Edition page i Finals 06-17-09 10:39:14 For a listing of recent titles in the Artech House Microwave Library, turn to the back of this book. page ii Finals 06-17-09 10:39:14 Microwave Radio Transmission Design Guide Second Edition Trevor Manning page iii Finals 06-17-09 10:39:14 Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN-13: 978-1-59693-456-6 Cover design by Igor Valdman 2009 ARTECH HOUSE 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. 10 987654321 page iv Finals 06-17-09 10:39:14 Contents Foreword xiii Preface xv 1 Introduction 1 1.1 History of Wireless Telecommunications 2 1.2 What Is Microwave Radio? 3 1.2.1 Microwave Fundamentals 3 1.2.2 RF Spectrum 4 1.2.3 Safety of Microwaves 5 1.2.4 Allocation
    [Show full text]
  • Houston Fire Department
    CITY OF HOUSTON, TX TRUNKED RADIO SYSTEM REQUEST FOR PROPOSALS, 8/31/07 Section 1—Current Radio Communications Environment... 1 1.1 Houston Airport System.........................................................................................1 1.1.1 Current Operations...................................................................................1 1.1.2 Radio System Coverage............................................................................1 1.1.3 Dispatch Operations .................................................................................2 1.1.4 Needs & Requirements.............................................................................5 1.1.5 Interoperability Needs ..............................................................................6 1.2 Houston Fire Department ......................................................................................6 1.2.1 Current Operations...................................................................................6 1.2.2 User Equipment .......................................................................................7 1.2.3 Dispatch Operations .................................................................................8 1.2.4 Radio System Problems ..........................................................................16 1.2.5 Needs & Requirements...........................................................................17 1.2.6 Functional Requirements ........................................................................19 1.3 Houston Police Department
    [Show full text]
  • ATS-6 Final Engineering Performance Report
    NASA ,-.:1NASA-RP-1080-VOL-5 Reference 19820008278 Publication 1080 _"_:-__'_,_:__, c_,_,_ t c_,_, r,', . _!,.,., .,,, ._, ;,,".:2,', J4"7;_r.-_: ',,,:z :_, ^, November 1981 ' " -........._'_' ATS-6 Final Engineering Performance Report Volume V - Propagation Experiments NI A NASA Reference Publication 1080 1981 ATS-6 Final Engineering Performance Report Volume V- Propagation.Experiments Robert O. Wales, Editor Goddard Space Flight Center Greenbelt, Maryland NI A National Aeronautics and Space Administration Scientific and Technical Information Branch An EngineeringEvaluation in Six Volumes Volume I: Programand System Summaries;Mechanical and Thermal Details Part A: Program Summary Part B: Mechanical Subsystems Part C: Thermal Control and Contamination Monitor Volume II: Orbit and Attitude Controls Part A: Attitude Control Part B: Pointing Experiments Part C: Spacecraft Propulsion Part D: Propulsion Experiment Volume III: Telecommunications and Power Part A: Communications Subsystem Part B: Electrical Power Subsystem Part C: Telemetry and Command Subsystem Part D: Data Relay Experiments Volume IV: Television Experiments Part A: The Department of Health, Education and WelfareSponsored Experiments Part B: Satellite Instructional TelevisionExperiment (India) Part C: Independent TelevisionExperiments Volume V: Propagation Experiments Part A: Experiments at 1550 MHz to 1650 MHz Part B: Experiments at 4 GHz to 6 GHz Part C: Experiments Above 10GHz Volume VI: Scientific Experiments This document makes use of international metric units according to the Syst_me International d'Unit_s (SI). In certain cases, utility requires the retention of other systems of units in addition to the SI units. The conven- tional units stated in parentheses following the computed SI equivalents are the basis of the measurements and calculations reported.
    [Show full text]
  • What Are Inbuilding Solutions
    DEGREE PROJECT, IN COMMUNICATION SYSTEMS , SECOND LEVEL STOCKHOLM, SWEDEN 2015 A Study of Multiband Indoor Radio Distribution System BIKASH SHAKYA KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY 2 A STUDY OF MULTIBAND INDOOR RADIO DISTRIBUTION SYSTEM BIKASH SHAKYA Master of Science Thesis performed at the Radio Communication Systems Group, KTH October 2014 Internal Advisor: Mats Nilsson External Advisor: Tord Sjölund Examiner: Associate Prof. Anders Västberg 3 Abstract: The mobile indoor traffic are increasing exponentially which is the current challenge in indoor coverage and design for most of the researchers and business companies to develop further. There are different trade-off to provide different indoor services with the use of different repeater system, distributed antenna network (active and passive), macro cells indoor penetrations and many more. As the use of energy effective materials for construction of buildings have made a blockage of RF signals from macro cells, usually a separate installations are done to provide indoor coverage for different services such as TRTRA, GSM, UNTS, LTE and WLAN in indoor environments for large campuses, industrial complex, sports arena, tunnels and office buildings. This separate installations increases the cost, installation space and time which can be solved using the same infrastructure to provide multiple of mobile indoor solutions using smart integrated solutions where many mobile services can be distributed indoor using the same distributed antenna network using active and passive networks. This thesis investigates the advantage and disadvantage of different types of active and passive distributed antenna system with the integrated antenna network to compare the coverage and cost analysis.
    [Show full text]
  • Cyber Security Risk Management for Connected Railroads
    U.S. Department of Transportation Office of Research, Federal Railroad Development and Technology Administration Washington , DC 20590 Cyber Security Risk Management for Connected Railroads No aProximate Field Logic Proximatea Access Access Needed Controllers Required _____..._ _________ __, Railroad Radio CPS Local or Carrier Network Communications Base Stations Field Linka es Closed Network Short Range RF Balises Accidentally Cleared Signal (tt.g. C&S Testing or Malicious lnJeCtion) . : 8m Block RelayMtal PLC Vital Radio Code ___J~ IT'll_!_l'~ R92~m~ Extralayerof Line Command '\Y' ; 1~ne 1ze/Ac\rvafif protection I , . Lack of acknowledgement False acknoY,,;edgement (~~the-middle) (dispatcher not able to know the 8Ctual status C&S Testing Signal ol blue block relay) MOWlimil Clearing ' '...====='....""'.""."' False Injection ___ Spoofing _____: 110.--•-I I (Attack) I ____________________ J +Work l im it Misunderstood = Risk DOT/FRA/ORD-20/25 Final Report | June 2020 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. Any opinions, findings and conclusions, or recommendations expressed in this material do not necessarily reflect the views or policies of the United States Government, nor does mention of trade names, commercial products, or organizations imply endorsement by the United States Government. The United States Government assumes no liability for the content or use of the material contained in this document. NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.
    [Show full text]
  • Law Enforcement Communications Plan Recipients
    4050 Esplanade Way Tallahassee, FL 32399-0950 Tel: 850-488-2786 | Fax: 850-922-6149 Rick Scott, Governor Erin Rock, Secretary MEMORANDUM TO: Florida Law Enforcement Communications Plan Recipients FROM: Heath Beach, Director, Division of Telecommunications DATE: December 28, 2018 SUBJECT: Florida Law Enforcement Communications Plan, 2018 Edition The Florida Law Enforcement Communications Plan (plan) has been revised and is available online at: http://www.dms.myflorida.com/business_operations/telecommunications/radio_communications_ services/radio_communications_plans. This edition includes updates, revisions, and clarifications and it specifically includes the following changes: • General clean-up • The cover page is replaced with a new page. • Revised section 2.1 – DivTel Bureau of Public Safety • New section 6.1.3 – Project 25 Radio ID Numbering. • Revised Appendix C – Glossary of Communications Terms. Text that has been modified in this revision is identified with a vertical bar ("│") in the left margin on the page. This plan is intended to meet the expectations of state and local law enforcement agencies. If you have any comments or questions regarding these revisions, please contact Steve Welsh, Bureau of Public Safety Communications Manager, at 850-922-7505 or via email at [email protected]. Table of Contents 1.0 INTRODUCTION 1 1.1 Scope 1 1.2 Executive Summary 1 1.3 Legislative Background 2 1.4 Plan Revision Procedure 3 2.0 ADMINISTRATIVE INFORMATION 4 2.1 Division of Telecommunications (DivTel) 4 2.2 Federal Communications
    [Show full text]
  • Chapter 1 Basic Radio Considerations
    Source: Communications Receivers: DSP, Software Radios, and Design Chapter 1 Basic Radio Considerations 1.1 Radio Communications Systems The capability of radio waves to provide almost instantaneous distant communications without interconnecting wires was a major factor in the explosive growth of communica- tions during the 20th century. With the dawn of the 21st century, the future for communi- cations systems seems limitless. The invention of the vacuum tube made radio a practical and affordable communications medium. The replacement of vacuum tubes by transistors and integrated circuits allowed the development of a wealth of complex communications systems, which have become an integral part of our society. The development of digital signal processing (DSP) has added a new dimension to communications, enabling sophis- ticated, secure radio systems at affordable prices. In this book, we review the principles and design of modern single-channel radio receiv- ers for frequencies below approximately 3 GHz. While it is possible to design a receiver to meet specified requirements without knowing the system in which it is to be used, such ig- norance can prove time-consuming and costly when the inevitable need for design compro- mises arises. We strongly urge that the receiver designer take the time to understand thor- oughly the system and the operational environment in which the receiver is to be used. Here we can outline only a few of the wide variety of systems and environments in which radio re- ceivers may be used. Figure 1.1 is a simplified block diagram of a communications system that allows the transfer of information between a source where information is generated and a destination that requires it.
    [Show full text]
  • Transcom Instruments Products Catalog 2017
    We Focusing c Data without tolerance limits is not binding. Subject change. to limits is not binding. without tolerance Data 2017 August, in China, 2017. Published I nstrument, Transcom TRANSCOM INSTRUMENTS Cellular Network/Critical PRODUCTS CATALOG 2017 Communication 2nd edition RF Component Manufacturing Research/Education Spectrum Monitoring Add:6F,Buliding29,No.69 Guiqing Road,Xuhui District,Shanghai,PRC.200233 Tel:+86 21 6432 6888 Fax:+86 21 6432 6777 Mail:[email protected] www.transcomwireless.com We Focusing c Data without tolerance limits is not binding. Subject change. to limits is not binding. without tolerance Data 2017 August, in China, 2017. Published I nstrument, Transcom TRANSCOM INSTRUMENTS Cellular Network/Critical PRODUCTS CATALOG 2017 Communication 2nd edition RF Component Manufacturing Research/Education Spectrum Monitoring Add:6F,Buliding29,No.69 Guiqing Road,Xuhui District,Shanghai,PRC.200233 Tel:+86 21 6432 6888 Fax:+86 21 6432 6777 Mail:[email protected] www.transcomwireless.com We Focusing TRANSCOM INSTRUMENTS PRODUCTS CATALOG 2017 Chapter Model Name Cellular Network Measurement SpecMini Handheld Spectrum Analyzer 5 SiteHawk Handheld Cable & Antenna Analyzer 13 TSP Transmitter TSP Pilot Transmitter 21 c Data without tolerance limits is not binding. Subject change. to limits is not binding. without tolerance Data 2017 August, in China, 2017. Published I nstrument, Transcom TRANSCOMTSP Scanner INSTRUMENTSTSP Scanner 2 IoT Scanner NB-IoT/eMTC Scanner 36 Manufacturing & Education Micro-Tx Vector Signal
    [Show full text]
  • Communications Based Train Control (CBTC)
    GOVERNMENT OF INDIA MINISTRY OF RAILWAYS An Introductory Handbook on Communications Based Train Control (CBTC) End Users: Indian Railways Signal Engineers CAMTECH/S/PROJ/2020-21/SP9/1.0 April 2021 INDIAN RAILWAYS Centre for Advanced Maintenance Technology Maharajpur, Gwalior (M.P.) Pin Code – 474 005 i This page has been left blank intentionally ii Introductory Handbook on Communications Based Train Control (CBTC) CAMTECH/S/PROJ/2020-21/SP9/1.0 April 2021 iii This page has been left blank intentionally iv Foreword Conventional railway signalling is based on colour light signals and train detection with the help of track circuits and axle counters. Although this technology is suitable for detection and control of trains it is still not able to utilize the section capacity to its full advantage. Over the last decade, railways have seen a huge transition from conventional railway signalling systems to modern signalling systems. As there are continuous improvements in technology, we need to keep pace with the latest trends and keep ourselves updated. Communications-Based Train Control (CBTC) is a modern communication- based system that uses radio communication to transfer timely and accurate train control information. CBTC is the choice of mass-transit railway operators today, with over a hundred systems currently installed worldwide. In India also, the CBTC technology is finding applications in Metro railways. As CBTC is an upcoming technology, CAMTECH has issued this introductory handbook for Signal & Telecommunication engineers to get them acquainted with this and help them in implementing the system in the context of working on Indian Railways. I hope that this handbook will prove useful to S&T engineers of Indian Railways in enhancing their knowledge.
    [Show full text]