Applications and Characterisation of Correlations in Quantum Optics

Total Page:16

File Type:pdf, Size:1020Kb

Applications and Characterisation of Correlations in Quantum Optics Applications and characterisation of correlations in quantum optics CHRISTIAN KOTHE Doctoral Thesis in Microelectronics and Applied Physics KTH School of Information and Communication Technology Stockholm, Sweden, 2011 KTH Skolan för informations- TRITA-ICT/MAP AVH Report 2011:06 och kommunikationsteknik ISSN 1653-7610 Electrum 229 ISRN KTH/ICT-MAP/AVH-2011:06-SE SE-164 40 Kista ISBN 978-91-7415-979-0 Sweden Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan fram- lägges till offentlig granskning för avläggande av teknologie doktorsexamen i mikro- elektronik och tillämpad fysik, tisdagen den 7 juni 2011 klockan 13:00 i sal FB52, AlbaNova Universitetscentrum, Kungliga Tekniska Högskolan, Roslagstullsbacken 21, Stockholm. © Christian Kothe, April 2011 Tryck: Universitetsservice US AB iii Abstract Quantum optics offers a huge variety of exciting phenomena. Many of them are still in their infancy and especially when it comes to implementing devices using these effects for more than a proof of principle demonstration still many things have to be investigated and understood. In this thesis I discuss the role of correlations in some areas of quantum optics and in some cases compare it to classical optics. Four papers form the core of the thesis. In the first paper, I propose a new measure for entanglement. This mea- sure is based on correlations between two states. I show, how this measure relates to another measure, the concurrence. It turns out that the measure is a bijective map of the concurrence for a pure state of two qubits. I motivate why the new measure is useful if one wants to implement it experimentally. I discuss its behaviour for the case of two qubits and show its properties when dealing with pure and with mixed states. The second paper extends the result of the first one to the case where one has higher-dimensional states than qubits. In the third paper I look at phase super-resolution. I show that it can be interpreted as a purely classical effect and I analyse what is needed and what is not needed to achieve it. Specifically, I show that quantum correlations in terms of entanglement is not needed to demonstrate phase super-resolution. By doing so I propose how one could achieve arbitrarily high phase super- resolution. Finally, the last paper looks at the efficiency of quantum lithography and quantum imaging. It shows, that some basic assumptions in the original pro- posals of quantum lithography seems unfounded and that, as a consequence, the efficiency is poor. I give formulæ for the explicit scaling behaviour when changing the number of photons in a mode or when changing the number of pixels. The effect of the results on the future of quantum lithography is discussed as well. iv Sammanfattning Kvantoptiken erbjuder ett stort antal spännande fenomen. Många av dem är fortfarande i sin linda och särskilt när man vill tillämpa kvantoptiska effek- ter snarare än att bara visa att principen fungerar så finns det många saker och ting som måste förstås och undersökas bättre. I denna avhandling ska jag diskutera vilken roll korrelationer spelar i några områden inom kvantoptik och i några fall ska jag jämföra dem med klassisk optik. Fyra vetenskapliga artiklar bildar kärnan i avhandlingen. I det första pappret föreslår jag ett nytt sammanflätningsmått. Detta mått har sin ursprung i korrelationer mellan två tillstånd. Jag visar hur måttet förhåller sig till ett annat mått, den så kallade ”concurrence”. Det visar sig att måttet är en bijektiv avbildning av concurrence för rena tillstånd av två qubitar. Jag motiverar varför det nya måttet är användbart när man vill implementera det experimentellt. Jag diskuterar hur måttet beter sig för två qubitar och visar dess egenskaper för rena och blandade tillstånd. Det andra pappret utvidgar första papprets resultat till situationer där man har tillstånd med högre dimension än qubitar. I det tredje pappret undersöker jag superfasupplösning. Jag visar att man kan tolka detta som en rent klassisk effekt och jag undersöker vad man be- höver och vad man inte behöver för att uppnå superfasupplösning. Jag visar särskilt att kvantkorrelationer genom sammanflätning inte behövs för att visa superfasupplösning. Därigenom ger jag förslag om hur man kan uppnå god- tyckligt hög superfasupplösning. Slutligen tittar jag i sista pappret på effektiviteten av kvantlitografi och kvantavbildning. Pappret visar att några grundläggande antaganden i origi- nalförslaget till kvantlitografi verkar vara illa underbyggda och att därigenom kvantlitografins effektivitet reduceras kraftigt. Jag ger ekvationer för det exak- ta skalningsbeteendet när man ändrar antalet fotoner i en mod eller när man ändrar antalet pixlar. Jag diskuterar också implikationerna som det medför för kvantlitografins framtid. Preface This work consists of two parts. The first part is a summary of the work which I did during my PhD studies. Following that, I have attached four of my published papers. The work should be seen as a whole. Not everyhting in the attached papers is also discussed in the first part and not everything written in the first part is also part of any of my published papers. I rather make references in the first part to my papers when there is no need to repeat facts and thoughts. In most cases, however, the first part should be seen as an extension of the work written in the papers. It partly goes into more detail, explains concepts in another way, gives more introduction into the area, and links the papers together. The work presented in this thesis was performed under the supervision of Prof. Gunnar Björk in the Quantum Electronics and Quantum Optics group (QEO), which is part of the School of Information and Communication Technology at the Royal Institute of Technology (KTH) in Kista. My co-supervisor there was Prof. Anders Karlsson. The second half of my PhD-time I spent at the Quantum Infor- mation and Quantum Optics group (KIKO) at the Physics Department in Albanova at Stockholm’s university. During that time Prof. Mohamed Bourennane was the co-supervisor. v Acknowledgements Hardly no work is the result of a single man and this thesis is by no means an exception. A lot of persons have had influence on it, let it be through discussions, through ideas, through critics or sometimes, only for the best, through preventing me from doing science. My first and highest thanks should go to my supervisors. Without the support, the guidance and, most importantly, the discussions with Gunnar Björk this work would not have been possible. For the second half of my PhD-studies the same should be said to Mohamed Bourennane, my co-supervisor during that time. Also Anders Karlsson, my co-supervisor during the first half of the PhS-studies receives my thanks. I had many discussions about science with other people as well. Without their willingness to answer my questions, to explain things or to give me useful hints many things would have taken longer times, would have been harder or maybe even impossible to perform. I want to thank from Kista especially Sébastien Sauge and Marcin Swillo for their great help in the lab and for explaining things to me, Maria Tengner, Anders Månsson and Piero G Luca Porta Mana for discussing physics with me and for help and cooperation when teaching, and Johan Waldebäck for help with some electronics. From AlbaNova I want to thank especially Hatim Azzouz for the help with the slits, Elias Amselem, Johan Ahrens and Magnus Rådmark for taking time to discuss things or to show me things in the lab every time I was wondering about something, Muhamad Sadiq for help in the lab and Per Nilsson for the help in programming and for the possibility to use his control software. I also want to thank Hoshang Heydari, Jonas Tidström, Mauritz Andersson, Daniel Ljunggren, and Hannes Hübel that you all provided time and answered questions when I went into your offices. A great thank should also be given to Eva Andersson for help with all administrative issues. Furthermore, I want to thank the above people and Aziza Sudirman, Jonas Almlöf, Atia, Alley, Amir, Aafke, Klaus, Philipp, Benjamin, Kate, Emma, Klas and Istvan for contributing to interesting lunch and “fika” diskussions and for having fun together at excursions. I enjoyed it very much. Not to forget José-Luis, Natasha and Isabel. I am very happy that we became friends and that we enjoyed a lot of things together. A special thanks goes also to Kårspexet and all its member. You were a very vii viii ACKNOWLEDGEMENTS welcome diversion from science and a nearly constant source of joy and happiness. And thanks to Olaf, Aymeric and Anna, Lars, Frank, Dave and Kathrin for either skiing, going on holidays, or having gaming evenings together, for going out, or, most importantly, being around, being friends and having fun together. I want to thank Studienstiftung des deutschen Volkes for their support during my studies. Finally, I also thank my parents for their support. Without their help and motivation I would not have had the opportunity to defend my PhD thesis. The most special thanks, however, should go to Sofia and Malte. You are the most important persons in my life! Contents Preface v Acknowledgements vii Contents ix List of papers and contributions xiii Papers which are part of the thesis: . xiii My contributions to the papers: . xiv Paper which is not part of the thesis: . xiv Conference contributions: . xiv List of acronyms and conventions xvii Acronyms . xvii Conventions . xviii List of Figures xix 1 Introduction 1 2 Background in optics and quantum optics 5 2.1 Optics . 5 2.1.1 Polarisation . 5 2.1.2 Jones calculus . 7 2.1.3 Stokes parameters . 8 2.2 Quantum optics .
Recommended publications
  • Is the Universe Expanding?: an Historical and Philosophical Perspective for Cosmologists Starting Anew
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-1996 Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew David A. Vlosak Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Cosmology, Relativity, and Gravity Commons Recommended Citation Vlosak, David A., "Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew" (1996). Master's Theses. 3474. https://scholarworks.wmich.edu/masters_theses/3474 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. IS THEUN IVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STAR TING ANEW by David A Vlasak A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements forthe Degree of Master of Arts Department of Philosophy Western Michigan University Kalamazoo, Michigan June 1996 IS THE UNIVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STARTING ANEW David A Vlasak, M.A. Western Michigan University, 1996 This study addresses the problem of how scientists ought to go about resolving the current crisis in big bang cosmology. Although this problem can be addressed by scientists themselves at the level of their own practice, this study addresses it at the meta­ level by using the resources offered by philosophy of science. There are two ways to resolve the current crisis.
    [Show full text]
  • Emil Wolf Institutional Interviews Journal Interviews EMERGING RESEARCH FRONTS - 2009 Podcasts
    Home About Scientific Press Room Contact Us ● ScienceWatch Home ● Inside This Month... ● Interviews Featured Interviews Author Commentaries 2009 : April 2009 - Emerging Research Fronts : Emil Wolf Institutional Interviews Journal Interviews EMERGING RESEARCH FRONTS - 2009 Podcasts April 2009 ● Analyses Emil Wolf talks with ScienceWatch.com and answers a few questions about this month's Featured Analyses Emerging Research Front Paper in the field of Physics. What's Hot In... Article: Unified theory of coherence and polarization of random Special Topics electromagnetic beams Authors: Wolf, E Journal: PHYS LETT A, 312 (5-6): 263-267 JUN 16 2003 ● Data & Rankings Addresses: Univ Rochester, Dept Phys & Astron, 601 Elmwood Ave, Rochester, NY 14627 USA. Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. Sci-Bytes Univ Rochester, Inst Opt, Rochester, NY 14627 USA. Fast Breaking Papers New Hot Papers Emerging Research Fronts Fast Moving Fronts Corporate Research Fronts Why do you think your paper is highly cited? Research Front Maps Because the theory presented in that paper makes it possible to provide solutions to a number of scientific, technological, and medical problems which could not have been done previously. Current Classics Top Topics Does it describe a new discovery, methodology, or synthesis of knowledge? Rising Stars The discovery reported in the paper provides a synthesis of two branches of optics, known as the theory of coherence and the theory of polarization of light. Until the publication of my paper, these two subjects New Entrants had always been treated independently of each other. Prior to the invention of the laser, almost 50 years Country Profiles ago, the available sources which generate light, such as a light bulb and the sun, may be shown to have, on a short time scale, irregularities (called fluctuations) which make it impossible to use such light for some applications.
    [Show full text]
  • Ionization Based State Read out of a Single 87-Rb Atom
    Ionization Based State Read Out of a single 87Rb Atom Michael Krug M¨unchen2017 Ionization Based State Read Out of a single 87Rb Atom Michael Krug Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Michael Krug aus M¨unchen M¨unchen, den 8. Dezember 2017 Erstgutachter: Prof. Dr. Harald Weinfurter Zweitgutachter: Prof. J¨orgSchreiber Tag der m¨undlichen Pr¨ufung:30. Januar 2018 "After sleeping through a hundred million centuries we have finally opened our eyes on a sumptuous planet sparkling with color, bountiful with life. Within decades, we must close our eyes again. Isn't it a noble, enlightened way of spending our brief time in the sun to work at understanding the universe and how we have come to wake up in it? This is how I answer when I am asked, as I am surprisingly often, why I bother to get up in the mornings." Richard Dawkins Zusammenfassung Verschr¨ankung ist nach E. Schr¨odingerdie fundamentale Charakteristik der 1 Quantenmechanik. Einerseits lebt ein verschr¨ankterZustand zweiter Spin- 2 -Teilchen auf einem vier-dimensionalem Hilbert-Raum und die Theorie, um diesen Zustand zu beschreiben, ist hinreichend verstanden. Auf der anderen Seite ist die experimentelle Realisierung verschr¨ankter Systeme, im Besonderen hybride Licht-Materie-Systeme und deren Nachweis noch immer ein anspruchsvoller Prozess. Ausgehend von einem Quantensystem, das aus einem verschr¨anktenAtom-Photon-Paar besteht, wird hier die experimentelle Anwendung des entanglement swapping Protokolls verwendet, um einen Grundknotenpunkt einer Quanten-Repeater Verbindung aufzubauen, die aus zwei verschr¨anktenAtomen besteht. Die angek¨undigteErzeugung von Ver- schr¨ankungzwischen zwei Atomen bereitet den Weg hin zu einem beweiskr¨aftigem Experiment, um eine lokal-realistische Beschreibung der Welt zu falsifizieren.
    [Show full text]
  • Acknowledgements Acknowl
    1277 Acknowledgements Acknowl. A.1 The Properties of Light by Helen Wächter, Markus W. Sigrist by Richard Haglund The authors thank a number of coworkers for their The author thanks Prof. Emil Wolf for helpful discus- valuable input, notably R. Bartlome, Dr. C. Fischer, sions, and gratefully acknowledges the financial support D. Marinov, Dr. J. Rey, M. Stahel, and Dr. D. Vogler. of a Senior Scientist Award from the Alexander von The financial support by the Swiss National Science Humboldt Foundation and of the Medical Free-Electron Foundation and ETH Zurich for the isotopomer studies Laser program of the Department of Defense (Con- is gratefully acknowledged. tract F49620-01-1-0429) during the preparation of this chapter. by Jürgen Helmcke In writing the chapter on frequency-stabilized lasers, A.4 Nonlinear Optics the author has greatly benefited from fruitful coopera- by Aleksei Zheltikov, Anne L’Huillier, Ferenc Krausz tion and helpful discussions with his colleagues at PTB, We acknowledge the support of the European Com- in particular with Drs. Fritz Riehle, Harald Schnatz, munity’s Human Potential Programme under contract Uwe Sterr, and Harald Telle. Special thanks belong to HPRN-CT-2000-00133 (ATTO) and the Swedish Sci- Dr. Fritz Riehle for his careful and critical reading of the ence Council. manuscript. Part of the work discussed in this chapter was supported by the Deutsche Forschungsgemeinschaft A.5 Optical Materials and Their Properties (DFG) under SFB 407. by Klaus Bonrad The author of Sect. 5.9.2 is grateful to Dr. Thomas C.12 Femtosecond Laser Pulses: Däubler, Dr. Dirk Hertel, and Dr.
    [Show full text]
  • Principles of Optics
    Principles of optics Electromagnetic theory of propagation, interference and diffraction of light MAX BORN MA, Dr Phil, FRS Nobel Laureate Formerly Professor at the Universities of Göttingen and Edinburgh and EMIL WOLF PhD, DSc Wilson Professor of Optical Physics, University of Rochester, NY with contributions by A.B.BHATIA, P.C.CLEMMOW, D.GABOR, A.R.STOKES, A.M.TAYLOR, P.A.WAYMAN AND W.L.WILCOCK SEVENTH (EXPANDED) EDITION CAMBRIDGE UNIVERSITY PRESS Contents Historical introduction xxv I Basic properties of the electromagnetic field 1 1.1 The electromagnetic field 1 1.1.1 Maxwells equations 1 1.1.2 Material equations 2 1.1.3 Boundary conditions at a surface of discontinuity 4 1.1.4 The energy law of the electromagnetic field 7 1.2 The wave equation and the velocity of light 11 1.3 Scalar waves 14 1.3.1 Plane waves 15 1.3.2 Spherical waves 16 1.3.3 Harmonie waves. The phase velocity 16 1.3.4 Wave packets. The group velocity 19 1.4 Vector waves 24 1.4.1 The general electromagnetic plane wave 24 1.4.2 The harmonic electromagnetic plane wave 25 (a) Elliptic polarization 25 (b) Linear and circular polarization 29 (c) Characterization of the state of polarization by Stoltes parameters 31 1.4.3 Harmonie vector waves of arbitrary form 33 1.5 Reflection and refraction of a plane wave 38 1.5.1 The laws of reflection and refraction 38 1.5.2 Fresnel formulae 40 1.5.3 The reflectivity and transmissivity; polarization an reflection and refraction 43 1.5.4 Total reflection 49 1.6 Wave propagation in a stratified medium.
    [Show full text]
  • Colloquiumcolloquium
    ColloquiumColloquium History and solution of the phase problem in the theory of structure determination of crystals from X-ray diffraction experiments Emil Wolf Department of Physics and Astronomy Institute of Optics University of Rochester 3:45 pm, Wednesday, Nov 18, 2009 B.Sc. and Ph.D. Bristol University Baush & Lomb 109 D.Sc. University of Edinburgh U. of Rochester 1959 - Tea 3:30 B&L Lobby Wilson Professor of Optical Physics JointlyJointly sponsoredsponsored byby The most important researches carried out in this field will be reviewed and a recently DepartmentDepartment ofof PhysicsPhysics andand AstronomyAstronomy obtained solution of the phase problem will be presented. History and solution of the phase problem in the theory of structure determination of crystals from X-ray diffraction experiments Emil Wolf Department of Physics and Astronomy and The Institute of Optics University of Rochester Abstract Since the pioneering work of Max von Laue on interference and diffraction of X-rays carried out almost a hundred years ago, numerous attempts have been made to determine structures of crystalline media from X-ray diffraction experiments. Usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk the most important researches carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented. Biography Emil Wolf is Wilson Professor of Optical Physics at the University of Rochester, and is reknowned for his work in physical optics. He has received many awards, including the Ives Medal of the Optical Society of America, the Albert A.
    [Show full text]
  • Emil Wolf: ‘A Scientist and Friend Like No Other’ a Student of the Noted Physicist Counts up Some of His Mentor’S Contributions to Science and to His Colleagues
    CLASS NOTES TRIBUTE Emil Wolf: ‘A Scientist and Friend Like No Other’ A student of the noted physicist counts up some of his mentor’s contributions to science and to his colleagues. Emil Wolf, the former Wilson Professor of Optical Physics, a In 1958, Robert Hopkins, then director of the institute, traveled faculty member in the University’s Institute of Optics and the to England for a conference and to meet with Emil. The meet- 1 3 Department of Physics and Astronomy, died in June at the age ing nearly didn’t happen. The letter from Hopkins got misfiled by of 95. He is survived by his children, Bruno and Paula, and his a secretary and was only discovered by Emil as he was searching beloved wife, Marlies. He was decorated with numerous presti- for another misfiled document. “It was all a matter of luck, par- gious national and international awards, honorary degrees, and ticularly that phone call in Paris at three in the morning saying appointments. He was my mentor and my friend and my measuring stick for what is good and what is decent. He was a refugee. When the Nazis in- vaded Czechoslovakia in 1939, Emil’s 2 brother, Karel, joined the Czech army. Emil was too young for the army and their parents sent him to Italy in hopes that he could somehow get to France or England. Trading valuable stamps his father had collected, Emil made his way from Prague to the Italian coast and then illegally into France by boat. Once in Paris, he found work with the Czech government in exile with whom he evacuated to Britain when Paris fell.
    [Show full text]
  • Numerical Analysis of Focusing by a Metamaterial Lens
    Numerical analysis of focusing by a metamaterial lens Ali Eren Culhaoglu1, Andrey Osipov1 and Peter Russer2 1 Microwaves and Radar Institute, German Aerospace Center 82234 Wessling Germany email: [email protected] 2 Institute for High Frequency Engineering, Technische Universitat¨ Munchen¨ Arcisstrasse 21, 80333 Munich Germany email: [email protected] Abstract Over the last several years there has been a surge of interest in artificial materials because of their potential to expand the range of electromagnetic properties in materials. The so called metamate- rials, also known as left-handed (LHM) or double-negative (DNG) materials with negative permittivity and permeability have attracted growing interest. An important application area is the realization of flat superlenses with imaging properties beyond that of conventional lenses. This work investigates the focusing properties of a lossless planar DNG slab with a relative permittivity and permeability both ap- proaching the value -1. The relation between the imaging quality and the material parameters is examined both analytically and numerically. Results obtained from numerical simulations via the transmission line matrix method are compared to the analytical solution. 1. Introduction Incident and emerging waves from a DNG slab will undergo negative refraction [1]. As a consequence p a slab with finite thickness d and material parameters "r = µr = -1 (refractive index n = "rµr = -1) focuses waves emitted from a point source located at a distance l in front of the slab to a point at a distance of d − l behind the slab [2, 3]. As seen in Fig. 1(a) the waves emitted from a point source are focused inside and outside the slab due to negative refraction at the slab interfaces.
    [Show full text]
  • 44. the Reality of Physical Optics at the Institute
    AJC-05.qxd 21/06/04 11:38 AM Page 226 44. The Reality of Physical Optics at the Institute Brian J. Thompson The model that President Rush Rhees used in conjunction with his industrial counterparts and backers, George Eastman and Edward Bausch, for “his Institute” was the already suc- cessful Technical Optics Department at the Royal College of Science of the Imperial College of Science & Technology in London, England. Not only was this the model, but he hired the first two faculty members in England: Rudolf Kingslake, who had graduated from that Technical Optics Department in the second graduating class, for geometrical optics and A. Maurice Taylor for physical optics. These subjects were viewed as the two fundamental branches of the field so those of us who are working, or who have worked in the Institute in physical optics and developed that limb of the “optics tree” can trace our ancestry in part to 1929 and Maurice Taylor. He was a Ph.D. graduate from Cambridge University and co-author of a book, The Infrared Analysis of Molecular Structures, with F. I. G. Rawlins. While Kinglake had been appointed by the board of trustees in June of 1929, they didn’t act on Taylor’s appointment until November of 1929. The long and productive road from 1929 to 2003 has seen an explosion of under- standing, of new fundamental knowledge, and of diverse and interesting, and yes impor- tant, applications of physical optics. Maurice Taylor returned to England in 1934 and later became the chairman of the physics department at Southampton University.
    [Show full text]
  • Frontiers in Optics 2010/Laser Science XXVI
    Frontiers in Optics 2010/Laser Science XXVI FiO/LS 2010 wrapped up in Rochester after a week of cutting- edge optics and photonics research presentations, powerful networking opportunities, quality educational programming and an exhibit hall featuring leading companies in the field. Headlining the popular Plenary Session and Awards Ceremony were Alain Aspect, speaking on quantum optics; Steven Block, who discussed single molecule biophysics; and award winners Joseph Eberly, Henry Kapteyn and Margaret Murnane. Led by general co-chairs Karl Koch of Corning Inc. and Lukas Novotny of the University of Rochester, FiO/LS 2010 showcased the highest quality optics and photonics research—in many cases merging multiple disciplines, including chemistry, biology, quantum mechanics and materials science, to name a few. This year, highlighted research included using LEDs to treat skin cancer, examining energy trends of communications equipment, quantum encryption over longer distances, and improvements to biological and chemical sensors. Select recorded sessions are now available to all OSA members. Members should log in and go to “Recorded Programs” to view available presentations. FiO 2010 also drew together leading laser scientists for one final celebration of LaserFest – the 50th anniversary of the first laser. In honor of the anniversary, the conference’s Industrial Physics Forum brought together speakers to discuss Applications in Laser Technology in areas like biomedicine, environmental technology and metrology. Other special events included the Arthur Ashkin Symposium, commemorating Ashkin's contributions to the understanding and use of light pressure forces on the 40th anniversary of his seminal paper “Acceleration and trapping of particles by radiation pressure,” and the Symposium on Optical Communications, where speakers reviewed the history and physics of optical fiber communication systems, in honor of 2009 Nobel Prize Winner and “Father of Fiber Optics” Charles Kao.
    [Show full text]
  • List of Books
    INDIAN INSTITUTE OF TECHNOLOGY KANPUR CELT LIBRARY Sl. Title Author No. 1 LASERS SIEGMAN ANTHONY S 2 FABRY PEROT INTERFEROMETERS G. HERNANDEZ 3 OPTICAL INSTABILITIES BOYD RW, RAYMER MG, NARDUCCI LM 4 LASER WELDING, MACHINING AND C ALBRIGHT MATERIAL PROCESSING 5 LASERS IN APPLIED AND S STENHOLM FUNDAENTAL RESEARCH 6 LASER SPECTROSCOPY AND ITS LEON J RADZIEMSKI,RICHARD W APPLICATIONS SOLARZ,JEFFREY A PAISNER 7 NONTRADITIONAL MACHINING CARL WEGNER 8 LASERS IN MATERIAL PROCESSING E A METZBOWER 9 THE LASER DOPPLER TECHNIQUE L E DRAIN 10 LASER REMOTE SENSING RAYMOND M MEASURES 11 ATOMIC PHYSICS OF LASERS DEREK EASTHAM 12 FRONTIERS OF LASER MORRIS R LEVITT,LEWIS HOLMES TECHNOLOGY 13 LASERS AND PLASMA S LEE, B C TAN, C S WONG, A C CHEW TECHNOLOGY 14 LONG WAVELENGTH AGRAWAL G P, DUTTA N K SEMICONDUCTOR LASERS 15 UNDERSTANDING LASER BRECK HITZ C TECHNOLOGY 16 LIGHT H HAKEN 17 THE INDUSTRIAL LASER ANNUAL DAVID BELFORTE, MORRIS LEVITT HANDBOOK 18 PROGRESS IN OPTICS, VOL XI EMIL WOLF 19 PROGRESS IN OPTICS, VOL XVII EMIL WOLF 20 PROGRESS IN OPTICS, VOL XIX EMIL WOLF 21 PROGRESS IN OPTICS, VOL XX EMIL WOLF 22 PROGRESS IN OPTICS, VOL XXII EMIL WOLF 23 PROGRESS IN OPTICS, VOL XXIII EMIL WOLF 24 THIN FILM OPTICAL FILTERS H A MACLEOD 25 PROGRESS IN OPTICS, VOL XXI EMIL WOLF 26 HOLOGRAPHY AND COHERENT L M SOROKO OPTICS 27 METHODS OF DIGITAL L P YAROSLAVSKII, N S MERZLYAKOV HOLOGRAPHY 28 LASER AND SATELLITE MORRIS KATZMAN COMMUNICATIONS 29 VOLUME HOLOGRAPHY AND L SOLYMAR, D J COOKE VOLUME GRATINGS 30 THREEDIMENSIONAL IMAGING OKOSHI TAKANORI TECHNIQUE 31 ENGINEERING
    [Show full text]
  • Geometrical Optics Limit of Stochastic Electromagnetic Fields
    University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering April 2008 Geometrical optics limit of stochastic electromagnetic fields Robert W. Schoonover University of Illinois Adam M. Zysk University of Illinois P. Scott Carney University of Illinois John C. Schotland University of Pennsylvania, [email protected] Emil Wolfe University of Rochester Follow this and additional works at: https://repository.upenn.edu/be_papers Recommended Citation Schoonover, R. W., Zysk, A. M., Carney, P. S., Schotland, J. C., & Wolfe, E. (2008). Geometrical optics limit of stochastic electromagnetic fields. Retrieved from https://repository.upenn.edu/be_papers/115 Copyright American Physical Society. Reprinted from American Physical Society, Volume 77, Article 043831, April 2008, 6 pages. Publisher URL: http://link.aps.org/abstract/PRA/v77/e043831 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/be_papers/115 For more information, please contact [email protected]. Geometrical optics limit of stochastic electromagnetic fields Abstract A method is described which elucidates propagation of an electromagnetic field generated by a stochastic, electromagnetic source within the short wavelength limit. The results can be used to determine statistical properties of fields using ar y tracing methods. Keywords light propagation, ray tracing Comments Copyright American Physical Society. Reprinted from American Physical Society, Volume 77, Article 043831, April 2008, 6 pages. Publisher URL: http://link.aps.org/abstract/PRA/v77/e043831 This journal article is available at ScholarlyCommons: https://repository.upenn.edu/be_papers/115 PHYSICAL REVIEW A 77, 043831 ͑2008͒ Geometrical optics limit of stochastic electromagnetic fields Robert W. Schoonover, Adam M. Zysk,* and P. Scott Carney Department of Electrical and Computer Engineering and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA John C.
    [Show full text]