Dirty/Contaminated Water Diving Tips Mike Ward, July 6, 2010

Total Page:16

File Type:pdf, Size:1020Kb

Dirty/Contaminated Water Diving Tips Mike Ward, July 6, 2010 Dive Lab, Inc. 1415 Moylan Road, Panama City Beach, FL 32407 Phone: 850-235-2715 Fax: 850-235-0858 E-mail: [email protected] Complete Support & Testing of Underwater Diving Equipment Dirty/Contaminated Water Diving Tips Mike Ward, July 6, 2010 Dive Lab and Kirby Morgan get a lot of inquires / questions from divers about what kind of chemicals and contamination the KMDSI helmets can protect against, and what can be done to minimize water exposure. The information herein primarily discusses the use of KMDSI helmets, and gives information, and tips that will help to minimize the chances of getting water into the helmet by explaining and identifying factors, conditions and situations that can make water entry possible. This information is primarily for KMDSI helmets however the concepts apply to other demand mod diving helmets. KMDSI recommends that persons engaged in contaminated water diving be properly trained in contaminated water diving and techniques. No diver is 100% safe when diving in contaminated water, regardless of what brand, model, or type of helmet and suit is being used. Besides water leakage, chemical gas permeation through the rubber and fabric components can be a factor to deal with which can be deadly. To get a good idea of stay times and risks, you would have to know exactly what chemicals are present, at what concentrations, and then you would also need to know if any of the chemicals when combined add to the hazard. Also, when it comes to permeation, gases like phosgene and chlorine, know few boundaries. It is virtually impossible to cover all the scenarios and combinations. The main purpose of this paper is to educate helmet users how to best operate and use Kirby Morgan helmets from the diver’s point of view so the diver stays dry. Simply put, if you don’t use and dive a helmet and dry suit the right way, you are probably going to get wet, and once wet you are exposed. Diving in contaminated waters can pose serious health risks and requires special equipment, procedures, and techniques. Most diving schools do not teach the detailed specifics when it comes to how the diver must actually operate and adjust the helmet for contaminated water diving. For a helmeted diver to stay dry, a dry, properly maintained, good quality dry suit attached directly to the helmet is required. For maximum protection, a helmet equipped with a DIVEX™ (Dirty Harry) return line system is probably the best choice because it Copyright© 2010, Dive Lab, Inc. All Rights Reserved. 1 Contaminated/Dirty Water Dive Tips July 2010 exhausts to the surface and minimizes the possibility of water entering the exhaust system due to suspended debris and / or chemical deterioration of the exhaust system. Return line systems have a supply and return hose and basically provide the helmet with breathing gas, then exhausts the exhalation gas up the exhaust hose to the surface so the exhaled breathing gas is never in contact with the water. Even a return line system is not perfect, and getting water in the helmet and suit is still a possibility under certain circumstances. In addition, return line systems are extremely expensive making them out of reach for many companies because quite often the customers are not willing to pay a diving contractor the extra money for having this type of equipment, especially if he can get a SCUBA diver to do it with a full face mask for ¼ of the price. The competitive nature of diving contract work, lack of labor enforcement, and prospect of saving money, often results in safety being compromised. Dirty Diving: For contaminated water diving, any of the Kirby Morgan helmets equipped with the quad valve system and properly mated to a dry suit will offer a high degree of protection from biological, chemical, and petroleum contaminated waters. Of all the KMDSI helmets used for contaminated water diving the KM-37 and KM-77 seem to be the helmets of choice. Regardless of the helmet model used, in order to stay dry throughout the dive requires not only a good sealing system between the helmet, cuffs, suit, and suit penetrations, but also a good understanding of how and why water can enter the suit system, and how to minimize the possibility of water entering. Regardless of the type of helmet or dry suit used, getting water into the helmet or suit is always possible if the diver does not take precautions and / or does not operate and maintain the system properly. Demand Systems: Demand mode diving by the very name means the diver receives breathing gas when he demands it. Unlike free flow helmets, which flow air into the helmet continuously throughout the inhalation and exhalation cycle, demand mode helmets are mainly intended to deliver air on demand during the inhalation cycle only. As the diver starts to inhale, a negative pressure is created within the oral nasal / demand regulator body drawing the regulator diaphragm against the inlet valve lever activating gas flow into the oral nasal. The “Crack” or “Lift Off” is the term given to the very first start of gas flow. The crack is brief point where the valve soft seat just starts to lift away from the sharp edge of the inlet orifice. The force required to cause the “crack” is normally measured and expressed in millibars (mbr) of pressure. For good breathing performance it is essential that the “lift off” be as low as possible typically around 3-7 mbr, and remain as low as possible throughout the inhalation cycle. With all KMDSI helmets, the cracking effort can be controlled by the diver using the regulator bias adjustment located on the left side of the demand regulator. The bias adjustment simply increases or decreases the amount of pressure that seals the inlet valve to the seat surface. The actual inhalation effort required during the inhale phase of the breathing cycle is primarily a function of the supply pressure and the bias setting, but the diver attitude also comes into play. Keeping the inhalation effort as low as possible requires a light enough bias setting to allow the inlet valve to lift away with minimal suck, and a supply pressure high enough and steady enough to allow a venturi (vacuum) assist to develop to help float the inlet valve. If the supply pressure is too low at the start of inhalation, the side block Copyright© 2010, Dive Lab, Inc. All Rights Reserved. 2 Contaminated/Dirty Water Dive Tips July 2010 pressure will drop too far, killing the venturi action, therefore, reducing the pneumatic assist and flow, requiring the diver to suck harder to open the inlet valve further to get enough air. Because the diver now has to suck harder, a greater negative pressure is created within the helmet and neck dam, which in turn is an invitation for water and vapor permeation into the helmet. Exhaust Valve Lift Off: Lift off is the term given to the very first start of gas flow during exhalation. The exhaust lift off is also measured and expressed as pressure in mbr. Typically, all KMDSI exhaust valve systems lift off between 3-5 mbr depending on the physical attitude of the diver. The primary factors that influence exhalation effort are the positioning of the exhaust valves, stiffness of the valves, number of valves, and the shape and position of the exhaust (Whiskers). Physical Attitude: Another major influence on demand regulator and helmet internal pressure is the diver’s physical attitude. The further the demand regulator is from the diver’s centroid, (Lung Center) the greater the inhalation effort will be. The closer the regulator gets to the centroid, the easier the breathing will be. As an example, a helmet diver standing on the bottom looking up at the surface will have a harder time inhaling than he would if he was looking down at the sea floor. Normally, the easiest breathing effort (least) overall is when the diver is in an almost face down angle. In this position, the exhaust valves and demand diaphragm are closest to the lung centroid, requiring the least differential pressure to make things work. A diver standing upright looking up can back out slightly on the bias adjustment and make the inhalation easier. If the diver ends up changing to head down position, he can simply dial in on the bias to keep the demand regulator from free flowing. Minimizing Water Entry: To minimize water entry into any demand mode helmet, the two most important things the diver can do is to keep the inhalation effort as low as possible, and avoid getting the demand regulator in a position that places the regulator cover parallel or close to parallel to the bottom (sea floor). Cover “face down” to the bottom is the position that the diver would be in if laying face down or attempting to stand on his head, and in this position any water that was trapped in the exhaust body would be directed to the demand regulator exhaust valve making it possible to get into the regulator during exhalation. If for some reason you need to get into a weird position, the diver should crack open the steady flow valve 1/8- 1/4 turn or so, two to three times for about 1-2 seconds to purge out any water that has accumulated in the quad valve plenum body. This is something divers should get in the habit of doing every few minutes anyway to help eliminate any water that has accumulated in the exhaust system. Keep in mind, when the valve opens, its opening in the water, the flapper is “In” the water! and it gets water on it.
Recommended publications
  • Dry Suit Diving Provides the Diver with a Layer of Air Around the Body
    Dry suits come into play when preventing convection is no longer adequate in delaying the loss of body heat. A dry suit Dry Suit Diving provides the diver with a layer of air around the body. Air is a better thermal insulator than water. A diver will still get cold, but the additional delay in losing body heat will make it possibleto enjoya diveinthecoldest environments. The layer of air is an advantage for thermal insulation. The air in the suit also offers options for positioning in the water that would be difficult with a wetsuit. Unfortunately the added advantage is a trade-off with inconveniences. Diving in adrysuit is not without challenges. An additional airspace (next to lungs and BCD) makes buoyancy control more difficult. Dry suits require special maintenance. Dry suits also alter requirements for other equipment items and in most cases come with a need for additional weight. Dry suit training is needed in order to cope with the additional challenges. Dry suit training will also provide valuable information for selecting your own drysuit. Divers lose their body heat via direct contact with the colder water. The body heat is lost via conduction. Conduction means that the warmer substance (the skin) has direct contact with the colder substance (water). An unprotected swimmer loses body heat up to 25 times faster in water than in air. Convection refers to the fact that warmed-up water is lighter than colder water. The warmer water moves up and is replaced by colder water. Your body therefore is repeatedly heating up cold water.
    [Show full text]
  • Argon Used As Dry Suit Insulation Gas for Cold-Water Diving Xavier CE Vrijdag1*, Pieter-Jan AM Van Ooij2 and Robert a Van Hulst1,2,3
    Vrijdag et al. Extreme Physiology & Medicine 2013, 2:17 http://www.extremephysiolmed.com/content/2/1/17 RESEARCH Open Access Argon used as dry suit insulation gas for cold-water diving Xavier CE Vrijdag1*, Pieter-Jan AM van Ooij2 and Robert A van Hulst1,2,3 Abstract Background: Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Methods: Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13°C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. Results: No diver had to abort the test due to cold.
    [Show full text]
  • Chemical Tank Testing of Modified Commercial Diving Helmets And
    CHEMICAL TANK TESTING OF MODIFIED COMMERCIAL DMNG HEL\1 ETS AND DRESS by James Nash Test Engineer Mason & Hanger-Silas Mason Co., Inc. USEPA - Oil &: Hazardous Materials Simulation Environmental Test Tank Leonardo, New Jersey On37 Contract No. 6&-3-30.56 Test Director: J. Morgan Wells, Jr., P~O. Diving Program Office National Ocearuc and Atmo.sphenc Administration Rockville, Maryland 208j2 ft, ns e•;a•ta £r! . UGID \1 Project Ofiicer Richard P. Traver, P.E. Oil and Hazardous Materials Spills Branch Municipal Environmental Research Laboratory Edison, New Jersey 08837 MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY OFACE OF RESEARCH AND DEVELOPMENT U.S. ENVIROl\'MENTAL PROTECTION AGENCY CINCINNAn, OHIO 4.5268 • DISCLAIMER This report has been reviewed by the Oil c5c Hazardous Materials Spills Branch, U.S. Environmental Protection Agency7 and approved for draft review. Approval does not signify the contents necessarily reflect the views and poUcies of the U.S. Environmental Protection Agency, nor does mention of trade names, commercial products or companies conStinne endorsement or recommendation for use. ll FOREWORD 'The U.S. Environmental Protection Agency was created because of increasing public and government concern a.boot the dangers of pollution to the health and welfare of the American people. Noxious air, foul water, and spoiled land are tragic testimonies to the deterioration of our natural environment. The complexity of that environment and the interplay of its components require a concentrated and integrat<ed attack on the problem. Research afld development is that necessary first step in problem solution; it involves def'ming the proble~ measuring its impact, and seatdilng for solutions.
    [Show full text]
  • Diving and Snorkelling in Silfra Fissure a Handbook to Prepare You for Your Adventure
    DIVING AND SNORKELLING IN SILFRA FISSURE A HANDBOOK TO PREPARE YOU FOR YOUR ADVENTURE The Silfra fissure is one of the most amazing places in the world. Diving or Snorkelling through the crystal clear glacial water is an experience best ex- plained by actually taking the plunge. However, there are a few important things that you need to know in order to prepare yourself for this adventure. Also, this is not an activity for everyone, and it is important that you are aware of the risks and challenges involved. DIVING Diving in the Silfra fissure is one for the bucket list! The water in Silfra is 2 degrees C and all dives are per- formed in a dry suit. It is required that you have documented training and experience in cold water dry suit diving in order to enjoy this adventure. Dry suit experience For diving in the Silfra fissure, you need to have previous experience in dry suit diving. Your dive guide will ask to see your Dry suit certification card, or a logbook showing that you have completed a minimum of 10 previous dry suit dives (signed by a dive professional). You need to have dived in a dry suit within the last 2 years to ensure that your skills are up to date. If failing to show us either certification or logbook you will not be allowed to dive. Good buoyancy control is essential in order to safely dive Silfra. The water is up to +30 meters deep and there is no descent line to use. For your own safety, the dive guide will not allow divers demonstrating poor buoyan- cy control to complete the dive.
    [Show full text]
  • Special Operations Rebreathers
    Special Operations Underwater Life Support Systems INTRODUCTION TO JFD JFD is the world leading underwater capability provider facilitating the commercial and defence diving industries by offering innovative diving, submarine rescue and subsea technical solutions. JFD has a well-established history in the development of advanced and innovative diving and submarine rescue systems spanning over 30 years. Our systems continue to set the president in terms of capability and performance and JFD is relied upon by divers worldwide across both the defence and commercial sectors. Our products and services have been delivered to a large number of countries across all continents. With in-service support established in many of these locations and tailored Integrated Logistics Support (ILS) packages, JFD is able to provide high customer equipment availability, rapid technical support and tailored training packages. 2 | Introduction JFD offers two highly capable underwater life support systems to meet the full mission profile of today’s Special Operations diver. A modular approach enables customisation of the life support system in response to demands across the full operational spectrum. SHADOW ENFORCER The solution for extended duration and deeper diving The lightweight solution for short duration mission mission profiles. profiles. 3 | Offering A common life support platform facilitates a multi-mission capability offering numerous operational and logistic benefits that include: ENHANCED MISSION EFFECTIVENESS • Front and back mount options • Oxygen
    [Show full text]
  • 13-Voit-Suits
    Voit Full Dry Suits Historical W. J. Voit Rubber Corporation of New York, NY, Danville, IL and Los Angeles, CA was one of the five original American diving equipment manufacturers: U.S. Divers, Healthways, Voit, Dacor Diving and Swimaster (Gilliam, n.d.). The company manufactured the original open-heel swim fins which were designed by Owen Churchill before World War II and which retain a strong following among bodysurfers. Suits Voit Corporation has a long history of involvement in the sporting goods production industry. Founded in 1922, the company proved innovatory in the development of all-rubber inflatable athletic balls. In the early 1960s, Voit bought the diving equipment manufacturer Swimaster. The company now operates in San Antonio TX and Mexico City. 13 Voit Underwater Suits Voit claimed to manufacture “America’s finest underwater suits” offering “year round protection”. These suits made “the diving season last twice as long” and afforded “top comfort and manoeuvrability”. Wet models came in “finest quality closed-cell foam neoprene”, dry models in “pure gum rubber”. A wide range of styles and sizes were offered: full suits, hoods, shirts and pants, “four sizes to fit every physique”. The suits were available custom made or as kits: ready to wear or “do-it-yourself kits for the “economy minded”. Voit’s line in underwater suits appears to have lasted for a limited period only, as later publicity concentrated on basic equipment such as fins, masks and snorkels (Skin Diving History, 1960). Voit Full Dry Suit Facts The front-entry VDS10 full dry suit was made of “the highest quality, two-ply lightweight gum rubber”.
    [Show full text]
  • VIKING™ OWNER's MANUAL Vulcanised Rubber & PU Dry Suits for CWD PRO, PROTECH II, HD, HDS, DD & HAZTECH
    Vulcanised Rubber & PU VIKING™ OWNER'S MANUAL Vulcanised Rubber & PU Dry Suits for CWD PRO, PROTECH II, HD, HDS, DD & HAZTECH 1. Safety considerations.............................................................................. 4 1.1 Definitions of important signal words used in this manual ........ 4 1.2 Description of marking in the suit ............................................................... 5 1.3 Pre-dive check list ................................................................................................. 6 1.4 Important safety information ........................................................................ 7 2. Description of suit ..................................................................................... 8 3. Approvals .....................................................................................................11 3.1 EU type approval .................................................................................................11 4. Intended use ...............................................................................................12 5. Selecting and fitting dry suit and underwear.........................13 5.1 Selecting and fitting a dry suit .....................................................................13 5.2 Selecting and fitting dry suit underwear ...............................................13 6. Preparing for the dry suit dive .........................................................15 6.1 Adjusting latex neck seals ..............................................................................15
    [Show full text]
  • Badass Divers
    BADASS DIVERS CATALOGUE 2020 contents Dry SUITS ........................................................................................................................... 3 UNDERSUIT GARMENTS AND ACCESSORIES ......................................................................... 6 NEOPRENE SUITS ................................................................................................................ 8 TRAVEL BcDs .................................................................................................................... 10 HARNESSES ...................................................................................................................... 13 BLADDERS ......................................................................................................................... 16 SIDEMOUNT BcDs ............................................................................................................ 25 REELS AND ACCESSORIES.................................................................................................. 30 VALVES ............................................................................................................................. 31 reGulators anD GauGes .............................................................................................. 32 DiVING TORCHES ............................................................................................................ 36 MASKS AND FINS ............................................................................................................
    [Show full text]
  • Semi-Annual Dry Suit Inspect/Clean
    U.S. COAST GUARD MAINTENANCE PROCEDURE CARD DRY SUIT SUPPLEMENT SEMI-ANNUAL DRY SUIT INSPECT/CLEAN CONSUMABLES: Cleaner, Dry Suit, P/N: 30130, CAGE: 1CAY9 (if required) Detergent, Laundry, P/N: 145495, CAGE: 5T372, NIIN: 014120535 (or equivalent) Leak Test Compound, P/N: MIL-PRF-25567, CAGE: 81349, NIIN: 006211820, (if required) Protectant, 303, P/N: ACC303-8OZ, CAGE: 04QK6 Talcum Powder, P/N: A-A-59303, CAGE: 58536, NIIN: 002709989 Urethane Repair Adhesive, P/N: 477, CAGE: 64249, (if required) Wax, Paraffin, P/N: A-A-59255, CAGE: 58536, NIIN: 002852044 A PRELIMINARY STEPS 1. Determine type of dry suit that is being inspected. 2. Proceed to appropriate section of MPC: a. Proceed to Step 2 B for Lightweight dry suit, (USIA, KOKATAT, MSD630, and MSD585). b. Proceed to Step 2 C for Mustang Sentinel Heavy Duty Dry Suit (MSD 640) c. Proceed to Step 2 D for Mustang Modular industrial Dry Suit (MSD 900) B INSPECT/CLEAN LIGHTWEIGHT DRY SUIT (USIA, KOKATAT, MSD630, MSD585) NOTE: A suitable work area is required to conduct the inspections. The work area should be should be smooth and flat, where the suit will not snag, tear or otherwise be punctured or damaged and should also be cleared of all non-essential equipment and materials. The working surface should be free of harmful contaminants such as oil, grease, acids or solvents. Work areas which are subjected to wide temperature variations should be avoided. 1. Lay out dry suit in a clean area, free of obstructions. 2. Inspect dry suit for the following: a.
    [Show full text]
  • New England Aquarium Dive Club, Inc. Newsletter
    New England Aquarium Dive Club, Inc. Newsletter February 2001 NEADC Web Site: NEADC.org NEADC GENERAL MEETING MARCH INFORMAL MEETING will be held 6:30 PM on Wednesday, March 7, 2001 at the home of Anna and Bryce Flynn, 30 Hill Street, Wednesday, February 21, 2001, 6:30 p.m. at the New Foxboro, MA, 508-543-9761. England Aquarium Conference Center. Guest Speaker: --See Directions on Page 2. Ted Maney of Northeastern University Marine Science THIS MONTH'S CONTENTS Laboratory will talk on Scientific Diving at Northeastern. Officers/Voice Mail/Directions.................................... Page 2 Advertising/Members Advertising .............................. Page 2 REMINDER - NEAq/NEADC MEMBERSHIP RENEWAL!!! Earthwatch Volunteers Needed ................................. Page 2 Always check your membership card prior to General Meetings! If your Notes from the President/ Shore Dive Coordinator.... Page 3 card has expired, you will not be eligible for GOT drawings. If you have Meeting Minutes ........................................................ Page 4 renewed your membership and have not received your new membership Monthly Finances....................................................... Page 5 card, the Membership Director, Kathleen Sherman, has a list of all 2001 Dive Planning Meeting...................................... Page 5 memberships processed through the date of the meeting. By confirming North Shore Frogmen’s Photography Contest........... Page 6 that you are on the list, she can issue a temporary membership card good There’s a Weightbelt in My Shower ........................... Page 7 ONLY for the NEADC GOT drawing. NEADC Temporary Cards will not Members Comments ................................................. Page 7 allow you entry into New England Aquarium. Boston Scuba Diving Seminars ................................. Page 8 New England Aquarium sends our renewal reminders several months Sea Rover’s Clinic ....................................................
    [Show full text]
  • Chapter 3 Types of Dry Suits
    Excerpt from Dry Suit Diving, 4th Edition Published by Hammerhead Press www.hammerheadpress.com Chapter 3 Types of Dry Suits Today’s dry suits are very different from the dry suits first used for sport div- ing. New materials make the modern dry suits lighter, tougher, and more resistant to abrasion. Used properly, dry suit valves provide incredibly precise buoyancy control. Waterproof zippers make the suits easy to don and remove. Improved con- struction techniques give many dry suits a longer useful life than most wetsuits. Advanced features offer more comfort and improved fit. With all of the features available in dry suits today, it’s possible to select a dry suit that will precisely fit your needs. Types of Dry Suit Material There are numerous types of dry suit material commonly available. As new fabrics are developed, we will certainly see additional new materials put to use. Any material that is waterproof and can be adequately joined together, or “seamed,” could conceivably be used to create a dry suit. The type of material your dry suit is made from will determine the character- istics of the suit more than any other single feature. For this reason, we’ll discuss the materials dry suits are manufactured from first, followed by a discussion of suit features, such as zippers, valves, and other items. The most common materials used for dry suits are foam neoprene, crushed neoprene, rubber coated fabrics, urethane coated fabrics, and vulcanized rubber. Each material has its own set of characteristics that will affect the performance of the dry suit and the way it can be used.
    [Show full text]
  • Diving Physiology 3
    Diving Physiology 3 SECTION PAGE SECTION PAGE 3.0 GENERAL ...................................................3- 1 3.3.3.3 Oxygen Toxicity ........................3-21 3.1 SYSTEMS OF THE BODY ...............................3- 1 3.3.3.3.1 CNS: Central 3.1.1 Musculoskeletal System ............................3- 1 Nervous System .........................3-21 3.1.2 Nervous System ......................................3- 1 3.3.3.3.2 Lung and 3.1.3 Digestive System.....................................3- 2 “Whole Body” ..........................3-21 3.2 RESPIRATION AND CIRCULATION ...............3- 2 3.2.1 Process of Respiration ..............................3- 2 3.3.3.3.3 Variations In 3.2.2 Mechanics of Respiration ..........................3- 3 Tolerance .................................3-22 3.2.3 Control of Respiration..............................3- 4 3.3.3.3.4 Benefits of 3.2.4 Circulation ............................................3- 4 Intermittent Exposure..................3-22 3.2.4.1 Blood Transport of Oxygen 3.3.3.3.5 Concepts of and Carbon Dioxide ......................3- 5 Oxygen Exposure 3.2.4.2 Tissue Gas Exchange.....................3- 6 Management .............................3-22 3.2.4.3 Tissue Use of Oxygen ....................3- 6 3.3.3.3.6 Prevention of 3.2.5 Summary of Respiration CNS Poisoning ..........................3-22 and Circulation Processes .........................3- 8 3.2.6 Respiratory Problems ...............................3- 8 3.3.3.3.7 The “Oxygen Clock” 3.2.6.1 Hypoxia .....................................3-
    [Show full text]