Intermediary Metabolism an Intricate Network at the Crossroads of Cell

Total Page:16

File Type:pdf, Size:1020Kb

Intermediary Metabolism an Intricate Network at the Crossroads of Cell BBA - Molecular Basis of Disease 1866 (2020) 165887 Contents lists available at ScienceDirect BBA - Molecular Basis of Disease journal homepage: www.elsevier.com/locate/bbadis Intermediary metabolism: An intricate network at the crossroads of cell fate T and function Leonardo M.R. Ferreiraa, Albert M. Lib, Teresa L. Serafimc, Margarida C. Sobrald, ⁎ M. Carmen Alpoime, Ana M. Urbanof, a Department of Surgery and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA b Cancer Biology Program, Stanford University, Stanford, CA 94305, USA c Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal d Molecular Physical Chemistry Research Unit and Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal e CNC - Center for Neuroscience and Cell Biology, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO) and Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal f Molecular Physical Chemistry Research Unit (QFM-UC), Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO) and Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal ARTICLE INFO ABSTRACT Keywords: Intermediary metabolism is traditionally viewed as the large, highly integrated network of reactions that pro- Metabolism vides cells with metabolic energy, reducing power and biosynthetic intermediates. The elucidation of its major Historical perspective pathways and molecular mechanisms of energy transduction occupied some of the brightest scientific minds for Metabolic regulation almost two centuries. When these goals were achieved, a sense that intermediary metabolism was mostly a Epigenetics solved problem pervaded the broader biochemical community, and the field lost its vitality. However, inter- Apoptosis mediary metabolism has recently been re-energized by several paradigm-shifting discoveries that challenged its Immunometabolism perception as a self-contained system and re-positioned it at the crossroads of all aspects of cell function, from cell growth, proliferation and death to epigenetics and immunity. Emphasis is now increasingly placed on the involvement of metabolic dysfunction in human disease. In this review, we will navigate from the dawn of intermediary metabolism research to present day work on this ever-expanding field. 1. Foreword biochemistry traditionally concerned with the vast and highly in- tegrated network of biochemical reactions that provides cells with Intermediary, or intermediate, metabolism is the subfield of forms of energy for immediate use (i.e., metabolic energy), reducing Abbreviations: Acetyl CoA, acetyl coenzyme A; ACLY, ATP-citrate lyase; ADP, adenosine diphosphate; AIF, apoptosis-inducing factor; AKT, protein kinase B; AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; APC, antigen presenting cell; ATP, adenosine triphosphate; BAD, BCL-2 associated agonist of cell death; BAK, BCL-2 homologous antagonist/killer; BAX, BCL-2-like protein 4; BCL-2, B-cell lymphoma 2; BCL-xL, B-cell lymphoma-extra large; DNA, deoxyribonucleic acid; DNMT, DNA methyltransferase; ETC, electron transport chain; FAD, flavin adenine dinucleotide, oxidized form; FADH2, flavin adenine dinucleotide, reduced form; Fru1,6P2, fructose 1,6-bisphosphate; FTO, fat mass and obesity-associated protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT1, glucose transporter 1; GPX, glutathione peroxidase; GSH, glutathione; GSSG, glutathione disulfide; HAT, histone acetyltransferase; HDAC, histone deacetyltransferase; 2HG, 2-Hydroxyglutarate; HIF-1α, hypoxia inducible factor 1 α; HK, hexokinase; IDH, isocitrate dehydrogenase; IDO, indoleamine oxygenase; IL-2, interleukin-2; IMM, inner mitochondrial membrane; ITAM, immunoreceptor tyrosine-based activation motif; JHDM, Jumonji domain-containing histone demethylase; KEAP1, Kelch-like 6 ECH-associated protein 1; αKG, α-Ketoglutarate; Km, Michaelis constant; LCK, lymphocyte-specific protein tyrosine kinase; LKB1, liver kinase B1;m A, methylation at the N6 position of adenine; MAPK, mitogen-activated protein kinase; MHC, major histocompatibility complex; mtDNA, mitochondrial DNA; mTOR, mechanistic target of rapamycin; mTORC1, mTOR complex 1; NAD+, nicotinamide adenine dinucleotide, oxidized form; NADH, nicotinamide adenine dinucleotide, reduced form; NADP+, nicotinamide adenine dinucleotide phosphate, oxidized form; NADPH, nicotinamide adenine dinucleotide phosphate, reduced form; NOX, NADPH oxidase; NRF2, nuclear factor erythroid-2-related factor 2; OAA, oxaloacetate; OMM, outer mitochondrial membrane; OXPHOS, oxidative phosphorylation; PI3K, phosphoinositide-3-kinase; PPP, pentose phosphate pathway; PRX, peroxiredoxin; PTEN, phosphatase and tensin homolog deleted on chromosome 10; RNA, ribo- nucleic acid; ROS, reactive oxygen species; SAM, S-Adenosyl methionine; SOD, superoxide dismutase; TCA, tricarboxylic acid; TCR, T cell receptor; Teff, effector T; TET, ten-eleven translocation; TNFα, tumor necrosis factor α; TRX, thioredoxin; TSC, tuberous sclerosis complex; VDAC, voltage-dependent anion channel ⁎ Corresponding author at: Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal. E-mail address: [email protected] (A.M. Urbano). https://doi.org/10.1016/j.bbadis.2020.165887 Received 18 March 2020; Received in revised form 1 June 2020; Accepted 17 June 2020 Available online 26 June 2020 0925-4439/ © 2020 Elsevier B.V. All rights reserved. L.M.R. Ferreira, et al. BBA - Molecular Basis of Disease 1866 (2020) 165887 power and biosynthetic intermediates. Its establishment as a research few selected topics, referencing researchers whose work was of funda- field dates back to the first decades of the twentieth century, whenit mental importance for the advancement of each subfield. Importantly, became a very active area of investigation; yet, its foundations were our discussion will be restricted to the cellular level. We apologize in laid more than a century before, by the work of Antoine Lavoisier on advance to all researchers, past and present, whose collective sub- the chemical nature of respiration [1]. In spite of intensive research stantial contributions to the field we could not discuss. efforts, progress in this emerging field throughout most of the nine- teenth century was restricted by very limited conceptual knowledge and the inexistence of suitable analytical methods. Nonetheless, sig- 2. Historical background nificant advances were made, paving the way for the groundbreaking discoveries of the first four decades of the twentieth century. Themany Antoine de Lavoisier, often described as the “father of chemistry”, Nobel Prizes awarded to researchers working in this field from the late could also, with equal justice, be acknowledged as the “father of phy- 1910s to the 1950s attest to the enormous vitality of intermediary siological chemistry” and, ultimately, the “father of intermediary me- metabolism during this period, seen by many as its Golden Age. At the tabolism”. Indeed, it was Lavoisier who, at the end of the eighteenth end of this period, intermediary metabolism was already contending century, first described a physiological process from a chemical per- with the growing influence of molecular biology, whose own Golden spective (Timeline). Specifically, he proposed that respiration is aslow Age started with the publication of the double-helix structure of combustion (oxidation) that burns foodstuffs, forming carbon dioxide deoxyribonucleic acid (DNA), by James Watson and Francis Crick, in and water. He hypothesized that respiration took place in the lungs, 1953 [2] – interestingly, the year Hans Krebs and Fritz Lipmann were producing the heat that maintains animal temperature, and was awarded the Nobel in Physiology or Medicine for the discovery of the somewhat connected to mechanical work [1]. It was also Lavoisier who citric acid cycle and coenzyme A, respectively. Despite having receded first described chemically the global conversion of grape must into into the background, the field progressed steadily and, by the 1970s, ethanol and carbon dioxide, i.e., alcoholic fermentation. However, the the classical pathways of intermediary metabolism were firmly estab- fact that this conversion is a metabolic process, taking place in a living lished, as were the mechanistic principles behind the energy transdu- cell, eluded him and his contemporaries [3]. That alcoholic fermenta- cing processes. Between the 1960s and the 1990s, major advances were tion requires the action of microorganisms was first acknowledged in made in our understanding of intermediary metabolism regulation. the first half of the nineteenth century by Charles Cagniard-Latour, Nonetheless, the field's vitality gradually waned. Then, at the turnof Friedrich Kützing and Theodor Schwann, but this was outright rejected the millennium, interest was rekindled by a succession of seminal dis- and even ridiculed by three of the most influential scientists of the time, coveries which repositioned intermediary metabolism at the crossroad Jöns Berzelius, Justus von Liebig and Friedrich Wöhler. However, ex- of all aspects of cellular function, ultimately touching on all facets of tensive work by Louis Pasteur in the 1850s established, once and for all, physiology and pathology. In particular, it is now clear that the study of that fermentation involves the action of a microorganism. Pasteur's
Recommended publications
  • Paul Ehrlich
    Paul Ehrlich Paul Ehrlich (geboren am 14. März 1854 in Strehlen, Regierungsbezirk Breslau, Provinz Schlesien; gestorben am 20. August 1915 in Bad Homburg vor der Höhe[1]) war ein deutscher Mediziner und Forscher. Durch seine Färbemethoden unterschied er verschiedene Arten von Blutzellen, wodurch die Diagnose zahlreicher Blutkrankheiten ermöglicht wurde. Mit seiner Entwicklung einer medikamentösen Behandlung der Syphilis begründete er die moderne Chemotherapie. Außerdem war er entscheidend an der Entwicklung des Heilserums gegen Diphtherie beteiligt, die üblicherweise Emil von Behring alleine zugeschrieben wird. Als Direktor des Instituts für experimentelle Therapie arbeitete er die Methoden für die Standardisierung („Wertbemessung“[2] bzw. Wertbestimmung) von Sera aus. 1908 erhielt er zusammen mit Ilja Metschnikow für seine auf dem Gebiet der Serumsforschung entwickelten Beiträge zur Immunologie den Nobelpreis für Physiologie oder Medizin. Paul Ehrlich (1915) Inhaltsverzeichnis Leben Herkunft Schule und Studium Berlin Frankfurt Werk Färbemethoden für die Hämatologie Serumforschung Freundschaft mit Robert Koch Erste Arbeiten zur Immunität Arbeit mit Behring an einem Diphtherieheilserum Die Wertbestimmung von Sera Die Seitenkettentheorie Krebsforschung Chemotherapie Die Vitalfärbung Methylenblau Die Suche nach einer „Chemotherapia specifica“ Nachwirkungen Spielfilm Briefmarken und Banknote Ehrlich als Namensgeber Ausstellungen Literatur Weblinks Einzelnachweise Leben Herkunft Paul Ehrlich wurde als zweites Kind jüdischer Eltern geboren.
    [Show full text]
  • Acetyl-Coa Synthetase 3 Promotes Bladder Cancer Cell Growth Under Metabolic Stress Jianhao Zhang1, Hongjian Duan1, Zhipeng Feng1,Xinweihan1 and Chaohui Gu2
    Zhang et al. Oncogenesis (2020) 9:46 https://doi.org/10.1038/s41389-020-0230-3 Oncogenesis ARTICLE Open Access Acetyl-CoA synthetase 3 promotes bladder cancer cell growth under metabolic stress Jianhao Zhang1, Hongjian Duan1, Zhipeng Feng1,XinweiHan1 and Chaohui Gu2 Abstract Cancer cells adapt to nutrient-deprived tumor microenvironment during progression via regulating the level and function of metabolic enzymes. Acetyl-coenzyme A (AcCoA) is a key metabolic intermediate that is crucial for cancer cell metabolism, especially under metabolic stress. It is of special significance to decipher the role acetyl-CoA synthetase short chain family (ACSS) in cancer cells confronting metabolic stress. Here we analyzed the generation of lipogenic AcCoA in bladder cancer cells under metabolic stress and found that in bladder urothelial carcinoma (BLCA) cells, the proportion of lipogenic AcCoA generated from glucose were largely reduced under metabolic stress. Our results revealed that ACSS3 was responsible for lipogenic AcCoA synthesis in BLCA cells under metabolic stress. Interestingly, we found that ACSS3 was required for acetate utilization and histone acetylation. Moreover, our data illustrated that ACSS3 promoted BLCA cell growth. In addition, through analyzing clinical samples, we found that both mRNA and protein levels of ACSS3 were dramatically upregulated in BLCA samples in comparison with adjacent controls and BLCA patients with lower ACSS3 expression were entitled with longer overall survival. Our data revealed an oncogenic role of ACSS3 via regulating AcCoA generation in BLCA and provided a promising target in metabolic pathway for BLCA treatment. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction acetyl-CoA synthetase short chain family (ACSS), which In cancer cells, considerable number of metabolic ligates acetate and CoA6.
    [Show full text]
  • 3-Iodo-Alpha-Methyl-L- Tyrosine
    A Strategyfor the Study of CerebralAmino Acid Transport Using Iodine-123-Labeled Amino Acid Radiopharmaceutical: 3-Iodo-alpha-methyl-L- tyrosine Keiichi Kawai, Yasuhisa Fujibayashi, Hideo Saji, Yoshiharu Yonekura, Junji Konishi, Akiko Kubodera, and Akira Yokoyama Faculty ofPharmaceutical Sciences, Science Universityof Tokyo, Tokyo, Japan and School ofMedicine and Faculty of Pharmaceutical Sciences, Kyolo University, Kyoto, Japan In the present work, a search for radioiodinated tyrosine We examined the brain accumulation of iodine-i 23-iodo-al derivatives for the cerebral tyrosine transport is attempted. pha-methyl-L-tyrosine (123I-L-AMT)in mice and rats. l-L-AMT In the screening process, in vitro accumulation studies in showed high brain accumulation in mice, and in rats; rat brain rat brain slices, measurement ofbrain uptake index (BUI), uptake index exceeded that of 14C-L-tyrosine.The brain up and in vivo mouse biodistribution are followed by the take index and the brain slice studies indicated the affinity of analysis of metabolites. In a preliminary study, the radio l-L-AMT for earner-mediatedand stereoselective active trans iodinated monoiodotyrosine in its L- and D-form (L-MIT port systems, respectively; both operating across the blood and D-MIT) and its noniodinated counterpart (‘4C-L- brain barrier and cell membranes of the brain. The tissue tyrosine) are tested. homogenate analysis revealed that most of the accumulated radioactivity belonged to intact l-L-AMT, an indication of its The initial part of the work provided the basis for a stability. Thus, 1231-L-AMTappears to be a useful radiophar radioiodinated tyrosine derivative to be used for the meas maceutical for the selective measurement of cerebral amino urement of cerebral tyrosine transport.
    [Show full text]
  • Der Pathologe
    Band 36 · Sonderausgabe · November 2015 Der Pathologe Organ der Deutschen Abteilung der Internationalen Akademie für Pathologie, der Deutschen, der Österreichischen und der Schweizerischen Gesellschaft für Pathologie und des Bundesverbandes Deutscher Pathologen 99. Jahrestagung der Deutschen Gesellschaft für Pathologie e. V. Frankfurt am Main, 28. – 31. Mai 2015 Indexed in Science Citation Index Expanded and Medline Verhandlungen der Deutschen Gesellschaft für Pathologie e.V. www.DerPathologe.de www.springermedizin.de Der Pathologe Verhandlungen 2015 der Deutschen Gesellschaft für Pathologie e.V. Rudolf-Virchow-Preis Ausschreibung 2016 Der Preis wird laut Satzung der Rudolf-Virchow-Stiftung für Pathologie und der Deutschen Gesellschaft für Pathologie e.V. einem Pathologen unter Jahren für eine noch nicht ver öffentlichte oder eine nicht länger als ein Jahr vor der Bewerbung publizierte wissenschaftliche Arbeit verliehen. Die Verleihung des Preises erfolgt auf der . Jahrestagung der Deutschen Gesellschaft für Pathologie e.V. Zusammen mit einem Lebenslauf und einer Publikationsliste reichen Bewerber ihre Arbeit ein (bitte alle Unterlagen in doppelter Ausfertigung sowie elektronisch einreichen). Abgabetermin: bis . Dezember Einzureichen bei: Prof. Dr. med. Holger Moch Geschäftsführendes Vorstandsmitglied der Deutschen Gesellschaft für Pathologie e.V. UniversitätsSpital Zürich Institut für Klinische Pathologie Schmelzbergstrasse CH – Zürich [email protected] Die Satzung der Rudolf-Virchow-Stiftung für Pathologie sowie weitere Informationen
    [Show full text]
  • Nucleotides and Nucleic Acids
    Nucleotides and Nucleic Acids Energy Currency in Metabolic Transactions Essential Chemical Links in Response of Cells to Hormones and Extracellular Stimuli Nucleotides Structural Component Some Enzyme Cofactors and Metabolic Intermediate Constituents of Nucleic Acids: DNA & RNA Basics about Nucleotides 1. Term Gene: A segment of a DNA molecule that contains the information required for the synthesis of a functional biological product, whether protein or RNA, is referred to as a gene. Nucleotides: Nucleotides have three characteristic components: (1) a nitrogenous (nitrogen-containing) base, (2) a pentose, and (3) a phosphate. The molecule without the phosphate groups is called a nucleoside. Oligonucleotide: A short nucleic acid is referred to as an oligonucleotide, usually contains 50 or fewer nucleotides. Polynucleotide: Polymers containing more than 50 nucleotides is usually referred to as polynucleotide. General structure of nucleotide, including a phosphate group, a pentose and a base unit (either Purine or Pyrimidine). Major purine and Pyrimidine bases of nucleic acid The roles of RNA and DNA DNA: a) Biological Information Storage, b) Biological Information Transmission RNA: a) Structural components of ribosomes and carry out the synthesis of proteins (Ribosomal RNAs: rRNA); b) Intermediaries, carry genetic information from gene to ribosomes (Messenger RNAs: mRNA); c) Adapter molecules that translate the information in mRNA to proteins (Transfer RNAs: tRNA); and a variety of RNAs with other special functions. 1 Both DNA and RNA contain two major purine bases, adenine (A) and guanine (G), and two major pyrimidines. In both DNA and RNA, one of the Pyrimidine is cytosine (C), but the second major pyrimidine is thymine (T) in DNA and uracil (U) in RNA.
    [Show full text]
  • Glycolysis and Gluconeogenesis
    CC7_Unit 2.3 Glycolysis and Gluconeogenesis Glucose occupies a central position in the metabolism of plants, animals and many microorganisms. In animals, glucose has four major fates as shown in figure 1. The organisms that do not have access to glucose from other sources must make it. Plants make glucose by photosynthesis. Non-photosynthetic cells make glucose from 3 and 4 carbon precursors by the process of gluconeogenesis. Glycolysis is the process of enzymatic break down of one molecule of glucose (6 carbon) into two pyruvate molecules (3 carbon) with the concomitant net production of two molecules of ATP. The complete glycolytic pathway was elucidated by 1940, largely through the pioneering cotributions of Gustav Embden, Otto Meyerhof, Carl Neuberg, Jcob Parnad, Otto Wrburg, Gerty Cori and Carl Cori. Glycolysis is also known as Embden-Meyerhof pathway. • Glycolysis is an almost universal central pathway of glucose catabolism. • Glycolysis is anaerobic process. During glycolysis some of the free energy is released and conserved in the form of ATP and NADH. • Anaerobic microorganisms are entirely dependent on glycolysis. • In most of the organisms, the pyruvate formed by glycolysis is further metabolised via one of the three catabolic routes. 1) Under aerobic conditions, glucose is oxidized all the way to C02 and H2O. 2) Under anaerobic conditions, the pyruvic acid can be fermented to lactic acid or to 3) ethanol plus CO2 as shown in figure 2. • Glycolytic breakdown of glucose is the sole source of metabolic energy in some mammalian tissues and cells (RBCs, Brain, Renal medulla and Sperm cell). Glycolysis occurs in TEN steps.
    [Show full text]
  • TITLE: Cysteine Catabolism: a Novel Metabolic Pathway Contributing To
    Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-1423 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. TITLE: Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth AUTHORS: Antony Prabhu*1,2, Bhaswati Sarcar*1,2, Soumen Kahali1,2, Zhigang Yuan2, Joseph J. Johnson3, Klaus-Peter Adam5, Elizabeth Kensicki5, Prakash Chinnaiyan1,2,4 AFFILIATIONS: 1Radiation Oncology, 2Chemical Biology and Molecular Medicine, 3Advanced Microscopy Laboratory, 4Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. 5Metabolon, Inc, Durham, NC, USA * Authors contributed equally to this work. CONFLICT OF INTEREST: E.K. and K.A are paid employees of Metabolon, Inc. RUNNING TITLE: The CSA/CDO regulatory axis in glioblastoma CONTACT: Prakash Chinnaiyan, MD Associate Member Radiation Oncology, Cancer Imaging and Metabolism H. Lee Moffitt Cancer Center and Research Institute 12902 Magnolia Drive Tampa, FL 33612 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-1423 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Office: 813.745.3425 Fax: 813.745.3829 Email: [email protected] 2 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-1423 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Metabolic Enzyme/Protease
    Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Metabolic Enzyme/Protease Metabolic pathways are enzyme-mediated biochemical reactions that lead to biosynthesis (anabolism) or breakdown (catabolism) of natural product small molecules within a cell or tissue. In each pathway, enzymes catalyze the conversion of substrates into structurally similar products. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation. Metabolism maintains the living state of the cells and the organism. Proteases are used throughout an organism for various metabolic processes. Proteases control a great variety of physiological processes that are critical for life, including the immune response, cell cycle, cell death, wound healing, food digestion, and protein and organelle recycling. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. Proteases can not only activate proteins such as cytokines, or inactivate them such as numerous repair proteins during apoptosis, but also expose cryptic sites, such as occurs with β-secretase during amyloid precursor protein processing, shed various transmembrane proteins such as occurs with metalloproteases and cysteine proteases, or convert receptor agonists into antagonists and vice versa such as chemokine conversions carried out by metalloproteases, dipeptidyl peptidase IV and some cathepsins. In addition to the catalytic domains, a great number of proteases contain numerous additional domains or modules that substantially increase the complexity of their functions.
    [Show full text]
  • Die Frankfurter Universitätsmedizin Zwischen 1933 Und 1945
    Udo Benzenhöfer Die Frankfurter Universitätsmedizin zwischen 1933 und 1945 Klemm + Oelschläger Münster/Ulm 2012 Bibliografische Information der Deutschen Nationalbibliothek. Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. 1. Auflage, 2012 Copyright beim Autor und beim Verlag Klemm + Oelschläger Alle Rechte vorbehalten! Umschlaggestaltung und Satz: Ralph Gabriel, Wien Druck und Bindung: CPI buchbücher.de, Birkach ISBN 978-3-86281-050-5 Inhalt Danksagung . 7 1. Einleitung . 9 2. Die Universitätsmedizin von 1933 bis zum Kriegsbeginn . 11 2.1. Allgemeines . 11 2.2. Entrechtungen . 17 2.3. Berufungen . 40 2.4. Kliniken und Institute . 57 3. Die Universitätsmedizin im Krieg . 65 3.1. Allgemeines . 65 3.2. Berufungen . 68 3.3. Kliniken und Institute . 74 4. Schandtaten und Verbrechen . 81 5. Opposition . 93 6. Quellen und Literatur . 97 Danksagung Mein Dank für Hilfen und Hinweise gebührt Monika Birkenfeld, M. A., Christa Eid, Christina Lorenz, M. A., und Dr. Katja Weiske vom Sen- ckenbergischen Institut für Geschichte und Ethik der Medizin in Frankfurt. Äußerst hilfreich für die Erstellung der Studie waren auch durch Werkverträge aus Institutsmitteln finanzierte Vorarbeiten von Dr. phil. Gisela Hack-Molitor (zu den Kliniks- und Institutsleitern von 1938 bis 1952 auf der Grundlage der Vorlesungsverzeichnisse) und von PD Dr. Ralf Forsbach (zum Fakultätsalbum). Prof. Dr. Dr. Udo Benzenhöfer Oktober 2012 7 1. Einleitung Das Buch ist in vier größere Teile aufgeteilt: Zunächst werden die wich- tigsten Entwicklungen in der Frankfurter Universitätsmedizin bis zum Kriegsbeginn verfolgt (Allgemeines, Entrechtungen, Berufungen, Kli- niken und Institute). Anschließend wird die Universitätsmedizin im Krieg beschrieben (Allgemeines, Berufungen, Kliniken und Institute).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0201090 A1 Buelter Et Al
    US 201102.01090A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0201090 A1 Buelter et al. (43) Pub. Date: Aug. 18, 2011 (54) YEAST MICROORGANISMS WITH filed on Feb. 26, 2010, provisional application No. REDUCED BY PRODUCT ACCUMULATION 61/282,641, filed on Mar. 10, 2010, provisional appli FOR IMPROVED PRODUCTION OF FUELS, cation No. 61/352,133, filed on Jun. 7, 2010, provi CHEMICALS, AND AMINO ACIDS sional application No. 61/411.885, filed on Nov. 9, 2010, provisional application No. 61/430,801, filed on (75) Inventors: Thomas Buelter, Denver, CO (US); Jan. 7, 2011. Andrew Hawkins, Parker, CO (US); Stephanie Porter-Scheinman, Conifer, CO Publication Classification (US); Peter Meinhold, Denver, CO (51) Int. Cl. (US); Catherine Asleson Dundon, CI2N I/00 (2006.01) Englewood, CO (US); Aristos Aristidou, Highlands Ranch, CO (52) U.S. Cl. ........................................................ 435/243 (US); Jun Urano, Aurora, CO (US); Doug Lies, Parker, CO (US); Matthew Peters, Highlands Ranch, (57) ABSTRACT CO (US); Melissa Dey, Aurora, CO The present invention relates to recombinant microorganisms (US); Justas Jancauskas, comprising biosynthetic pathways and methods of using said Englewood, CO (US); Kent Evans, recombinant microorganisms to produce various beneficial Denver, CO (US); Julie Kelly, metabolites. In various aspects of the invention, the recombi Denver, CO (US); Ruth Berry, nant microorganisms may further comprise one or more Englewood, CO (US) modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) (73) Assignee: GEVO, INC., Englewood, CO (US) and/or aldehyde-derived by-products. In various embodi (21) Appl.
    [Show full text]
  • Observation of Acetyl Phosphate Formation in Mammalian Mitochondria Using Real-Time In-Organelle NMR Metabolomics
    Observation of acetyl phosphate formation in mammalian mitochondria using real-time in-organelle NMR metabolomics Wen Jun Xua, He Wena,b, Han Sun Kima, Yoon-Joo Koc, Seung-Mo Dongd, In-Sun Parkd, Jong In Yooke, and Sunghyouk Parka,1 aNatural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-gu, 151-742 Seoul, Korea; bDepartment of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, 518060 Shenzhen, China; cNational Center for Inter-University Research Facilities, Seoul National University, Gwanak-gu, 151-742 Seoul, Korea; dDepartment of Anatomy, College of Medicine, Inha University, Nam-gu, 402-751 Incheon, Korea; and eDepartment of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seodaemun-gu, 120-752 Seoul, Korea Edited by G. Marius Clore, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, and approved March 12, 2018 (received for review December 7, 2017) Recent studies point out the link between altered mitochondrial studying mitochondrial pyruvate metabolism with a real-time metabolism and cancer, and detailed understanding of mitochon- approach may lead to previously unseen metabolic activities in- drial metabolism requires real-time detection of its metabolites. volved in cancer-related mitochondrial metabolism. 13 Employing heteronuclear 2D NMR spectroscopy and C3-pyruvate, Previously, we introduced in-cell live 2D NMR metabolomics we propose in-organelle metabolomics that allows for the moni- for real-time metabolomic study at the whole-cell level (10). toring of mitochondrial metabolic changes in real time. The ap- Here, carrying the concept to a higher tier for an organelle level, proach identified acetyl phosphate from human mitochondria, we sought to investigate the pyruvate metabolism of live mito- whose production has been largely neglected in eukaryotic metab- chondria in real time using 2D in-organelle NMR metabolomics.
    [Show full text]
  • Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces Cerevisiae
    YEASTBOOK GENE EXPRESSION & METABOLISM Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae Per O. Ljungdahl*,1 and Bertrand Daignan-Fornier†,1 *Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden, and †Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5095, F-33077 Bordeaux Cedex, France ABSTRACT Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by
    [Show full text]