Macrophage Subpopulations in Lamina Propria of Normal and Inflamed Colon and Terminal Ileum

Total Page:16

File Type:pdf, Size:1020Kb

Macrophage Subpopulations in Lamina Propria of Normal and Inflamed Colon and Terminal Ileum Gut: first published as 10.1136/gut.30.6.826 on 1 June 1989. Downloaded from Gut, 1989, 30, 826-834 Macrophage subpopulations in lamina propria of normal and inflamed colon and terminal ileum Y R MAHIDA, S PATEL, P GIONCHETTI, D VAUX, AND D P JEWELL From the Gastroenterology Unit, Radcliffe Infirmary, Oxford SUMMARY The aim of this study was to characterise human intestinal macrophages in normal and inflamed ileum and colon. Immunoperoxidase staining with a panel of monoclonal antibodies and histochemical staining for acid phosphatase and non-specific esterase was performed. In the superficial lamina propria, normal colonic macrophages were larger and more strongly positive for acid phosphatase and non-specific esterase than those in normal terminal ileum. There were more macrophages staining with monoclonal antibody RFD1 in the superficial lamina propria of the latter. Studies in inflammatory bowel disease tissue showed the presence of macrophages staining with monoclonal antibodies RFD9 and 3G8 which were rarely present in normal tissue and represented a different pattern from that seen in infectious colitis. Studies on isolated intestinal macrophages confirmed the findings in tissue sections. Subpopulations ofintestinal macrophages are likely to have different functional roles. Phenotypic changes during inflammation may be induced by mediators of inflammation or may represent a recently recruited population of cells. http://gut.bmj.com/ Macrophages arise from the bone marrow where the In active inflammatory bowel disease, there is an monoblast differentiates into promonocytes and then increase in the mucosal macrophage population. into monocytes which are released into the blood.' Morphological and histochemical heterogeneity of From the blood, monocytes migrate to tissues where intestinal macrophages has previously been demon- they become macrophages. During an inflammatory strated with a distinct population being prominent in reaction, large numbers of monocytes are recruited active inflammatory bowel disease.6 We have studied into the lesion. The functionally diverse subpopula- this heterogeneity further, in normal and inflamed on September 29, 2021 by guest. Protected copyright. tions of these cells as well as the resident population small and large intestine, using a panel of monoclonal of macrophages are not easy to identify just on antibodies and histochemical staining. Tissue morphology and therefore new techniques are sections and cells isolated from normal and inflamed required to identify them.2 Monoclonal antibodies mucosa were studied. have provided a powerful means to identify and study unique subsets of lymphocytes. By using similar Methods- antibodies it should be possible to study the hetero- geneity of intestinal macrophages. PATIENTS Human intestinal macrophages are found in the Normal colonic and ileal mucosa was obtained lamina propria, frequently close to the basal mem- from 23 patients (16 women, median age 65 years brane of the epithelium.3 They appear to be closely (range 38-83)) undergoing intestinal resection for associated with lymphocytes, plasma cells, and carcinoma. The mucosa was obtained at least 5 cm epithelial cells and are likely to have a number of from tumour. specialised functions. These include antigen presen- Mucosa involved with active inflammatory bowel tation;4 microbicidal and tumoricidal activity; disease was obtained from ileum and colon resected secretion of mediators that regulate other cells and at operation or from rectal biopsy specimens from secretion of a variety of enzymes.' patients with active ulcerative colitis or Crohn's colitis rectal Address for correspondence: Dr D P Jewell, Gastroenterology Unit, Radcliffe (with involvement). Thirty two patients Infirmary, Oxford. were studied (20 women, median age 40 years (range Accepted for publication 31 October 1988. 17-77)). Ten of the 32 patients were on intravenous 826 Gut: first published as 10.1136/gut.30.6.826 on 1 June 1989. Downloaded from Macrophage slibpopulations in lamina propria ofnormal and inflamed colon and terminal ileum 827 steroids, 13 on steroid enemas only an eighteen were Table 1 Monoclonal antibodies used on sulphasalazine. Rectal biopsy specimens from six patients with ulcerative colitis in remission (all on Antibody Cells labelled Source sulphasalazine only) and from three patients with RFDI (IgG)' '6 Dendritic' cells Dr Poulter Clostridium difficile colitis were also studied. Royal Free Hospital London TISSUE SECTIONS RFD7 (lgG)"'` I Mature macrophages Dr Poulter Royal Free Hospital Tissue was placed on a small piece of cork and London covered with OCT mounting medium (Ames) and RFD9 (IgG)'`' Epitheliod cells and Dr Poulter frozen in isopentane in liquid nitrogen. Cryostat tingible body Royal Free Hospital sections 4 p.m thick were cut from the blocks at macrophages London -25°C, fixed in acetone for 10 and stored at EBM1 1 (lgG)' Tissue macrophages ProfessorJ 0 D McGee minutes, John Radcliffe Hosp. -20°C until used. Oxford 3C10 (lgG)` Monocytes and Dr Ralph Steinman ISOLATION OF INTESTINAL MONONUCLEAR macrophages The Rockefeller Univ. CELLS New York 3G8 (IgG) Fcy receptor on poly- Dr H B Fleit Cells isolated from normal and inflamed colonic morphonuclear State Univ of New mucosa were studied. Macroscopically normal leucocytes natural York, New York mucosa, greater than 5 cm from tumour and inflamed killer cells and mucosa was obtained from fresh operation resection some macrophages Y1/82A (IgG)` Monocytes and Dr D Y Mason specimens. macrophages John Radcliffe Hosp. Mononuclear cells were obtained by a modified Oxford EDTA-collagenase technique of Bull and 201521 (IgG) Anti pan HLA-D Dr S Fuggel Bookman. Specimens were washed with calcium and John Radcliffe Hosp. Oxford magnesium free Hanks Balanced Solution (HBSS; RDFRI (IgM)` Anti HLA-DR Dr Poulter Flow Laboratories). Mucosa was dissected from Royal Free Hosp. muscularis mucosa and fragments incubated with London 1 mM dithiothreitol at for 15 minutes. (Sigma) 20°C http://gut.bmj.com/ After washing with HBSS, epithelial cells were removed by 3x30 minute incubations in 5 mM incubated with peroxidase-conjugated rabbit anti- EDTA (BDH chemicals) at 37°C with shaking. mouse antibody (Dako; diluted in TBS/normal Mucosa was subsequently cut into small pieces human serum) for 30 minutes, washed with TBS for and digested with collagenase (from Clostridium five minutes and incubated with peroxidase conju- histolyticum; Boehringer Mannheim) at a concentra- gated swine antirabbit antibody (Dako; diluted in tion of 100 mg/100 ml culture medium (containing TBS/normal human serum) for 30 minutes. After 10% FCS/RPMI; Gibco) for three hours or 20 mgIlO0 further washing, peroxidase activity was developed on September 29, 2021 by guest. Protected copyright. ml culture medium for 12 hours. After washing, with diaminobenzidine and hydrogen peroxide. The mononuclear cells were obtained by centrifugation preparations were counterstained in Harris' haema- over Ficoll-Paque (Pharmacia). All the media used toxylin, dehydrated, and mounted in DPX. Two contained 100 U/ml penicillin, 5 p.g/ml gentamicin controls were used, omitting the first antibody and and 100 p.g/ml streptomycin. secondly, using OX7 (mouse anti-rat Thy 1.1 mono- Cytospin preparations with about 60000 mono- clonal antibody kindly donated by Dr A Williams, nuclear cells per slide were made, air dried and fixed MRC Cellular Immunology Unit, Oxford) as the with acetone. They were stored at -20°C until used. primary antibody (at similar concentrations to those used for the macrophage monoclonal antibodies). MONOCLONAL ANTIBODIES Tissue sections were also stained for acid phos- Table 1 lists the monoclonal antibodies used. phatase (ACP) using naphthol AS TR phosphoric acid sodium salt as substrate9 and for non-specific STAINING esterase (NSE) using naphthyl acetate as substrate.9 Tissue sections and cytospin preparations were In some studies acid phosphatase activity was stained with the monoclonal antibodies using the detected in combination with immunoperoxidase peroxidase technique.' Endogenous peroxidase staining' using monoclonal antibodies as described. activity was blocked with methanol and hydrogen For double immunofluorescence, monoclonal anti- peroxide. The preparations were incubated with the bodies of different class (IgG and IgM) were used and monoclonal antibody for 60 minutes and washed in labelled with fluorescein-conjugated goat anti-mouse Tris buffered saline (TBS; pH 7). They were then IgG and TRITC-conjugated goat antimouse IgM Gut: first published as 10.1136/gut.30.6.826 on 1 June 1989. Downloaded from 828 Mahida, Patel, Gionchetti, Vaux, andJewell (Nordic).` Sections were examined under a standard Table 2 Macrophages in tissue sections stainedfor ACP 14 Zeiss microscope equipped with a x40 phase oil and NSE and with monoclonal antibodies RFDI, RFD9, objective and epifluorescence condenser containing and 3G8 selective filters for FITC and TRITC. ACP and NSE RFDI RFD9 and 3G8 CELL COUNTS Normal Large, strongly Positive cells Rarely any For each monoclonal antibody and acid phosphatase colon positive cells in predominantly positive cell in macrophages as a percentage of the superficial in superficial lamina propria staining, positive lamina propria lamina propria total number of mononuclear cells in the superficial Normal Smaller, less Positive cells Rarely any lamina propria was determined by using a graticule, terminal strongly throughout positive cell in using the same magnification
Recommended publications
  • Development of Plasmacytoid and Conventional Dendritic Cell Subtypes from Single Precursor Cells Derived in Vitro and in Vivo
    ARTICLES Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo Shalin H Naik1,2, Priyanka Sathe1,3, Hae-Young Park1,4, Donald Metcalf1, Anna I Proietto1,3, Aleksander Dakic1, Sebastian Carotta1, Meredith O’Keeffe1,4, Melanie Bahlo1, Anthony Papenfuss1, Jong-Young Kwak1,4,LiWu1 & Ken Shortman1 The development of functionally specialized subtypes of dendritic cells (DCs) can be modeled through the culture of bone marrow with the ligand for the cytokine receptor Flt3. Such cultures produce DCs resembling spleen plasmacytoid DCs (pDCs), http://www.nature.com/natureimmunology CD8+ conventional DCs (cDCs) and CD8– cDCs. Here we isolated two sequential DC-committed precursor cells from such cultures: dividing ‘pro-DCs’, which gave rise to transitional ‘pre-DCs’ en route to differentiating into the three distinct DC subtypes (pDCs, CD8+ cDCs and CD8– cDCs). We also isolated an in vivo equivalent of the DC-committed pro-DC precursor cell, which also gave rise to the three DC subtypes. Clonal analysis of the progeny of individual pro-DC precursors demonstrated that some pro-DC precursors gave rise to all three DC subtypes, some produced cDCs but not pDCs, and some were fully committed to a single DC subtype. Thus, commitment to particular DC subtypes begins mainly at this pro-DC stage. Dendritic cells (DCs) are antigen-presenting cells crucial for the innate macrophages12. Further ‘downstream’, ‘immediate’ precursors have and adaptive response to infection as well as for maintaining immune been identified for several DC types, including Ly6Chi monocytes as 3,4,6 13 Nature Publishing Group Group Nature Publishing tolerance to self tissue.
    [Show full text]
  • The Biochemical and Biophysical Mechanisms of Macrophage Migration
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 The Biochemical and Biophysical Mechanisms of Macrophage Migration Laurel Erin Hind University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Allergy and Immunology Commons, Biomedical Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Hind, Laurel Erin, "The Biochemical and Biophysical Mechanisms of Macrophage Migration" (2015). Publicly Accessible Penn Dissertations. 1062. https://repository.upenn.edu/edissertations/1062 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1062 For more information, please contact [email protected]. The Biochemical and Biophysical Mechanisms of Macrophage Migration Abstract The ability of macrophages to migrate is critical for a proper immune response. During an innate immune response, macrophages migrate to sites of infection or inflammation where they clear pathogens through phagocytosis and activate an adaptive immune response by releasing cytokines and acting as antigen- presenting cells. Unfortunately, improper regulation of macrophage migration is associated with a variety of dieases including cancer, atherosclerosis, wound-healing, and rheumatoid arthritis. In this thesis, engineered substrates were used to study the chemical and physical mechanisms of macrophage migration. We first used microcontact printing to generate surfaces
    [Show full text]
  • Submucosa Precedes Lamina Propria in Initiating Fibrosis in Oral Submucous Fibrosis - Evidence Based on Collagen Histochemistry
    SUBMUCOSA PRECEDES LAMINA PROPRIA IN INITIATING FIBROSIS IN ORAL SUBMUCOUS FIBROSIS - EVIDENCE BASED ON COLLAGEN HISTOCHEMISTRY. *Anna P. Joseph ** R. Rajendran Abstract Oral submucous fibrosis is a chronic insidious disease and a well-recognized potentially malignant condition of the oral cavity. It is a collagen related disorder associated with betel quid chewing and characterized by progressive hyalinization of the lamina propria. Objectives: It is traditionally held that in oral submucous fibrosis the hyalinization process starts from the lamina propria and progresses to involve the submucosal tissues. However reports of some investigators suggest that on the contrary, the fibrosis starts in the submucosa and not in the juxta epithelium as previously assumed. Methods: A histochemical study comparing the pattern of collagen deposition and hyalinization in early and advanced cases of oral submucous fibrosis was done using special stain for collagen. Result & Conclusion: The results suggest that in a certain percentage of cases submucosa precedes the lamina propria in initiating fibrosis in this disease. This could have implications on the differences in clinical presentation, biological progression, neoplastic transformation and responsiveness to treatment. Introduction fibrosis (OSF) is an insidious chronic fibrotic disease and a well recognized premalignant Fibrosis, a conspicuous feature of condition that involves the oral mucosa and chronically inflamed tissue is characterized by occasionally the pharynx and the upper progressive
    [Show full text]
  • Normal Gross and Histologic Features of the Gastrointestinal Tract
    NORMAL GROSS AND HISTOLOGIC 1 FEATURES OF THE GASTROINTESTINAL TRACT THE NORMAL ESOPHAGUS left gastric, left phrenic, and left hepatic accessory arteries. Veins in the proximal and mid esopha- Anatomy gus drain into the systemic circulation, whereas Gross Anatomy. The adult esophagus is a the short gastric and left gastric veins of the muscular tube measuring approximately 25 cm portal system drain the distal esophagus. Linear and extending from the lower border of the cri- arrays of large caliber veins are unique to the distal coid cartilage to the gastroesophageal junction. esophagus and can be a helpful clue to the site of It lies posterior to the trachea and left atrium a biopsy when extensive cardiac-type mucosa is in the mediastinum but deviates slightly to the present near the gastroesophageal junction (4). left before descending to the diaphragm, where Lymphatic vessels are present in all layers of the it traverses the hiatus and enters the abdomen. esophagus. They drain to paratracheal and deep The subdiaphragmatic esophagus lies against cervical lymph nodes in the cervical esophagus, the posterior surface of the left hepatic lobe (1). bronchial and posterior mediastinal lymph nodes The International Classification of Diseases in the thoracic esophagus, and left gastric lymph and the American Joint Commission on Cancer nodes in the abdominal esophagus. divide the esophagus into upper, middle, and lower thirds, whereas endoscopists measure distance to points in the esophagus relative to the incisors (2). The esophagus begins 15 cm from the incisors and extends 40 cm from the incisors in the average adult (3). The upper and lower esophageal sphincters represent areas of increased resting tone but lack anatomic landmarks; they are located 15 to 18 cm from the incisors and slightly proximal to the gastroesophageal junction, respectively.
    [Show full text]
  • Anatomy, Histology, and Embryology
    ANATOMY, HISTOLOGY, 1 AND EMBRYOLOGY An understanding of the anatomic divisions composed of the vomer. This bone extends from of the head and neck, as well as their associ- the region of the sphenoid sinus posteriorly and ated normal histologic features, is of consider- superiorly, to the anterior edge of the hard pal- able importance when approaching head and ate. Superior to the vomer, the septum is formed neck pathology. The large number of disease by the perpendicular plate of the ethmoid processes that involve the head and neck area bone. The most anterior portion of the septum is a reflection of the many specialized tissues is septal cartilage, which articulates with both that are present and at risk for specific diseases. the vomer and the ethmoidal plate. Many neoplasms show a sharp predilection for The supporting structure of the lateral border this specific anatomic location, almost never of the nasal cavity is complex. Portions of the occurring elsewhere. An understanding of the nasal, ethmoid, and sphenoid bones contrib- location of normal olfactory mucosa allows ute to its formation. The lateral nasal wall is visualization of the sites of olfactory neuro- distinguished from the smooth surface of the blastoma; the boundaries of the nasopharynx nasal septum by its “scroll-shaped” superior, and its distinction from the nasal cavity mark middle, and inferior turbinates. The small su- the interface of endodermally and ectodermally perior turbinate and larger middle turbinate are derived tissues, a critical watershed in neoplasm distribution. Angiofibromas and so-called lym- phoepitheliomas, for example, almost exclu- sively arise on the nasopharyngeal side of this line, whereas schneiderian papillomas, lobular capillary hemangiomas, and sinonasal intesti- nal-type adenocarcinomas almost entirely arise anterior to the line, in the nasal cavity.
    [Show full text]
  • Ultrastructure of Endocrine-Like Cells in Lamina Propria of Human Gastric Mucosa
    Gut: first published as 10.1136/gut.22.7.534 on 1 July 1981. Downloaded from Gut, 1981, 22, 534-541 Ultrastructure of endocrine-like cells in lamina propria of human gastric mucosa* J STACHURA, W J KRAUSE, AND K J IVEYt From the Veterans Administration Medical Center, Long Beach, California; University of California Irvine, Irvine, California; Department of Anatomy, University of Missouri School of Medicine, Columbia, Missouri; and the Institute ofPathology, Copernicus Medical Academy, Krakow, Polantd SUMMARY Endocrine cells of gastric and gut mucosa are commonly thought to be present only within mucosal glands. In a previous report, we described argyrophilic cells in the lamina propria in 40 % of surgical gastric specimens, using light microscopy. All these patients had chronic gastritis. Argyrophilia, however, is a non-specific reaction which could occur in other than endocrine cells. The present study was undertaken to describe the ultrastructure of argyrophil cells in the lamina propria. In five patients with chronic gastritis, endoscopic biopsies were taken from the fundic, intermediate, and pyloric areas of the stomach. Single and/or clustered argyophil cells were seen by light microscopy in the lamina propria of the intermediate and pyloric are.as. On electron- microscopy, these cells had the following characteristics of endocrine-like cells: they were characterised by numerous electron dense granules in the cytoplasm, 100-300 nm in diameter; the cytoplasm contained poorly-developed rough endoplasmic reticulum and well-developed smooth endoplasmic reticulum with occasional vesicles. Immunostaining gave negative results for various gastrointestinal hormones. These ultrastructural characteristics of lamina propria cells are similar to endocrine cells of the APUD series.
    [Show full text]
  • Single-Cell Mass Cytometry of Differential Immune and Drug
    RESEARCH ARTICLE Performance assessmentofmasscytometry. The workflow for mass cytometry is comparable with that of fluorescence flow cytometry (Fig. 1A). Single-Cell Mass Cytometry of Differential Antibodies coupled to distinct, stable, transition element isotopes were used to bind target epitopes on and within cells. Cells, with bound antibody- Immune and Drug Responses Across isotope conjugates, were sprayed as single-cell droplets into an inductively coupled argon plasma a Human Hematopoietic Continuum (created by passing argon gas through an induc- tion coil with a high radio-frequency electric cur- 1 1 2 3 1 1 Sean C. Bendall, * Erin F. Simonds, * Peng Qiu, El-ad D. Amir, Peter O. Krutzik, Rachel Finck, rent) at approximately 5500 K. This vaporizes 1,7 3 1 4,5 6 Robert V. Bruggner, Rachel Melamed, Angelica Trejo, Olga I. Ornatsky, Robert S. Balderas, each cell and induces ionization of its atomic con- 2 1 3 4,5 1 Sylvia K. Plevritis, Karen Sachs, Dana Pe’er, Scott D. Tanner, Garry P. Nolan † stituents. The resulting elemental ions were then sampled by a time-of-flight (TOF) mass spectrom- Flow cytometry is an essential tool for dissecting the functional complexity of hematopoiesis. We used eter and quantified. The signal for each transi- single-cell “mass cytometry” to examine healthy human bone marrow, measuring 34 parameters tion element isotope reporter was integrated as simultaneously in single cells (binding of 31 antibodies, viability, DNA content, and relative cell size). The each cell’s constituent ions reached the detector. signaling behavior of cell subsets spanning a defined hematopoietic hierarchy was monitored with 18 Currently, TOF sampling resolution enables the simultaneous markers of functional signaling states perturbed by a set of ex vivo stimuli and inhibitors.
    [Show full text]
  • The Gallbladder
    The Gallbladder Anatomy of the gallbladder Location: Right cranial abdominal quadrant. In the gallbladder fossa of the liver. o Between the quadrate and right medial liver lobes. Macroscopic: Pear-shaped organ Fundus, body and neck. o Neck attaches, via a short cystic duct, to the common bile duct. Opens into the duodenum via sphincter of Oddi at the major duodenal papilla. Found on the mesenteric margin of orad duodenum. o 3-6 cm aboral to pylorus. 1-2cm of distal common bile duct runs intramural. Species differences: Dogs: o Common bile duct enters at major duodenal papilla. Adjacent to pancreatic duct (no confluence prior to entrance). o Accessory pancreatic duct enters at minor duodenal papilla. ± 2 cm aboral to major duodenal papilla. MAJOR conduit for pancreatic secretions. Cats: o Common bile duct and pancreatic duct converge before opening at major duodenal papilla. Thus, any surgical procedure that affects the major duodenal papilla can affect the exocrine pancreatic secretions in cats. o Accessory pancreatic duct only seen in 20% of cats. 1 Gallbladder wall: 5 histologically distinct layers. From innermost these include: o Epithelium, o Submucosa (consisting of the lamina propria and tunica submucosa), o Tunica muscularis externa, o Tunica serosa (outermost layer covers gallbladder facing away from the liver), o Tunica adventitia (outermost layer covers gallbladder facing towards the liver). Blood supply: Solely by the cystic artery (derived from the left branch of the hepatic artery). o Susceptible to ischaemic necrosis should its vascular supply become compromised. Function: Storage reservoir for bile o Concentrated (up to 10-fold), acidified (through epithelial acid secretions) and modified (by the addition of mucin and immunoglobulins) before being released into the gastrointestinal tract at the major duodenal.
    [Show full text]
  • Monocyte and Macrophage Heterogeneity
    REVIEWS MONOCYTE AND MACROPHAGE HETEROGENEITY Siamon Gordon and Philip R. Taylor Abstract | Heterogeneity of the macrophage lineage has long been recognized and, in part, is a result of the specialization of tissue macrophages in particular microenvironments. Circulating monocytes give rise to mature macrophages and are also heterogeneous themselves, although the physiological relevance of this is not completely understood. However, as we discuss here, recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues. These advances in our understanding have implications for the development of therapeutic strategies that are targeted to modify particular subpopulations of monocytes. OSTEOCLAST Circulating monocytes give rise to a variety of tissue- elicit increased recruitment of monocytes to peripheral A multinucleate cell that resident macrophages throughout the body, as well as sites4, where differentiation into macrophages and DCs resorbs bone. to specialized cells such as dendritic cells (DCs) and occurs, contributing to host defence, and tissue remod- OSTEOCLASTS. Monocytes are known to originate in the elling and repair. Studies of the mononuclear-phagocyte bone marrow from a common myeloid progenitor that system, using monoclonal antibodies specific for vari- is shared with neutrophils, and they are then released ous cell-surface receptors and differentiation antigens, into the peripheral blood, where they circulate for have shown that there is substantial heterogeneity of several days before entering tissues and replenishing phenotype, which most probably reflects the special- the tissue macrophage populations1.
    [Show full text]
  • 10 11 Cyto Slides 81-85
    NEW YORK STATE CYTOHEMATOLOGY PROFICIENCY TESTING PROGRAM Glass Slide Critique ~ November 2010 Slide 081 Diagnosis: MDS to AML 9 WBC 51.0 x 10 /L 12 Available data: RBC 3.39 x 10 /L 72 year-old female Hemoglobin 9.6 g/dL Hematocrit 29.1 % MCV 86.0 fL Platelet count 16 x 109 /L The significant finding in this case of Acute Myelogenous Leukemia (AML) was the presence of many blast forms. The participant median for blasts, all types was 88. The blast cells in this case (Image 081) are large, irregular in shape and contain large prominent nucleoli. It is difficult to identify a blast cell as a myeloblast without the presence of an Auer rod in the cytoplasm. Auer rods were reported by three participants. Two systems are used to classify AML into subtypes, the French- American-British (FAB) and the World Health Organization (WHO). Most are familiar with the FAB classification. The WHO classification system takes into consideration prognostic factors in classifying AML. These factors include cytogenetic test results, patient’s age, white blood cell count, pre-existing blood disorders and a history of treatment with chemotherapy and/or radiation therapy for a prior cancer. The platelet count in this case was 16,000. Reduced number of platelets was correctly reported by 346 (94%) of participants. Approximately eight percent of participants commented that the red blood cells in this case were difficult to evaluate due to the presence of a bluish hue around the red blood cells. Comments received included, “On slide 081 the morphology was difficult to evaluate since there was a large amount of protein surrounding RBC’s”, “Slide 081 unable to distinguish red cell morphology due to protein” and “Unable to adequately assess morphology on slide 081 due to poor stain”.
    [Show full text]
  • 10 Maturation and Development of Leucocytes
    MODULE Maturation and Development of Leucocytes Hematology and Blood Bank Technique 10 Notes MATURATION AND DEVELOPMENT OF LEUCOCYTES 10.1 INTRODUCTION The leucocytes develop from the multipotent hematopoietic stem cell which then gives rise to a stem cell committed to formation of leucocytes. Both these cells cannot be identified morphologically by routine methods. The various types of leucocytes are granulocytes (neutrophils, eosinophils and basophils), monocytes and lymphocytes. The three cell types develop separately and accordingly these processes will be discussed separately. OBJECTIVES After reading this lesson, you will be able to: z explain the various stages in the development of leucocytes. z describe the different types of leucocytes seen normally in PBF. 10.2 MYELOPOIESIS This is the process of formation of myeloid cells. It is restricted to the bone marrow after birth. The committed progenitor cell for granulocytes and monocytes is the GM-CFU which proliferates and differentiates to form myeloblast and monoblast. The myeloblast is the earliest morphologically identifiable cell. It is 10-18µm in size. The cytoplasm is scant and basophilic, usually agranular and may contain a few azurophilic cytoplasmic granules in the blast transiting to the next stage 80 HEMATOLOGY AND BLOOD BANK TECHNIQUE Maturation and Development of Leucocytes MODULE of promyelocyte. It has a large round to oval nucleus with a smooth nuclear Hematology and Blood membrane. The chromatin is fine, lacy and is evenly distributed throughout the Bank Technique nucleus. Two-five nucleoli can be identified in the nucleus. The next stage of maturation is the Promyelocyte. It is larger than a myeloblast, 12-20 µm with more abundant cytoplasm which has abundant primary azurophilic granules .
    [Show full text]
  • Correlation of Ultrasonographic Small Intestinal Wall Layering with Histology in Normal Dogs
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2015 Correlation of Ultrasonographic Small Intestinal Wall Layering with Histology in Normal Dogs Alexandre Benjamin Le Roux Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Veterinary Medicine Commons Recommended Citation Le Roux, Alexandre Benjamin, "Correlation of Ultrasonographic Small Intestinal Wall Layering with Histology in Normal Dogs" (2015). LSU Master's Theses. 1148. https://digitalcommons.lsu.edu/gradschool_theses/1148 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CORRELATION OF ULTRASONOGRAPHIC SMALL INTESTINAL WALL LAYERING WITH HISTOLOGY IN NORMAL DOGS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Masters of Science in The School of Veterinary Medicine through The Department of Veterinary Clinical Sciences by Alexandre Benjamin Le Roux DrMedVet, Ecole Nationale Vétérinaire de Nantes, 2006 May 2015 To my parents, my family and all my friends, for their continuous support… ii ACKNOWLEDGMENTS Foremost, I would like to express my deepest gratitude to the members of my committee, Drs. Lorrie Gaschen, Frederic Gaschen, Abbigail Granger and Nathalie Rademacher for the continuous support and guidance that they gave me through my residency and Master program research, as well as during the preparation of this manuscript.
    [Show full text]