Development of Plasmacytoid and Conventional Dendritic Cell Subtypes from Single Precursor Cells Derived in Vitro and in Vivo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Megakaryocyte Growth and Platelet Production (Blood Platelet/Hematopoleflc Growth Factor/Thrombocyoena/B~Usfan) DAVID J
Proc. Natl. Acad. Sci. USA Vol. 91, pp. 11104-11108, November 1994 Physiology The purification of megapoietin: A physiological regulator of megakaryocyte growth and platelet production (blood platelet/hematopoleflc growth factor/thrombocyoena/b~usfan) DAVID J. KUTER*tt§, DAVID L. BEELER*, AND ROBERT D. ROSENBERGt1¶ *Hematology Unit, Massachusetts General Hospital, Boston, MA; tHarvard Medical School, Boston, MA; tDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA; and 'Department of Medicine, Beth Israel Hospital, Boston, MA Communicated by Laszlo Lorand, July 8, 1994 (receivedfor review June 3, 1994) ABSTRACT The circulating blood platelet is produced by To characterize this putative thrombopoietic factor, we the bone marrow megkarocyte. In response to a decrease in have analyzed the physiological relationship between the the platelet count, megryocytes increase in number and bone marrow megakaryocytes and the circulating platelets. ploidy. Although this feedback loop has long been thought to be We have found that the magnitude of the changes in the medlated by a circulating hematopoletic factor, no such factor number and ploidy of megakaryocytes was inversely and has been purified. Using a model ofthrombocytopenia in sheep, proportionally related to the circulating platelet mass (3) and we have identified an active substance called megapoetin, that megakaryocyte number and ploidy were therefore mark- which simulated an increase in the number and ploldy of ers of this feedback loop in vivo. We next developed a bone meg-karyocytes in bone marrow culture. Circulating levels of marrow assay in which increases in the number and ploidy of this factor could be quantified with this assay and were found megakaryocytes in vitro (6) were used to identify an active to be Inversely proportional to the platelet count of the sheep. -
Pulmonary Megakaryocytes: "Missing Link" Between Cardiovascular and Respiratory Disease?
J Clin Pathol: first published as 10.1136/jcp.39.9.969 on 1 September 1986. Downloaded from J Clin Pathol 1986;39:969-976 Pulmonary megakaryocytes: "missing link" between cardiovascular and respiratory disease? G K SHARMA, I C TALBOT From the Department ofPathology, University ofLeicester, Leicester Royal Infirmary SUMMARY Pulmonary megakaryocytes were quantitated in a series of 30 consecutive hospital nec- ropsies using a two stage immunoperoxidase stain for factor VIII related antigen. In all 30 cases they were found with a mean density of 14 65 megakaryocytes/cm2 in lung sections of 5 gm in thickness. The maximum concentration of intrapulmonary megakaryocytes was consistently found to be in the central zone of the right upper lobe. Less than 22% of the observed cells possessed abundant cytoplasm, the rest appearing as effete, naked, and seminaked nuclei. The mean megakaryocyte count was found to be increased in association with both respiratory pathology (positive smoking history and impaired lung function) and cardiovascular disease states-shock; thromboembolism; myocardial infarction; and severe atheroma in the abdominal aorta, the coronary circulation, and the circle of Willis. Pulmonary megakaryocytes probably embolise from bone marrow. This may reflect stimulated thrombopoiesis, caused by increased platelet consumption in association with atherosclerotic disease, but it cannot be taken to confirm that the lung is the principal site of platelet production. copyright. The megakaryocyte is now firmly established as the 2 Intact megakaryocytes -
The Distribution of Immune Cells in the Uveal Tract of the Normal Eye
THE DISTRIBUTION OF IMMUNE CELLS IN THE UVEAL TRACT OF THE NORMAL EYE PAUL G. McMENAMIN Perth, Western Australia SUMMARY function of these cells in the normal iris, ciliary body Inflammatory and immune-mediated diseases of the and choroid. The role of such cell types in ocular eye are not purely the consequence of infiltrating inflammation, which will be discussed by other inflammatory cells but may be initiated or propagated authors in this issue, is not the major focus of this by immune cells which are resident or trafficking review; however, a few issues will be briefly through the normal eye. The uveal tract in particular considered where appropriate. is the major site of many such cells, including resident tissue macro phages, dendritic cells and mast cells. This MACRO PHAGES review considers the distribution and location of these and other cells in the iris, ciliary body and choroid in Mononuclear phagocytes arise from bone marrow the normal eye. The uveal tract contains rich networks precursors and after a brief journey in the blood as of both resident macrophages and MHe class 11+ monocytes immigrate into tissues to become macro dendritic cells. The latter appear strategically located to phages. In their mature form they are widely act as sentinels for capturing and sampling blood-borne distributed throughout the body. Macrophages are and intraocular antigens. Large numbers of mast cells professional phagocytes and play a pivotal role as are present in the choroid of most species but are effector cells in cell-mediated immunity and inflam virtually absent from the anterior uvea in many mation.1 In addition, due to their active secretion of a laboratory animals; however, the human iris does range of important biologically active molecules such contain mast cells. -
The Biogenesis of Platelets from Megakaryocyte Proplatelets
The biogenesis of platelets from megakaryocyte proplatelets Sunita R. Patel, … , John H. Hartwig, Joseph E. Italiano Jr. J Clin Invest. 2005;115(12):3348-3354. https://doi.org/10.1172/JCI26891. Review Series Platelets are formed and released into the bloodstream by precursor cells called megakaryocytes that reside within the bone marrow. The production of platelets by megakaryocytes requires an intricate series of remodeling events that result in the release of thousands of platelets from a single megakaryocyte. Abnormalities in this process can result in clinically significant disorders. Thrombocytopenia (platelet counts less than 150,000/μl) can lead to inadequate clot formation and increased risk of bleeding, while thrombocythemia (platelet counts greater than 600,000/μl) can heighten the risk for thrombotic events, including stroke, peripheral ischemia, and myocardial infarction. This Review will describe the process of platelet assembly in detail and discuss several disorders that affect platelet production. Find the latest version: https://jci.me/26891/pdf Review series The biogenesis of platelets from megakaryocyte proplatelets Sunita R. Patel, John H. Hartwig, and Joseph E. Italiano Jr. Hematology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA. Platelets are formed and released into the bloodstream by precursor cells called megakaryocytes that reside within the bone marrow. The production of platelets by megakaryocytes requires an intricate series of remodeling events that result in the release of thousands of platelets from a single megakaryocyte. Abnormalities in this process can result in clinically significant disorders. Thrombocytopenia (platelet counts less than 150,000/µl) can lead to inadequate clot formation and increased risk of bleeding, while thrombocythemia (platelet counts greater than 600,000/µl) can heighten the risk for thrombotic events, including stroke, peripheral ischemia, and myocardial infarction. -
The Biochemical and Biophysical Mechanisms of Macrophage Migration
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 The Biochemical and Biophysical Mechanisms of Macrophage Migration Laurel Erin Hind University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Allergy and Immunology Commons, Biomedical Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Hind, Laurel Erin, "The Biochemical and Biophysical Mechanisms of Macrophage Migration" (2015). Publicly Accessible Penn Dissertations. 1062. https://repository.upenn.edu/edissertations/1062 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1062 For more information, please contact [email protected]. The Biochemical and Biophysical Mechanisms of Macrophage Migration Abstract The ability of macrophages to migrate is critical for a proper immune response. During an innate immune response, macrophages migrate to sites of infection or inflammation where they clear pathogens through phagocytosis and activate an adaptive immune response by releasing cytokines and acting as antigen- presenting cells. Unfortunately, improper regulation of macrophage migration is associated with a variety of dieases including cancer, atherosclerosis, wound-healing, and rheumatoid arthritis. In this thesis, engineered substrates were used to study the chemical and physical mechanisms of macrophage migration. We first used microcontact printing to generate surfaces -
A Mutation in the Translation Initiation Codon of Gata-1 Disrupts Megakaryocyte Maturation and Causes Thrombocytopenia
A mutation in the translation initiation codon of Gata-1 disrupts megakaryocyte maturation and causes thrombocytopenia Ian J. Majewski*†, Donald Metcalf*‡, Lisa A. Mielke*, Danielle L. Krebs*, Sarah Ellis§, Marina R. Carpinelli*, Sandra Mifsud*, Ladina Di Rago,* Jason Corbin*, Nicos A. Nicola*, Douglas J. Hilton*, and Warren S. Alexander*‡ *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia; †Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and §Peter MacCallum Cancer Centre, Trescowthick Research Laboratories, St. Andrew’s Place, East Melbourne, Victoria 3002, Australia Contributed by Donald Metcalf, July 27, 2006 We have generated mice from a N-ethyl-N-nitrosourea mutagen- progenitors in fetal life, an abnormality that resolves spontane- esis screen that carry a mutation in the translation initiation codon ously at birth. This phenotype resembles the transient myelo- of Gata-1, termed Plt13, which is equivalent to mutations found in proliferative disorder associated with trisomy 21 that resolves patients with acute megakaryoblastic leukemia and Down syn- shortly after birth and is followed later in life by AML-M7 DS drome. The Gata-1 locus is present on the X chromosome in in a proportion of affected children (18). humans and in mice. Male mice hemizygous for the mutation We report here a N-ethyl-N-nitrosourea (ENU)-induced mu- (Gata-1Plt13͞Y) failed to produce red blood cells and died during tation in the translation initiation codon of Gata-1, designated embryogenesis at a similar stage to Gata-1-null animals. Female Plt13, which is analogous to mutations detected in patients with mice that carry the Plt13 mutation are mosaic because of random AML-M7 DS and transient myeloproliferative disorder (10–13). -
The Importance of Dendritic Cells in Maintaining Immune Tolerance Cindy Audiger, M
The Importance of Dendritic Cells in Maintaining Immune Tolerance Cindy Audiger, M. Jubayer Rahman, Tae Jin Yun, Kristin V. Tarbell and Sylvie Lesage This information is current as of October 1, 2021. J Immunol 2017; 198:2223-2231; ; doi: 10.4049/jimmunol.1601629 http://www.jimmunol.org/content/198/6/2223 Downloaded from References This article cites 166 articles, 73 of which you can access for free at: http://www.jimmunol.org/content/198/6/2223.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Brief Reviews Immunology The Importance of Dendritic Cells in Maintaining Immune Tolerance x { Cindy Audiger,*,†,1 M. Jubayer Rahman,‡,1 Tae Jin Yun, , Kristin V. Tarbell,‡ and Sylvie Lesage*,† Immune tolerance is necessary to prevent the immune specific depletion of CD11c+ cells (3). -
Megakaryocyte Emperipolesis Mediates Membrane Transfer from Intracytoplasmic Neutrophils to Platelets
RESEARCH ARTICLE Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets Pierre Cunin1, Rim Bouslama1, Kellie R Machlus2, Marta Martı´nez-Bonet1, Pui Y Lee1,3, Alexandra Wactor1, Nathan Nelson-Maney1, Allyn Morris1, Li Guo4, Andrew Weyrich4, Martha Sola-Visner5, Eric Boilard6, Joseph E Italiano2,7, Peter A Nigrovic1,3* 1Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States; 2Department of Medicine, Hematology Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, United States; 3Department of Medicine, Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, United States; 4Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, United States; 5Department of Neonatology, Boston Children’s Hospital, Harvard Medical School, Boston, United States; 6Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Que´bec, Faculte´ de Me´decine de l’Universite´ Laval, Que´bec, Canada; 7Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, United States Abstract Bone marrow megakaryocytes engulf neutrophils in a phenomenon termed emperipolesis. We show here that emperipolesis is a dynamic process mediated actively by both lineages, in part through the b2-integrin/ICAM-1/ezrin pathway. Tethered neutrophils enter in membrane-bound vesicles before penetrating into the megakaryocyte cytoplasm. Intracytoplasmic neutrophils develop membrane contiguity with the demarcation membrane system, thereby *For correspondence: [email protected] transferring membrane to the megakaryocyte and to daughter platelets. This phenomenon occurs in otherwise unmanipulated murine marrow in vivo, resulting in circulating platelets that bear Competing interest: See membrane from non-megakaryocytic hematopoietic donors. -
Neutrophil Transit Time and Localization Within the Megakaryocyte Define
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441404; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Distinct forms of emperipolesis Neutrophil transit time and localization within the megakaryocyte define morphologically distinct forms of emperipolesis Frank Y. Huang1,2, Pierre Cunin1, Felix A. Radtke1,2, Ricardo Grieshaber-Bouyer1,2, Peter A. Nigrovic1,3* 1Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston MA, USA 2Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany 3Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston MA, USA Corresponding Author: Peter A. Nigrovic, MD Division of Immunology Boston Children’s Hospital Karp Family Research Building, 10th Floor 1 Blackfan Circle Boston, MA 02115 Ph: 617-919-2482 Fax: 617-730-0528 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441404; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Distinct forms of emperipolesis Key Points • Neutrophil passage through megakaryocytes, termed emperipolesis, diverges into fast and slow forms that differ in transit time, morphology, and intracellular localization • During emperipolesis, neutrophils can reside in vacuoles (emperisomes) or escape into the cell cytoplasm to assume positions near the megakaryocyte’s demarcation membrane system, endoplasmic reticulum, or nucleus. -
Immunology 101
Immunology 101 Justin Kline, M.D. Assistant Professor of Medicine Section of Hematology/Oncology Committee on Immunology University of Chicago Medicine Disclosures • I served as a consultant on Advisory Boards for Merck and Seattle Genetics. • I will discuss non-FDA-approved therapies for cancer 2 Outline • Innate and adaptive immune systems – brief intro • How immune responses against cancer are generated • Cancer antigens in the era of cancer exome sequencing • Dendritic cells • T cells • Cancer immune evasion • Cancer immunotherapies – brief intro 3 The immune system • Evolved to provide protection against invasive pathogens • Consists of a variety of cells and proteins whose purpose is to generate immune responses against micro-organisms • The immune system is “educated” to attack foreign invaders, but at the same time, leave healthy, self-tissues unharmed • The immune system can sometimes recognize and kill cancer cells • 2 main branches • Innate immune system – Initial responders • Adaptive immune system – Tailored attack 4 The immune system – a division of labor Innate immune system • Initial recognition of non-self (i.e. infection, cancer) • Comprised of cells (granulocytes, monocytes, dendritic cells and NK cells) and proteins (complement) • Recognizes non-self via receptors that “see” microbial structures (cell wall components, DNA, RNA) • Pattern recognition receptors (PRRs) • Necessary for priming adaptive immune responses 5 The immune system – a division of labor Adaptive immune system • Provides nearly unlimited diversity of receptors to protect the host from infection • B cells and T cells • Have unique receptors generated during development • B cells produce antibodies which help fight infection • T cells patrol for infected or cancerous cells • Recognize “foreign” or abnormal proteins on the cell surface • 100,000,000 unique T cells are present in all of us • Retains “memory” against infections and in some cases, cancer. -
Granulocytes, Macrophages, and Dendritic Cells Arise from A
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 3038-3042, April 1993 Immunology Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow KAYO INABA*t, MUNEO INABA*, MASASHI DEGUCHI*, KATSUHIKO HAGI*, RYoJi YASUMIZUf, SUSUMU IKEHARAt, SHIGERU MURAMATSU*, AND RALPH M. STEINMAN§ *Department of Zoology, Faculty of Science, Kyoto University, Sakyo, Kyoto 606, Japan; tFirst Department of Pathology, Kansai Medical University, Moriguchi, Osaka 570, Japan; and §Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10021 Communicated by Zanvil A. Cohn, December 21, 1992 ABSTRACT The developmental origin of dendritic cells, a lineage-restricted macrophage and granulocyte colony- specialized system ofmajor histocompatibility complex (MHC) stimulating factors (M-CSF and G-CSF, respectively) (8, 10, class 11-rich antigen-presenting cells for T-celi immunity and 12). tolerance, is not well characterized. Granulocyte-macrophage Since GM-CSF can induce the formation of mixed popu- colony-stimulating factor (GM-CSF) is known to stimulate lations ofgranulocytes and macrophages in semi-solid colony dendritic cells, including growth and development from MHC systems (15), we asked whether dendritic cells could also class 11-negative precursors in suspension cultures of mouse arise from a colony-forming precursor that is common to bone marrow. Here we studied colony formation in semi-solid phagocytes. Cells with some of the features of dendritic cells methylcellulose cultures, a classical bioassay system in which have been detected in human cell colonies that were induced GM-CSF induces the formation of mixed granulocyte- with lectin-conditioned medium (16) and more recently with macrophage colonies. -
Erythroid and Megakaryocytic Transformation
Oncogene (2007) 26, 6803–6815 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Erythroid and megakaryocytic transformation A Wickrema1 and JD Crispino2 1Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA and 2Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA Red blood cells and megakaryocytes arise from a common Accumulated evidence mostly from studies with precursor, the megakaryocyte-erythroid progenitor and mouse models and human primary cells suggests that share many regulators including the transcription factors cellular expansion and differentiation occur concur- GATA-1 and GFI-1B and signaling molecules such as JAK2 rently until the late stages of erythroid differentiation and STAT5. These lineages also share the distinction (polychromatic/orthochromatic) at which point the cells of being associated with rare, but aggressive malignancies exit the cell cycle and undergo terminal maturation that have very poor prognoses. In this review, we (Wickrema et al., 1992; Ney and D’Andrea, 2000; will briefly summarize features of normal development of Koury et al., 2002). A disruption of the balance between red blood cells and megakaryocytes and also highlight erythroid cell expansion and differentiation results in events that lead to their leukemic transformation. It is either myeloproliferative disorders (MPDs) such as clear that much more work needs to be done to improve our polycythemia vera, myelodysplastic syndrome, or rarely understanding of the unique biology of these leukemias in erythroleukemia. Furthermore, some patients initially and to pave the way for novel targeted therapeutics. diagnosed with MPDs ultimately progress to erythro- Oncogene (2007) 26, 6803–6815; doi:10.1038/sj.onc.1210763 leukemia.