Mark A. Cunningham

Total Page:16

File Type:pdf, Size:1020Kb

Mark A. Cunningham Undergraduate Lecture Notes in Physics Mark A. Cunningham Beyond Classical Physics Undergraduate Lecture Notes in Physics Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering topics throughout pure and applied physics. Each title in the series is suitable as a basis for undergraduate instruction, typically containing practice problems, worked examples, chapter summaries, and suggestions for further reading. ULNP titles must provide at least one of the following: • An exceptionally clear and concise treatment of a standard undergrad- uate subject. • A solid undergraduate-level introduction to a graduate, advanced, or non-standard subject. • A novel perspective or an unusual approach to teaching a subject. ULNP especially encourages new, original, and idiosyncratic approaches to physics teaching at the undergraduate level. The purpose of ULNP is to provide intriguing, absorbing books that will continue to be the reader’s preferred reference throughout their academic career. Series editors Neil Ashby University of Colorado, Boulder, CO, USA William Brantley Furman University, Greenville, SC, USA Matthew Deady Bard College, Annandale-on-Hudson, NY, USA Michael Fowler University of Virginia, Charlottesville, VA, USA Morten Hjorth-Jensen University of Oslo, Oslo, Norway Michael Inglis SUNY Suffolk County Community College, Selden, NY, USA More information about this series at http://www.springer.com/series/ 8917 Mark A. Cunningham Beyond Classical Physics 123 Mark A. Cunningham Katy, TX, USA Wolfram Mathematica is a registered trademark of Wolfram Research, Inc ISSN 2192-4791 ISSN 2192-4805 (electronic) Undergraduate Lecture Notes in Physics ISBN 978-3-319-63159-2 ISBN 978-3-319-63160-8 (eBook) https://doi.org/10.1007/978-3-319-63160-8 Library of Congress Control Number: 2017946474 © Mark A. Cunningham 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland For Elizabeth Ann Preface Beyond Classical Physics is intended to be a sequel to the first-year level Neoclassical Physics. I have followed the same pathway, emphasizing the experimental underpinnings of our modern mathematical representations of nature. The focus here is primarily on the microscopic world, where experiments indicate that interactions of the constituents of matter are vastly different from those we observe in macroscopic objects. This world is best described by what we have come to call quantum theory. As we progress through the text, we shall endeavor to illustrate some of the historical contributions of the practitioners of the day. For example, Albert Einstein provoked a signal change in how physics is practiced with his development of a General Theory of Relativity but Einstein did not work completely in isolation. This text is not intended to be a history of the subject; indeed, we shall not attempt to provide attribution for every equation or experiment. Following such a path would lead to a publica- tion too ponderous to contemplate. Instead, my intent is to provide an introduction to the state of physics at the beginning of the twenty-first century. When I was a first-year graduate student, my electromagnetics instructor Feza Gürsey made a point of telling the class that Freeman Dyson had proved the renormalizability of quantum electrodynamics as a first-year student. Recently, Gerard t’Hooft had just proven the renormalizability of quantum chromodynamics at the one-loop level, also as a first-year stu- dent. “What,” he queried, “are you working on?” As he scanned the room, no one was willing to make eye contact, so I suppose that he concluded that ours was another class of misfits, without a single distinguished intellect amongst the lot. In retrospect and having sufficient time elapsed for Professor Gürsey’s stinging rebuke to have softened, I have come to another interpretation: Gürsey was seeking to challenge us to become relevant, to step beyond the limitations of curriculum and seek the frontiers of knowledge. Students have a natural tendency to follow the curriculum, learning whatever is set forth in textbooks and required in the syllabus. Universities have become complacent in their curriculum development, instead focussing on ad- ministrative, accreditation goals that reward adherence to (least common denominator) standards, not innovation. The result is that most students vii viii Preface do not see the frontiers of physics research until they are well into their graduate careers. It is a truly remarkable student who even knows what renormalization means at the first-year graduate level, much less have enough insight to contribute in a significant fashion. This is unfortunate, because renormalization became integrated into the physics literature by the 1950s. Physics has moved well beyond quantum electrodynamics. I have chosen to include the use not only of Mathematica software but also the numerical codes NWChem, that performs electronic structure calcu- lations, and NAMD/VMD that provide molecular dynamics and visual- ization/analysis capabilities. I recognize that these choices may seem to introduce an insurmountable obstacle to progress but tutorials in their use are available by their developers and the codes are freely accessible. In fact, given adequate computational resources, these codes can be used at the frontiers of research. These days, numerical simulation has risen to new importance. Experiment, of course, provides the defining result but often experiments need interpretation. Simulation, beyond ideal the- oretical formulations, provides concrete, if flawed, results that can help to explain experimental results and guide further experimentation. I have had undergraduate students utilize these codes to good effect. It takes discipline and hard work to become adept with these tools but stu- dents are generally quite enthralled with the results that they can obtain. They are brought to the precipice where they can begin to ask significant questions of their own. This is not a small achievement. While not a lengthy textbook, I expect that there is sufficient material to fill two semesters, particularly if instructors require students to attempt reading the original publications listed in each section. I have found this to be an interesting exercise for students. Even if they do not fully (or partly) comprehend the work, in many cases one finds that the original paper does not mention explicitly the reason why it is cited. Attribution follows reputation, in some instances. In any case, consulting the origi- nal literature is still an important step along the pathway to becoming a scientist. I believe it never too early to begin. That said, I recognize that in so short a work that there are many areas of physics that are not discussed. Again, my philosophy is that students will benefit more from investigating fewer topics in more detail than in pursuing a large quantity of topics, just to say that you’ve seen Bernoulli’s law, in case it comes up in a subsequent class. I believe that if students are properly prepared, they will have the tools to follow any topic that subsequently fires their imagination. As diligently as I have worked on this text, I admit that there are prob- ably mistakes; I hope there are no blatant falsehoods. Nevertheless, all Preface ix errors in the text are my responsibility and I apologize in advance for any particularly egregious examples. This work, of course, would never have been completed without the continual, and unflinching, support of my wife Liz. She has endured the creation of this book without complaint, even as I staggered through the effort. I cannot say thank you enough. Katy, TX, USA Mark A. Cunningham Contents Preface vii List of Figures xiii List of Tables xvii List of Exercises xix Chapter 1. Introduction 1 1.1. Perception as Reality 3 1.2. Classical Physics 11 1.3. Quantum Physics 17 1.4. Mathematical Insights 22 Chapter 2. On the Nature of the Photon 29 2.1. Maxwell’s Equations 30 2.2. Fields and Potentials 38 2.3. Point sources 44 2.4. Relativistic Formulation 48 2.5. Solitons 56 Chapter 3. On the Nature of the Electron 63 3.1. Dirac Equation 65 3.2.GaugeTheory 71 3.3. Gyromagnetic Ratio 77 3.4. Mathematical Difficulties 83 Chapter 4.OnAtoms 87 4.1.Hydrogen 88 4.2. Many-body Problems 96 4.3. Density-Functional Theory 102 4.4.HeavyAtoms 108 Chapter 5. On the Nature of the Nucleus 111 5.1. Electron Scattering 111 5.2. Nuclear Size 116 5.3. Nuclear Structure 120 5.4. Four Forces 129 Chapter 6. Toward a Theory of Everything 135 6.1. Quarks 136 xi xii Contents 6.2. Electroweak Unification 143 6.3. Standard Model 149 6.4.
Recommended publications
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • Decoherence and the Transition from Quantum to Classical—Revisited
    Decoherence and the Transition from Quantum to Classical—Revisited Wojciech H. Zurek This paper has a somewhat unusual origin and, as a consequence, an unusual structure. It is built on the principle embraced by families who outgrow their dwellings and decide to add a few rooms to their existing structures instead of start- ing from scratch. These additions usually “show,” but the whole can still be quite pleasing to the eye, combining the old and the new in a functional way. What follows is such a “remodeling” of the paper I wrote a dozen years ago for Physics Today (1991). The old text (with some modifications) is interwoven with the new text, but the additions are set off in boxes throughout this article and serve as a commentary on new developments as they relate to the original. The references appear together at the end. In 1991, the study of decoherence was still a rather new subject, but already at that time, I had developed a feeling that most implications about the system’s “immersion” in the environment had been discovered in the preceding 10 years, so a review was in order. While writing it, I had, however, come to suspect that the small gaps in the landscape of the border territory between the quantum and the classical were actually not that small after all and that they presented excellent opportunities for further advances. Indeed, I am surprised and gratified by how much the field has evolved over the last decade. The role of decoherence was recognized by a wide spectrum of practic- 86 Los Alamos Science Number 27 2002 ing physicists as well as, beyond physics proper, by material scientists and philosophers.
    [Show full text]
  • EUGENE PAUL WIGNER November 17, 1902–January 1, 1995
    NATIONAL ACADEMY OF SCIENCES E U G ENE PAUL WI G NER 1902—1995 A Biographical Memoir by FR E D E R I C K S E I T Z , E RICH V OG T , A N D AL V I N M. W E I NBER G Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1998 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of Atoms for Peace Awards, Inc. EUGENE PAUL WIGNER November 17, 1902–January 1, 1995 BY FREDERICK SEITZ, ERICH VOGT, AND ALVIN M. WEINBERG UGENE WIGNER WAS A towering leader of modern physics Efor more than half of the twentieth century. While his greatest renown was associated with the introduction of sym- metry theory to quantum physics and chemistry, for which he was awarded the Nobel Prize in physics for 1963, his scientific work encompassed an astonishing breadth of sci- ence, perhaps unparalleled during his time. In preparing this memoir, we have the impression we are attempting to record the monumental achievements of half a dozen scientists. There is the Wigner who demonstrated that symmetry principles are of great importance in quan- tum mechanics; who pioneered the application of quantum mechanics in the fields of chemical kinetics and the theory of solids; who was the first nuclear engineer; who formu- lated many of the most basic ideas in nuclear physics and nuclear chemistry; who was the prophet of quantum chaos; who served as a mathematician and philosopher of science; and the Wigner who was the supervisor and mentor of more than forty Ph.D.
    [Show full text]
  • Adobe Acrobat PDF Document
    BIOGRAPHICAL SKETCH of HUGH EVERETT, III. Eugene Shikhovtsev ul. Dzerjinskogo 11-16, Kostroma, 156005, Russia [email protected] ©2003 Eugene B. Shikhovtsev and Kenneth W. Ford. All rights reserved. Sources used for this biographical sketch include papers of Hugh Everett, III stored in the Niels Bohr Library of the American Institute of Physics; Graduate Alumni Files in Seeley G. Mudd Manuscript Library, Princeton University; personal correspondence of the author; and information found on the Internet. The author is deeply indebted to Kenneth Ford for great assistance in polishing (often rewriting!) the English and for valuable editorial remarks and additions. If you want to get an interesting perspective do not think of Hugh as a traditional 20th century physicist but more of a Renaissance man with interests and skills in many different areas. He was smart and lots of things interested him and he brought the same general conceptual methodology to solve them. The subject matter was not so important as the solution ideas. Donald Reisler [1] Someone once noted that Hugh Everett should have been declared a “national resource,” and given all the time and resources he needed to develop new theories. Joseph George Caldwell [1a] This material may be freely used for personal or educational purposes provided acknowledgement is given to Eugene B. Shikhovtsev, author ([email protected]), and Kenneth W. Ford, editor ([email protected]). To request permission for other uses, contact the author or editor. CONTENTS 1 Family and Childhood Einstein letter (1943) Catholic University of America in Washington (1950-1953). Chemical engineering. Princeton University (1953-1956).
    [Show full text]
  • The Recollections of Eugene P. Wigner
    The Recollections of Eugene P. Wigner as told to Andrew Szanton The Recollections of Eugene P. Wigner as told to Andrew Szanton Springer Science+Business Media, LLC Llbrary of Congress Cataloglng-ln-Publlcatlon Data Wigner, Eugene Paul, 1902- The reeolleetlons of Eugene P. Wigner as told to Andrew Szanton I Andrew Szanton. p. eil. Ineludes blbllographleal re fe rene es and Index. I. Wigner, Eugene Paul, 1902- 2. Physlelsts--Unlted States- -Slography. 1. Szanton, Andrew. 11. Tltls. QC16.W55 1992 530 ' • 92--d e20 [sI 92-17040 CIP ISBN 978-0-306-44326-8 ISBN 978-1-4899-6313-0 (eBook) DOI 10.1007/978-1-4899-6313-0 © 1992 Andrew Szanton Originally published by Plenum Press in 1992. Softcover reprint ofthe hardcover 1st edition 1992 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, rnicrofilrning, recording, or otherwise, without written perrnission from the Publisher q-~tkJod d-fi'~~J~ rz first met Dr. Eugene Wigner while working on an oral J history project at the Smithsonian Institution in Wash­ ington, D.C. Funded by the Sloan Foundation, the Smithson­ ian's Museum of American History was building a video ar­ chive of the personal recollections of those who had worked on the Manhattan Project during the Second World War, building the world's first atomic bomb. I was introduced to Dr. Wigner at a Smithsonian panel in Oak Ridge, Tennessee. A few months later, I spent two days in Princeton, New Jersey, and interviewed hirn twice, at length.
    [Show full text]
  • Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective
    Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective A Dissertation Submitted to the Faculty of the Graduate School of the University of Minnesota by John Richard Gustafson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Advisor: Roger H. Stuewer Minneapolis, Minnesota July 2004 i © John Richard Gustafson 2004 ii To my father and mother Rudy and Aune Gustafson iii Abstract Wolfgang Pauli's philosophy and physics were intertwined. His philosophy was a variety of Platonism, in which Pauli’s affiliation with Carl Jung formed an integral part, but Pauli’s philosophical explorations in physics appeared before he met Jung. Jung validated Pauli’s psycho-philosophical perspective. Thus, the roots of Pauli’s physics and philosophy are important in the history of modern physics. In his early physics, Pauli attempted to ground his theoretical physics in positivism. He then began instead to trust his intuitive visualizations of entities that formed an underlying reality to the sensible physical world. These visualizations included holistic kernels of mathematical-physical entities that later became for him synonymous with Jung’s mandalas. I have connected Pauli’s visualization patterns in physics during the period 1900 to 1930 to the psychological philosophy of Jung and displayed some examples of Pauli’s creativity in the development of quantum mechanics. By looking at Pauli's early physics and philosophy, we gain insight into Pauli’s contributions to quantum mechanics. His exclusion principle, his influence on Werner Heisenberg in the formulation of matrix mechanics, his emphasis on firm logical and empirical foundations, his creativity in formulating electron spinors, his neutrino hypothesis, and his dialogues with other quantum physicists, all point to Pauli being the dominant genius in the development of quantum theory.
    [Show full text]
  • INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence the FRONTIERS COLLECTION
    THE FRONTIERS COLLECTION James B. Glattfelder INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur, Iyar, Israel Institute of Advanced Research, Rehovot, Israel Zeeya Merali, Foundational Questions Institute, Decatur, GA, USA Thanu Padmanabhan, Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India Maximilian Schlosshauer, Department of Physics, University of Portland, Portland, OR, USA Mark P. Silverman, Department of Physics, Trinity College, Hartford, CT, USA Jack A. Tuszynski, Department of Physics, University of Alberta, Edmonton, AB, Canada Rüdiger Vaas, Redaktion Astronomie, Physik, bild der wissenschaft, Leinfelden-Echterdingen, Germany THE FRONTIERS COLLECTION The books in this collection are devoted to challenging and open problems at the forefront of modern science and scholarship, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science and research. Furthermore, it is intended to encourage active academics in all fields to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, conscious- ness, language and complex systems—the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. More information about this series at http://www.springer.com/series/5342 For a full list of published titles, please see back of book or springer.com/series/5342 James B.
    [Show full text]
  • Feynman's War: Modelling Weapons, Modelling Nature Peter Galison*
    Stud. Hist. Phil. Mod. Phys., Vol. 29, No. 3, 391Ð434, 1998 ( 1998 Published by Elsevier Science Ltd. All rights reserved Printed in Great Britain 1355-2198/98 $19.00#0.00 Feynman’s War: Modelling Weapons, Modelling Nature Peter Galison* What do I mean by understanding? Nothing deep or accurateÐjust to be able to see some of the qualitative consequences of the equations by some method other than solving them in detail. Feynman to Welton, 10 February 1947. 1. Introduction: Modular Culture In all of modern physics there are few elements of theory so pervasive as Feynman diagramsÐJulian Schwinger once sardonically remarked that these simple spacetime figures brought quantum field theory to the masses. In reaching ‘the masses’ this graphic synthesis of quantum mechanics and relativity played a formative role in the development of quantum electrodynamics, meson theory, S-matrix theory, condensed matter physics, the standard model of particle interac- tions, and more recently, string theory. Part representation, part abstract symbol- ism, these line diagrams constitute one of the most intriguing and precise forms of modelling a¤orded by the physical sciences. With stakes that high, it is not surprising that historians, foremost among them Silvan Schweber, have both followed the growth of quantum electrodynamics after the war in detail and precisely tracked antecedents of the Feynman diagrams from cloud chamber photographs to schematic electronic diagrams; from E. C. G. Stueckelberg’s spacetime diagram drawn in the 1930s showing a positron as an electron moving backwards in time to John Wheeler’s emphasis to his student Feynman that all physics could be understood through scattering.1 Once the graphs come * Department of History of Science, Department of Physics, Harvard University, Cambridge, MA 02138, U.S.A.
    [Show full text]
  • Jayme Tiomno a Life for Science, a Life for Brazil Series: Springer Biographies
    springer.com William Dean Brewer, Alfredo Tiomno Tolmasquim Jayme Tiomno A Life for Science, a Life for Brazil Series: Springer Biographies A fascinating biography of a talented and influential Brazilian physicist Recounts Tiomno's many interactions with John Wheeler, Richard Feynman and other well-known contemporaries Provides new insights into the early development of Weak Interactions and Gravitation Theory Explores the radical changes Tiomno brought to physics education in Brazil and elsewhere Jayme Tiomno (1920-2011) was one of the most influential Brazilian physicists of the 20thcentury, interacting with many of the renowned physicists of his time, including John Wheelerand Richard Feynman, Eugene Wigner, Chen Ning Yang, David Bohm, Murray Gell-Mann, RemoRuffini, Abdus Salam, and many others. This biography tells the sometimes romantic, 1st ed. 2020, XIII, 396 p. 75 illus., 3 illus. often discouraging but finally optimistic story ofa dedicated scientist and educator from a in color. developing country who made importantcontributions to particle physics, gravitation, cosmology and field theory, and to theadvancement of science and of scientific education, in many Printed book institutions in Brazil andelsewhere. Drawing on unpublished documents from archives in Brazil Hardcover and the US as well asprivate sources, the book traces Tiomno's long life, following his role in 69,99 € | £59.99 | $84.99 the establishment ofvarious research facilities and his tribulations during the Brazilian military [1]74,89 € (D) | 76,99 € (A) | CHF dictatorship. Itpresents a story of progress and setbacks in advancing science in Brazil and 82,50 beyond, and ofthe persistence and dedication of a talented physicist who spent his life in Softcover search of scientifictruth.
    [Show full text]
  • David R. Inglis Papers Finding
    Special Collections and University Archives UMass Amherst Libraries David Rittenhouse Inglis Papers Digital 1929-1980 (Bulk: 1965-1980) 12 boxes (5.75 linear ft.) Call no.: FS 033 About SCUA SCUA home Credo digital Scope Overview Series 1. Correspondence Series 2. Subject files Series 3. Course Notes Series 4. Publications by Inglis (Reprints) Series 5. Audiovisual Inventory Series 1. Correspondence Series 2. Subject files Series 3. Course Notes Series 4. Publications by Inglis (Reprints) Series 5. Audiovisual Admin info Download xml version print version (pdf) Read collection overview David R. Inglis enjoyed a distinguished career in nuclear physics that ranged from theoretical work on the structure of the nucleus in the 1930s to the development of the atomic bomb in the 1940s and work on renewable energy in the 1960s and 1970s. A Professor of Physics at UMass from 1969-1975, Inglis was a founding member of the Federation of American Scientists and from the mid-1940s on, he dedicated himself to informing public policy on the dangers of nuclear technologies. The Inglis Papers offer a perspective on the life and career of a theoretical physicist who grew from an early involvement in the Manhattan Project to becoming a committed critic of nuclear weaponry and nuclear power. Although the collection is relatively sparse in unpublished scientific work, it includes valuable correspondence relating to Inglis's efforts with the Federation of American Scientists and other organizations to influence public policy on issues relating to disarmament and nuclear power. See similar SCUA collections: Alternative energy Antinuclear Cold War culture Oral history Peace Science and technology UMass (1947- ) UMass faculty Background on David Rittenhouse Inglis A namesake and descendent of David Rittenhouse, one of early America's preeminent physical scientists, David R.
    [Show full text]
  • The Reason for Beam Cooling: Some of the Physics That Cooling Allows
    The Reason for Beam Cooling: Some of the Physics that Cooling Allows Eagle Ridge, Galena, Il. USA September 18 - 23, 2005 Walter Oelert IKP – Forschungszentrum Jülich Ruhr – Universität Bochum CERN obvious: cooling and control of cooling is the essential reason for our existence, gives us the opportunity to do and talk about physics that cooling allows • 1961 – 1970 • 1901 – 1910 1961 – Robert Hofstadter (USA) 1901 – Wilhelm Conrad R¨ontgen (Deutschland) 1902 – Hendrik Antoon Lorentz (Niederlande) und Rudolf M¨ossbauer (Deutschland) Pieter (Niederlande) 1962 – Lev Landau (UdSSR) 1903 – Antoine Henri Becquerel (Frankreich) 1963 – Eugene Wigner (USA) und Marie Curie (Frankreich) Pierre Curie (Frankreich) Maria Goeppert-Mayer (USA) und J. Hans D. Jensen (Deutschland) 1904 – John William Strutt (Großbritannien und Nordirland) 1964 – Charles H. Townes (USA) , 1905 – Philipp Lenard (Deutschland) Nikolai Gennadijewitsch Bassow (UdSSR) und 1906 – Joseph John Thomson (Großbritannien-und-Nordirland) Alexander Michailowitsch Prochorow (UdSSR) und 1907 – Albert Abraham Michelson (USA) 1965 – Richard Feynman (USA), Julian Schwinger (USA) Shinichiro Tomonaga (Japan) 1908 – Gabriel Lippmann (Frankreich) 1966 – Alfred Kastler (Frankreich) 1909 – Ferdinand Braun (Deutschland) und Guglielmo Marconi (Italien) 1967 – Hans Bethe (USA) 1910 – Johannes Diderik van der Waals (Niederlande) 1968 – Luis W. Alvarez (USA) 1969 – Murray Gell-Mann (USA) 1970 – Hannes AlfvAn¨ (Schweden) • 1911 – 1920 Louis N¨oel (Frankreich) 1911 – Wilhelm Wien (Deutschland) 1912 – Gustaf
    [Show full text]
  • Eugene Wigner
    Reprinted from Communications in Pure and Applied Mathematics, Vol. 13, No. I (February 1960). New York: John Wiley & Sons, Inc. Copyright © 1960 by John Wiley & Sons, Inc. THE UNREASONABLE EFFECTIVENSS OF MATHEMATICS IN THE NATURAL SCIENCES Eugene Wigner Mathematics, rightly viewed, possesses not only truth, but supreme beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as in poetry. - BERTRAND RUSSELL, Study of Mathematics There is a story about two friends, who were classmates in high school, talking about their jobs. One of them became a statistician and was working on population trends. He showed a reprint to his former classmate. The reprint started, as usual, with the Gaussian distribution and the statistician explained to his former classmate the meaning of the symbols for the actual population, for the average population, and so on. His classmate was a bit incredulous and was not quite sure whether the statistician was pulling his leg. "How can you know that?" was his query. "And what is this symbol here?" "Oh," said the statistician, "this is pi." "What is that?" "The ratio of the circumference of the circle to its diameter." "Well, now you are pushing your joke too far," said the classmate, "surely the population has nothing to do with the circumference of the circle." Naturally, we are inclined to smile about the simplicity of the classmate's approach.
    [Show full text]