Comparison Geometry for Ricci Curvature

Total Page:16

File Type:pdf, Size:1020Kb

Comparison Geometry for Ricci Curvature Comparison Geometry for Ricci Curvature Xianzhe Dai Guofang Wei 1 1Partially supported by NSF grant DMS-08 2 A Ricci curvature bound is weaker than a sectional curvature bound but stronger than a scalar curvature bound. Ricci curvature is also special that it occurs in the Einstein equation and in the Ricci flow. Comparison geometry plays a very important role in the study of manifolds with lower Ricci curva- ture bound, especially the Laplacian and the Bishop-Gromov volume compar- isons. Many important tools and results for manifolds with Ricci curvature lower bound follow from or use these comparisons, e.g. Meyers' theorem, Cheeger- Gromoll's splitting theorem, Abresch-Gromoll's excess estimate, Cheng-Yau's gradient estimate, Milnor's result on fundamental group. We will present the Laplacian and the Bishop-Gromov volume comparison theorems in the first lec- ture, then discuss their generalizations to integral Ricci curvature, Bakry-Emery Ricci tensor and Ricci flow in the rest of lectures. Contents 1 Basic Tools for Ricci Curvature 5 1.1 Bochner's formula . 5 1.2 Mean Curvature and Local Laplacian Comparison . 7 1.3 Global Laplacian Comparison . 10 1.4 Volume Comparison . 12 1.4.1 Volume of Riemannian Manifold . 12 1.4.2 Comparison of Volume Elements . 15 1.4.3 Volume Comparison . 16 1.5 The Jacobian Determinant of the Exponential Map . 20 1.6 Characterizations of Ricci Curvature Lower Bound . 22 1.7 Characterization of Warped Product . 24 2 Geometry of Manifolds with Ricci Curvature Lower Bound 27 2.1 Cheeger-Gromoll's Splitting Theorem . 27 2.2 Gradient Estimate . 31 2.2.1 Harmonic Functions . 31 2.2.2 Heat Kernel . 34 2.3 First Eigenvalue and Heat Kernel Comparison . 34 2.3.1 First Nonzero Eigenvalue of Closed Manifolds . 35 2.3.2 Dirichlet and Neumann Eigenvalue Comparison . 40 2.3.3 Heat Kernel Comparison . 41 2.4 Isoperimetric Inequality . 41 2.5 Abresch-Gromoll's Excess Estimate . 41 2.6 Almost Splitting Theorem . 44 3 Topology of Manifolds with Ricci Curvature Lower Bound 45 3.1 First Betti Number Estimate . 45 3.2 Fundamental Groups . 48 3.2.1 Growth of Groups . 49 3.2.2 Fundamental Group of Manifolds with Nonnegative Ricci Curvature . 50 3.2.3 Finiteness of Fundamental Groups . 54 3.3 Volume entropy and simplicial volume . 56 3.4 Examples and Questions . 57 3 4 CONTENTS 4 Gromov-Hausdorff convergence 61 5 Comparison for Integral Ricci Curvature 65 5.1 Integral Curvature: an Overview . 65 5.2 Mean Curvature Comparison Estimate . 67 5.3 Volume Comparison Estimate . 69 5.4 Geometric and Topological Results for Integral Curvature . 73 5.5 Smoothing . 79 6 Comparison Geometry for Bakry-Emery Ricci Tensor 81 6.1 N-Bakry-Emery Ricci Tensor . 81 6.2 Bochner formulas for the N-Bakry-Emery Ricci tensor . 83 6.3 Eigenvalue and Mean Curvature Comparison . 84 6.4 Volume Comparison and Myers' Theorems . 88 7 Comparison Geometry in Ricci Flow 93 7.1 Reduced Volume Monotonicity . 93 7.2 Heuristic Argument . 93 7.3 Laplacian Comparison for Ricci Flow . 98 8 Ricci Curvature for Metric Measure Spaces 99 8.1 Metric Space and Optimal Transportation . 99 8.1.1 Metric and Length Spaces . 99 8.1.2 Optimal Transportation . 100 8.1.3 The Monge transport . 102 8.1.4 Topology and Geometry of P (X) . 103 8.2 N-Ricci Lower Bound for Measured Length Spaces . 108 8.2.1 Via Localized Bishop-Gromov . 108 8.2.2 Entropy And Ricci Curvature . 113 8.2.3 The Case of Smooth Metric Measure Spaces . 116 8.2.4 Via Entropy Convexity . 119 8.3 Stability of N-Ricci Lower Bound under Convergence . 122 8.4 Geometric and Analytical Consequences . 122 8.5 Cheeger-Colding . 127 Chapter 1 Basic Tools and Characterizations of Ricci Curvature Lower Bound The most basic tool in studying manifolds with Ricci curvature bound is the Bochner formula, which measures the non-commutativity of the covariant deriva- tive and the connection Laplacian. Applying the Bochner formula to distance functions we get important tools like mean curvature and Laplacian comparison theorems, volume comparison theorem. Each of these tools can be used to give a characterization of the Ricci curvature lower bound. These tools have many applications, see next two chapters. 1.1 Bochner's formula For a smooth function u on a Riemannian manifold (M n; g), the gradient of u is the vector field ru such that hru; Xi = X(u) for all vector fields X on M. The Hessian of u is the symmetric bilinear form Hess (u)(X; Y ) = XY (u) − rX Y (u) = hrX ru; Y i; and the Laplacian is the trace ∆u = tr(Hess u). For a bilinear form A, we denote jAj2 = tr(AAt). The Bochner formula for functions is Theorem 1.1.1 (Bochner's Formula) For a smooth function u on a Rie- mannian manifold (M n; g), 1 ∆jruj2 = jHess uj2 + hru; r(∆u)i + Ric(ru; ru): (1.1.1) 2 5 6 CHAPTER 1. BASIC TOOLS FOR RICCI CURVATURE Proof: We can derive the formula by using local geodesic frame and commuting the derivatives. Fix x 2 M, let feig be an orthonormal frame in a neighborhood of x such that, at x, rei ej(x) = 0 for all i; j. At x, 1 1 X ∆jruj2 = e e hru; rui 2 2 i i i X X = eihrei ru; rui = eiHess u(ei; ru) i i X X = eiHess u(ru; ei) = eihrruru; eii i i X = hrei rruru; eii i X = hrrurei ru; eii + hr[ei;ru]ru; eii + hR(ei; ru)ru;(1.1.2) eii : i Now at x, X X hrrurei ru; eii = [ruhrei ru; eii − hrei ru; rrueii] i i = ru(∆u) = hru; r(∆u)i; (1.1.3) and X X hr[ei;ru]ru; eii = Hess u([ei; ru]; ei) i i X = Hess u(ei; rei ru) i X 2 = hrei ru; rei rui = jHess uj : (1.1.4) i Combining (1.1.2), (1.1.3) and (1.1.4) gives (1.1.1). 2 2 (∆u) Applying the Cauchy-Schwarz inequality jHess uj ≥ n to (1.1.1) we obtain the following inequality 1 (∆u)2 ∆jruj2 ≥ + hru; r(∆u)i + Ric(ru; ru); (1.1.5) 2 n 1 with equality if and only if Hess u = hIn for some h 2 C (M). If Ric ≥ (n − 1)H, then 1 (∆u)2 ∆jruj2 ≥ + hru; r(∆u)i + (n − 1)Hjruj2: (1.1.6) 2 n The Bochner formula simplifies whenever jruj or ∆u are simply. Hence it is natural to apply it to the distance functions, harmonic functions, and the eigenfunctions among others, getting many applications. The formula has a more general version (Weitzenb¨ock type) for vector fields (1-forms). 1.2. MEAN CURVATURE AND LOCAL LAPLACIAN COMPARISON 7 1.2 Mean Curvature and Local Laplacian Com- parison Here we apply the Bochner formula to distance functions. We call ρ : U ! R, where U ⊂ M n is open, is a distance function if jrρj ≡ 1 on U. Example 1.2.1 Let A ⊂ M be a submanifold, then ρ(x) = d(x; A) = inffd(x; y)jy 2 Ag is a distance function on some open set U ⊂ M. When A = q is a point, the distance function r(x) = d(q; x) is smooth on M n fq; Cqg, where Cq is the cut locus of q. When A is a hypersurface, ρ(x) is smooth outside the focal points of A. For a smooth distance function ρ(x), Hess ρ is the covariant derivative of the normal direction @r = rρ. Hence Hess ρ = II, the second fundamental form of the level sets ρ−1(r), and ∆ρ = m, the mean curvature. For r(x) = n−1 d(q; x), m(r; θ) ∼ r as r ! 0; for ρ(x) = d(x; A), where A is a hypersurface, m(y; 0) = mA, the mean curvature of A, for y 2 A. Putting u(x) = ρ(x) in (1.1.1), we obtain the Riccati equation along a radial geodesic, 2 0 0 = jIIj + m + Ric(@r;@r): (1.2.1) By the Cauchy-Schwarz inequality, m2 jIIj2 ≥ : n − 1 Thus we have the Riccati inequality m2 m0 ≤ − − Ric(@ ;@ ): (1.2.2) n − 1 r r If RicM n ≥ (n − 1)H, then m2 m0 ≤ − − (n − 1)H: (1.2.3) n − 1 From now on, unless specified otherwise, we assume m = ∆r, the mean n curvature of geodesic spheres. Let MH denote the complete simply connected n space of constant curvature H and mH (or mH when dimension is needed) the mean curvature of its geodesics sphere, then m2 m0 = − H − (n − 1)H: (1.2.4) H n − 1 Let snH (r) be the solution to 00 snH + HsnH = 0 8 CHAPTER 1. BASIC TOOLS FOR RICCI CURVATURE 0 such that snH (0) = 0 and snH (0) = 1, i.e. snH are the coefficients of the Jacobi n fields of the model spaces MH : p 8 p1 sin Hr H > 0 <> H snH (r) = r H = 0 : (1.2.5) > p1 sinh pjHjr H < 0 : jHj Then 0 snH mH = (n − 1) : (1.2.6) snH n−1 As r ! 0, mH ∼ r . The mean curvature comparison is Theorem 1.2.2 (Mean Curvature Comparison) If RicM n ≥ (n−1)H, then along any minimal geodesic segment from q, m(r) ≤ mH (r): (1.2.7) Moreover, equality holds if and only if all radial sectional curvatures are equal to H.
Recommended publications
  • Cohomology of Nilmanifolds and Torsion-Free, Nilpotent Groups by Larry A
    transactions of the american mathematical society Volume 273, Number 1, September 1982 COHOMOLOGY OF NILMANIFOLDS AND TORSION-FREE, NILPOTENT GROUPS BY LARRY A. LAMBE AND STEWART B. PRIDDY Abstract. Let M be a nilmanifold, i.e. M = G/D where G is a simply connected, nilpotent Lie group and D is a discrete uniform, nilpotent subgroup. Then M — K(D, 1). Now D has the structure of an algebraic group and so has an associated algebraic group Lie algebra L(D). The integral cohomology of M is shown to be isomorphic to the Lie algebra cohomology of L(D) except for some small primes depending on D. This gives an effective procedure for computing the cohomology of M and therefore the group cohomology of D. The proof uses a version of form cohomology defined for subrings of Q and a type of Hirsch Lemma. Examples, including the important unipotent case, are also discussed. Let D be a finitely generated, torsion-free, nilpotent group of rank n. Then the upper central series of D can be refined so that the n successive subquotients are infinite cyclic. Thus i)*Z" as sets and P. Hall [H] has shown that in these coordinates the product on D is a polynomial function p. It follows that D can be viewed as an algebraic group and so has an associated Lie algebra constructed from the degree two terms of p. The purpose of this paper is to study the integral cohomology of D using this algebraic group Lie algebra. Although these notions are purely algebraic, it is helpful to work in a more geometric context using A.
    [Show full text]
  • Marcel Berger Remembered
    Marcel Berger Remembered Claude LeBrun, Editor and Translator Gérard Besson EDITOR’S NOTE. Claude LeBrun has kindly assembled this memorial for Marcel Berger. This month also Marcel Berger,1 one of the world’s leading differential marks the conference “Riemannian Geometry Past, geometers and a corresponding member of the French Present and Future: An Homage to Marcel Berger” at Academy of Sciences for half a century, passed away on IHÉS. October 15, 2016, at the age of eighty-nine. Marcel Berger’s contributions to geometry were both broad and deep. The classification of Riemannian holo- nomy groups provided by his thesis has had a lasting impact on areas ranging from theoretical physics to alge- braic geometry. His 1960 proof that a complete oriented even-dimensional manifold with strictly quarter-pinched positive curvature must be a topological sphere is the Claude LeBrun is professor of mathematics at Stony Brook Univer- sity. His email address is [email protected]. Gérard Besson is CNRS Research Director at Institut Fourier, Uni- For permission to reprint this article, please contact: versité Grenoble, France. His email address is g.besson@ujf [email protected]. -grenoble.fr. DOI: http://dx.doi.org/10.1090/noti1605 1Pronounced bare-ZHAY. December 2017 Notices of the AMS 1285 research director by the CNRS. He served as president of the French Mathematical Society (SMF) during the period of 1979–80 and in this capacity helped oversee the foundation of the International Center for Mathematical Workshops (CIRM) in Luminy. In 1985 he then became director of the Institute for Higher Scientific Studies (IHÉS) in Bures-sur-Yvette, a position in which he served until 1993, when he was succeeded by his former student Jean-Pierre Bourguignon.
    [Show full text]
  • The Simplicial Ricci Tensor 2
    The Simplicial Ricci Tensor Paul M. Alsing1, Jonathan R. McDonald 1,2 & Warner A. Miller3 1Information Directorate, Air Force Research Laboratory, Rome, New York 13441 2Insitut f¨ur Angewandte Mathematik, Friedrich-Schiller-Universit¨at-Jena, 07743 Jena, Germany 3Department of Physics, Florida Atlantic University, Boca Raton, FL 33431 E-mail: [email protected] Abstract. The Ricci tensor (Ric) is fundamental to Einstein’s geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman’s proof of the Poincar`e conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area – an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimension. arXiv:1107.2458v1 [gr-qc] 13 Jul 2011 The Simplicial Ricci Tensor 2 1.
    [Show full text]
  • DISCRETE DIFFERENTIAL GEOMETRY: an APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE
    DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 Curvature—Overview • Intuitively, describes “how much a shape bends” – Extrinsic: how quickly does the tangent plane/normal change? – Intrinsic: how much do quantities differ from flat case? N T B Curvature—Overview • Driving force behind wide variety of physical phenomena – Objects want to reduce—or restore—their curvature – Even space and time are driven by curvature… Curvature—Overview • Gives a coordinate-invariant description of shape – fundamental theorems of plane curves, space curves, surfaces, … • Amazing fact: curvature gives you information about global topology! – “local-global theorems”: turning number, Gauss-Bonnet, … Curvature—Overview • Geometric algorithms: shape analysis, local descriptors, smoothing, … • Numerical simulation: elastic rods/shells, surface tension, … • Image processing algorithms: denoising, feature/contour detection, … Thürey et al 2010 Gaser et al Kass et al 1987 Grinspun et al 2003 Curvature of Curves Review: Curvature of a Plane Curve • Informally, curvature describes “how much a curve bends” • More formally, the curvature of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent Equivalently: Here the angle brackets denote the usual dot product, i.e., . Review: Curvature and Torsion of a Space Curve •For a plane curve, curvature captured the notion of “bending” •For a space curve we also have torsion, which captures “twisting” Intuition: torsion is “out of plane bending” increasing torsion Review: Fundamental Theorem of Space Curves •The fundamental theorem of space curves tells that given the curvature κ and torsion τ of an arc-length parameterized space curve, we can recover the curve (up to rigid motion) •Formally: integrate the Frenet-Serret equations; intuitively: start drawing a curve, bend & twist at prescribed rate.
    [Show full text]
  • Curvatures of Smooth and Discrete Surfaces
    Curvatures of Smooth and Discrete Surfaces John M. Sullivan The curvatures of a smooth curve or surface are local measures of its shape. Here we consider analogous quantities for discrete curves and surfaces, meaning polygonal curves and triangulated polyhedral surfaces. We find that the most useful analogs are those which preserve integral relations for curvature, like the Gauß/Bonnet theorem. For simplicity, we usually restrict our attention to curves and surfaces in euclidean three space E3, although many of the results would easily generalize to other ambient manifolds of arbitrary dimension. Most of the material here is not new; some is even quite old. Although some refer- ences are given, no attempt has been made to give a comprehensive bibliography or an accurate picture of the history of the ideas. 1. Smooth curves, Framings and Integral Curvature Relations A companion article [Sul06] investigated the class of FTC (finite total curvature) curves, which includes both smooth and polygonal curves, as a way of unifying the treatment of curvature. Here we briefly review the theory of smooth curves from the point of view we will later adopt for surfaces. The curvatures of a smooth curve γ (which we usually assume is parametrized by its arclength s) are the local properties of its shape invariant under Euclidean motions. The only first-order information is the tangent line; since all lines in space are equivalent, there are no first-order invariants. Second-order information is given by the osculating circle, and the invariant is its curvature κ = 1/r. For a plane curve given as a graph y = f(x) let us contrast the notions of curvature and second derivative.
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • Math 865, Topics in Riemannian Geometry
    Math 865, Topics in Riemannian Geometry Jeff A. Viaclovsky Fall 2007 Contents 1 Introduction 3 2 Lecture 1: September 4, 2007 4 2.1 Metrics, vectors, and one-forms . 4 2.2 The musical isomorphisms . 4 2.3 Inner product on tensor bundles . 5 2.4 Connections on vector bundles . 6 2.5 Covariant derivatives of tensor fields . 7 2.6 Gradient and Hessian . 9 3 Lecture 2: September 6, 2007 9 3.1 Curvature in vector bundles . 9 3.2 Curvature in the tangent bundle . 10 3.3 Sectional curvature, Ricci tensor, and scalar curvature . 13 4 Lecture 3: September 11, 2007 14 4.1 Differential Bianchi Identity . 14 4.2 Algebraic study of the curvature tensor . 15 5 Lecture 4: September 13, 2007 19 5.1 Orthogonal decomposition of the curvature tensor . 19 5.2 The curvature operator . 20 5.3 Curvature in dimension three . 21 6 Lecture 5: September 18, 2007 22 6.1 Covariant derivatives redux . 22 6.2 Commuting covariant derivatives . 24 6.3 Rough Laplacian and gradient . 25 7 Lecture 6: September 20, 2007 26 7.1 Commuting Laplacian and Hessian . 26 7.2 An application to PDE . 28 1 8 Lecture 7: Tuesday, September 25. 29 8.1 Integration and adjoints . 29 9 Lecture 8: September 23, 2007 34 9.1 Bochner and Weitzenb¨ock formulas . 34 10 Lecture 9: October 2, 2007 38 10.1 Manifolds with positive curvature operator . 38 11 Lecture 10: October 4, 2007 41 11.1 Killing vector fields . 41 11.2 Isometries . 44 12 Lecture 11: October 9, 2007 45 12.1 Linearization of Ricci tensor .
    [Show full text]
  • Elementary Differential Geometry
    ELEMENTARY DIFFERENTIAL GEOMETRY YONG-GEUN OH { Based on the lecture note of Math 621-2020 in POSTECH { Contents Part 1. Riemannian Geometry 2 1. Parallelism and Ehresman connection 2 2. Affine connections on vector bundles 4 2.1. Local expression of covariant derivatives 6 2.2. Affine connection recovers Ehresmann connection 7 2.3. Curvature 9 2.4. Metrics and Euclidean connections 9 3. Riemannian metrics and Levi-Civita connection 10 3.1. Examples of Riemannian manifolds 12 3.2. Covariant derivative along the curve 13 4. Riemann curvature tensor 15 5. Raising and lowering indices and contractions 17 6. Geodesics and exponential maps 19 7. First variation of arc-length 22 8. Geodesic normal coordinates and geodesic balls 25 9. Hopf-Rinow Theorem 31 10. Classification of constant curvature surfaces 33 11. Second variation of energy 34 Part 2. Symplectic Geometry 39 12. Geometry of cotangent bundles 39 13. Poisson manifolds and Schouten-Nijenhuis bracket 42 13.1. Poisson tensor and Jacobi identity 43 13.2. Lie-Poisson space 44 14. Symplectic forms and the Jacobi identity 45 15. Proof of Darboux' Theorem 47 15.1. Symplectic linear algebra 47 15.2. Moser's deformation method 48 16. Hamiltonian vector fields and diffeomorhpisms 50 17. Autonomous Hamiltonians and conservation law 53 18. Completely integrable systems and action-angle variables 55 18.1. Construction of angle coordinates 56 18.2. Construction of action coordinates 57 18.3. Underlying geometry of the Hamilton-Jacobi method 61 19. Lie groups and Lie algebras 62 1 2 YONG-GEUN OH 20. Group actions and adjoint representations 67 21.
    [Show full text]
  • CURVATURE E. L. Lady the Curvature of a Curve Is, Roughly Speaking, the Rate at Which That Curve Is Turning. Since the Tangent L
    1 CURVATURE E. L. Lady The curvature of a curve is, roughly speaking, the rate at which that curve is turning. Since the tangent line or the velocity vector shows the direction of the curve, this means that the curvature is, roughly, the rate at which the tangent line or velocity vector is turning. There are two refinements needed for this definition. First, the rate at which the tangent line of a curve is turning will depend on how fast one is moving along the curve. But curvature should be a geometric property of the curve and not be changed by the way one moves along it. Thus we define curvature to be the absolute value of the rate at which the tangent line is turning when one moves along the curve at a speed of one unit per second. At first, remembering the determination in Calculus I of whether a curve is curving upwards or downwards (“concave up or concave down”) it may seem that curvature should be a signed quantity. However a little thought shows that this would be undesirable. If one looks at a circle, for instance, the top is concave down and the bottom is concave up, but clearly one wants the curvature of a circle to be positive all the way round. Negative curvature simply doesn’t make sense for curves. The second problem with defining curvature to be the rate at which the tangent line is turning is that one has to figure out what this means. The Curvature of a Graph in the Plane.
    [Show full text]
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]
  • Simulation of a Soap Film Catenoid
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kanazawa University Repository for Academic Resources Simulation of A Soap Film Catenoid ! ! Pornchanit! Subvilaia,b aGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 Japan bDepartment of Mathematics, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 Thailand E-mail: [email protected] ! ! ! Abstract. There are many interesting phenomena concerning soap film. One of them is the soap film catenoid. The catenoid is the equilibrium shape of the soap film that is stretched between two circular rings. When the two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero and the soap film is split. In our simulation, we show the evolution of the soap film when the rings move apart before the !film splits. We use the BMO algorithm for the evolution of a surface accelerated by the mean curvature. !Keywords: soap film catenoid, minimal surface, hyperbolic mean curvature flow, BMO algorithm !1. Introduction The phenomena that concern soap bubble and soap films are very interesting. For example when soap bubbles are blown with any shape of bubble blowers, the soap bubbles will be round to be a minimal surface that is the minimized surface area. One of them that we are interested in is a soap film catenoid. The catenoid is the minimal surface and the equilibrium shape of the soap film stretched between two circular rings. In the observation of the behaviour of the soap bubble catenoid [3], if two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero.
    [Show full text]
  • Hamilton's Ricci Flow
    The University of Melbourne, Department of Mathematics and Statistics Hamilton's Ricci Flow Nick Sheridan Supervisor: Associate Professor Craig Hodgson Second Reader: Professor Hyam Rubinstein Honours Thesis, November 2006. Abstract The aim of this project is to introduce the basics of Hamilton's Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it \rounder", in the hope that one may draw topological conclusions from the existence of such \round" metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and Poincar´eConjectures. We begin with a brief survey of the differential geometry that is needed in the Ricci flow, then proceed to introduce its basic properties and the basic techniques used to understand it, for example, proving existence and uniqueness and bounds on derivatives of curvature under the Ricci flow using the maximum principle. We use these results to prove the \original" Ricci flow theorem { the 1982 theorem of Richard Hamilton that closed 3-manifolds which admit metrics of strictly positive Ricci curvature are diffeomorphic to quotients of the round 3-sphere by finite groups of isometries acting freely. We conclude with a qualitative discussion of the ideas behind the proof of the Geometrization Conjecture using the Ricci flow. Most of the project is based on the book by Chow and Knopf [6], the notes by Peter Topping [28] (which have recently been made into a book, see [29]), the papers of Richard Hamilton (in particular [9]) and the lecture course on Geometric Evolution Equations presented by Ben Andrews at the 2006 ICE-EM Graduate School held at the University of Queensland.
    [Show full text]