Elementary Differential Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Elementary Differential Geometry ELEMENTARY DIFFERENTIAL GEOMETRY YONG-GEUN OH { Based on the lecture note of Math 621-2020 in POSTECH { Contents Part 1. Riemannian Geometry 2 1. Parallelism and Ehresman connection 2 2. Affine connections on vector bundles 4 2.1. Local expression of covariant derivatives 6 2.2. Affine connection recovers Ehresmann connection 7 2.3. Curvature 9 2.4. Metrics and Euclidean connections 9 3. Riemannian metrics and Levi-Civita connection 10 3.1. Examples of Riemannian manifolds 12 3.2. Covariant derivative along the curve 13 4. Riemann curvature tensor 15 5. Raising and lowering indices and contractions 17 6. Geodesics and exponential maps 19 7. First variation of arc-length 22 8. Geodesic normal coordinates and geodesic balls 25 9. Hopf-Rinow Theorem 31 10. Classification of constant curvature surfaces 33 11. Second variation of energy 34 Part 2. Symplectic Geometry 39 12. Geometry of cotangent bundles 39 13. Poisson manifolds and Schouten-Nijenhuis bracket 42 13.1. Poisson tensor and Jacobi identity 43 13.2. Lie-Poisson space 44 14. Symplectic forms and the Jacobi identity 45 15. Proof of Darboux' Theorem 47 15.1. Symplectic linear algebra 47 15.2. Moser's deformation method 48 16. Hamiltonian vector fields and diffeomorhpisms 50 17. Autonomous Hamiltonians and conservation law 53 18. Completely integrable systems and action-angle variables 55 18.1. Construction of angle coordinates 56 18.2. Construction of action coordinates 57 18.3. Underlying geometry of the Hamilton-Jacobi method 61 19. Lie groups and Lie algebras 62 1 2 YONG-GEUN OH 20. Group actions and adjoint representations 67 21. Lie Poisson space g∗ and the coadjoint action of G 69 22. Symplectic action and the moment map 73 23. Marsden-Weinstein symplectic reduction theorem 78 24. Functorial properties of moment map 82 References 84 Part 1. Riemannian Geometry 1. Parallelism and Ehresman connection For a given vector bundle π : E ! M, we have natural exact sequence deπ 0 ! ker deπ ! TeE ! Tπ(e)M ! 0: The kernel ker dπ ⊂ TE forms a subbunle of rank k = rank E which defines an integrable distribution on the manifold E. Its integral submanifolds are nothing −1 but the fibers π (x), x 2 M. We denote VTeE = ker deπ and call it as the vertical tangent space of E at e, and the union [ VTE = VTeE =: VeE e2E the vertical subbundle. There is no canonical notion of horizontal subspaces. Definition 1.1. An Ehresmann connection is an assignment of subspaces He ⊂ TeE complementary to VeE in TeE at each e 2 E such that (1) HE := [e2EHe is a subbundle of TE such that TeE = HeE ⊕ VeE, (2) For any e 2 E and λ 2 R, Hλe = dmλ(He) where mλ : E ! E is the scalar multiplication by λ. ∼ Statement (2) in particular implies H0x = T0x 0E for the zero section 0E = M and 0x 2 0E is the point corresponding to x 2 M. Postponing the discussion on the existence of Ehresmann connection till later, we proceed. Denote an Ehresmann connection of E as a splitting Γ: TE = HE ⊕ VE for HE ⊂ TE the aforementioned subbundle. We now recall the definition of the pull-back bundle f ∗E for a smooth map f : N ! M: f ∗E := f(n; e) 2 N × E j f(n) = π(e)g: Denote by [n; e] the element of f ∗E represented by (n; e) 2 N × E. Then we can express ∗ T[n;e](f E) = f(v; ξ) 2 TnN × TeE j df(v) = dπ(ξ)g: Definition 1.2 (Pull-back connection). Let π : E ! M be a vector bundle and f : N ! M be a smooth map. The pull-back connection f ∗Γ is given by the choice of a horizontal subbunle of T (f ∗E) given by ∗ ∼ H[n;e](f E) := f(v; ξ) 2 TnN × TeE j df(v) = dπ(ξ); ξ 2 Hf(n)Eg = Hf(n)E: ELEMENTARY DIFFERENTIAL GEOMETRY 3 Let π : E ! M be a the vector bundle of rank k. Consider the pull-back bundle γ∗E ! I = [0; 1] for the given path γ : I ! M. Let me start with more abstract terms. The parallel transport has the following interpretation. Let F = γ∗E ! [0; 1] = B be the above pull-back bundle and TF = H ⊕ V its splitting induced by the pull-back connection. Note that H is a one-dimensional distribution on F and that the projection dπ : H ! TB induces @ an isomorphism that TB = T [0; 1] carries a canonical global frame f @t g. Therefore this lifts to a smooth (autonomous) vector field X on F = γ∗E (regarded as a manifold) given by @ X(e) := (d πj )−1 e H @t on F . By definition @ deπ(X(e)) = : @t t Therefore we can use t itself as the time for the ODEe _ = X(e) on F . ∗ We consider the integral curve γe of X issued at e 2 γ E, i.e., satisfying the ODE dγ e = X(γ(t)); γ(0) = e: dt e e This exists by the existence theorem of the first-order ODE on whole [0; 1] and is smooth by the smooth dependence of the solution of ODE on its initial data. ∗ By denoting the solution by γee, we have γee(t) 2 γ Ejt and interpret is as a curve in E noting that ∗ γ Ejt = Eγ(t) Definition 1.3. The parallel transport Πγ : Eγ(0) ! Eγ(1) is defined by Πγ (e) := γee(1): Proposition 1.4. The map Πγ : Eγ(0) ! Eγ(1)) is a linear map. Proof. We start with proving Πγ (λe) = λΠγ (e). Let γee is the horizontal lift of γ with γee(0) = e. We consider the curve ` : [0; 1] ! E defined by `(t) = λγee(t). Clearly `(t) = λe and dγee j 2 H since γ is the horizontal lift of γ. We compute dt t γee(t) ee the derivative d dγ _ ee `(t) = (λγe) = dmλ 2 Hλγe(t) dt e t dt t e by the defining property of the horizontal subspace in the definition of Ehresmann connection. It is also a lift of γ. Therefore by the uniqueness of the lift, we must have λγee(t) = γeλe(t) for all t 2 [0; 1]. In particular, we have λγee(1) = γeλe(1). By definition, the last is equivalent to Πγ (λe) = λΠγ (e). Next we quote the following lemma Lemma 1.5. Let V , W be vector spaces and f : V ! W be a map differentiable at 0 2 V . If f satisfies f(λv) = λf(v) for all λ 2 R and v 2 V . Then f = df(0). In particular f is a linear map. 4 YONG-GEUN OH Proof. First by setting λ = 0, we obtain f(0) = 0. Therefore for λ 6= 0, we have 1 1 f(v) = f(cv) = (f(cv) − f(0)): c c By letting c ! 0, we obtain 1 lim (f(cv) − f(0)) = df(0)(v) c!0 c since f is assumed to be differentiable at 0. This finishes the proof. Combining the above, we have proved the proposition. Now we introduce the notion of covariant derivative. Definition 1.6. Let Γ : TE = HE ⊕ VE be an Ehresmann connection. Let s 2 Γ(E) be a section of E. Then we define the covariant derivative rvs of s along v 2 TxM to be d t −1 rvs := (Πγ j0) (s(γ(t))) dt t=0 t for a (and so any) germ of curves γ :(−, ) ! M, where Πγ j0 is the parallel transport along γ from 0 to t. It can be checked that this definition does not depend on the choice of γ satisfying γ0(0) = v. Remark 1.7. We can also write v ∼ rvs = ΠΓ(ds(v)) 2 VTs(x) = Ex i.e., `the covariant derivative is the vertical projection of ds(v) 2 Ts(x)E with respect ∼ to the Ehresmann connection Γ : TE ⊕ HE ⊕ VE after identification of VTs(x) = Ex." The following properties can be also checked easily. Lemma 1.8. Let x 2 M. The assignment s 2 Γ(E) ! Ex satisfies (1) rv1+v2 s = rv1 s + rv2 s for v1; v2 2 TxM, (2) rcvs = crcs for all c 2 R and v 2 TxM, 1 (3) rv(fs) = f(x)rvs + v[f]rvs for any f 2 C (M), where v[f] is the direc- tional derivative of f along v at x, (4) rv(s1 + s2) = rvs1 + rvs2 for si 2 Γ(E) and v 2 TxM. We would like to mention that when E is the trivial line bundle M × R, rv is the same as the tangent vector v as a derivation at x with values in R. 2. Affine connections on vector bundles Definition 2.1. Let x 2 M. A linear map D : Γ(E) ! Ex is called defines a derivation at x with values in E if D satisfies the properties (1) - (4) above. A smooth family of such D over M is called a differential operator of order 1 on Γ(E). An example of a differential operator of order 1 on Γ(E) is rX for any vector field X on M. ELEMENTARY DIFFERENTIAL GEOMETRY 5 Definition 2.2 (Affine connection). An affine connection on E ! M is the as- signment of X 7! rX that satisfies (1) rX1+X2 s = rX1 s + rX2 s, (2) rcX s = crX s, 1 (3) rX (fs) = frX s + X[f]rX s for any f 2 C (M), (4) rX (s1 + s2) = rX s1 + rX s2 for si 2 Γ(E).
Recommended publications
  • The Simplicial Ricci Tensor 2
    The Simplicial Ricci Tensor Paul M. Alsing1, Jonathan R. McDonald 1,2 & Warner A. Miller3 1Information Directorate, Air Force Research Laboratory, Rome, New York 13441 2Insitut f¨ur Angewandte Mathematik, Friedrich-Schiller-Universit¨at-Jena, 07743 Jena, Germany 3Department of Physics, Florida Atlantic University, Boca Raton, FL 33431 E-mail: [email protected] Abstract. The Ricci tensor (Ric) is fundamental to Einstein’s geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman’s proof of the Poincar`e conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area – an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimension. arXiv:1107.2458v1 [gr-qc] 13 Jul 2011 The Simplicial Ricci Tensor 2 1.
    [Show full text]
  • Math 865, Topics in Riemannian Geometry
    Math 865, Topics in Riemannian Geometry Jeff A. Viaclovsky Fall 2007 Contents 1 Introduction 3 2 Lecture 1: September 4, 2007 4 2.1 Metrics, vectors, and one-forms . 4 2.2 The musical isomorphisms . 4 2.3 Inner product on tensor bundles . 5 2.4 Connections on vector bundles . 6 2.5 Covariant derivatives of tensor fields . 7 2.6 Gradient and Hessian . 9 3 Lecture 2: September 6, 2007 9 3.1 Curvature in vector bundles . 9 3.2 Curvature in the tangent bundle . 10 3.3 Sectional curvature, Ricci tensor, and scalar curvature . 13 4 Lecture 3: September 11, 2007 14 4.1 Differential Bianchi Identity . 14 4.2 Algebraic study of the curvature tensor . 15 5 Lecture 4: September 13, 2007 19 5.1 Orthogonal decomposition of the curvature tensor . 19 5.2 The curvature operator . 20 5.3 Curvature in dimension three . 21 6 Lecture 5: September 18, 2007 22 6.1 Covariant derivatives redux . 22 6.2 Commuting covariant derivatives . 24 6.3 Rough Laplacian and gradient . 25 7 Lecture 6: September 20, 2007 26 7.1 Commuting Laplacian and Hessian . 26 7.2 An application to PDE . 28 1 8 Lecture 7: Tuesday, September 25. 29 8.1 Integration and adjoints . 29 9 Lecture 8: September 23, 2007 34 9.1 Bochner and Weitzenb¨ock formulas . 34 10 Lecture 9: October 2, 2007 38 10.1 Manifolds with positive curvature operator . 38 11 Lecture 10: October 4, 2007 41 11.1 Killing vector fields . 41 11.2 Isometries . 44 12 Lecture 11: October 9, 2007 45 12.1 Linearization of Ricci tensor .
    [Show full text]
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]
  • The Ricci Curvature of Rotationally Symmetric Metrics
    The Ricci curvature of rotationally symmetric metrics Anna Kervison Supervisor: Dr Artem Pulemotov The University of Queensland 1 1 Introduction Riemannian geometry is a branch of differential non-Euclidean geometry developed by Bernhard Riemann, used to describe curved space. In Riemannian geometry, a manifold is a topological space that locally resembles Euclidean space. This means that at any point on the manifold, there exists a neighbourhood around that point that appears ‘flat’and could be mapped into the Euclidean plane. For example, circles are one-dimensional manifolds but a figure eight is not as it cannot be pro- jected into the Euclidean plane at the intersection. Surfaces such as the sphere and the torus are examples of two-dimensional manifolds. The shape of a manifold is defined by the Riemannian metric, which is a measure of the length of tangent vectors and curves in the manifold. It can be thought of as locally a matrix valued function. The Ricci curvature is one of the most sig- nificant geometric characteristics of a Riemannian metric. It provides a measure of the curvature of the manifold in much the same way the second derivative of a single valued function provides a measure of the curvature of a graph. Determining the Ricci curvature of a metric is difficult, as it is computed from a lengthy ex- pression involving the derivatives of components of the metric up to order two. In fact, without additional simplifications, the formula for the Ricci curvature given by this definition is essentially unmanageable. Rn is one of the simplest examples of a manifold.
    [Show full text]
  • Complete Connections on Fiber Bundles
    Complete connections on fiber bundles Matias del Hoyo IMPA, Rio de Janeiro, Brazil. Abstract Every smooth fiber bundle admits a complete (Ehresmann) connection. This result appears in several references, with a proof on which we have found a gap, that does not seem possible to remedy. In this note we provide a definite proof for this fact, explain the problem with the previous one, and illustrate with examples. We also establish a version of the theorem involving Riemannian submersions. 1 Introduction: A rather tricky exercise An (Ehresmann) connection on a submersion p : E → B is a smooth distribution H ⊂ T E that is complementary to the kernel of the differential, namely T E = H ⊕ ker dp. The distributions H and ker dp are called horizontal and vertical, respectively, and a curve on E is called horizontal (resp. vertical) if its speed only takes values in H (resp. ker dp). Every submersion admits a connection: we can take for instance a Riemannian metric ηE on E and set H as the distribution orthogonal to the fibers. Given p : E → B a submersion and H ⊂ T E a connection, a smooth curve γ : I → B, t0 ∈ I, locally defines a horizontal lift γ˜e : J → E, t0 ∈ J ⊂ I,γ ˜e(t0)= e, for e an arbitrary point in the fiber. This lift is unique if we require J to be maximal, and depends smoothly on e. The connection H is said to be complete if for every γ its horizontal lifts can be defined in the whole domain. In that case, a curve γ induces diffeomorphisms between the fibers by parallel transport.
    [Show full text]
  • Operator-Valued Tensors on Manifolds: a Framework for Field
    Operator-Valued Tensors on Manifolds: A Framework for Field Quantization 1 2 H. Feizabadi , N. Boroojerdian ∗ 1,2Department of pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran, Iran. Abstract In this paper we try to prepare a framework for field quantization. To this end, we aim to replace the field of scalars R by self-adjoint elements of a commu- tative C⋆-algebra, and reach an appropriate generalization of geometrical concepts on manifolds. First, we put forward the concept of operator-valued tensors and extend semi-Riemannian metrics to operator valued metrics. Then, in this new geometry, some essential concepts of Riemannian geometry such as curvature ten- sor, Levi-Civita connection, Hodge star operator, exterior derivative, divergence,... will be considered. Keywords: Operator-valued tensors, Operator-Valued Semi-Riemannian Met- rics, Levi-Civita Connection, Curvature, Hodge star operator MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50. 0 Introduction arXiv:1501.05065v2 [math-ph] 27 Jan 2015 The aim of the present paper is to extend the theory of semi-Riemannian metrics to operator-valued semi-Riemannian metrics, which may be used as a framework for field quantization. Spaces of linear operators are directly related to C∗-algebras, so C∗- algebras are considered as a basic concept in this article. This paper has its roots in Hilbert C⋆-modules, which are frequently used in the theory of operator algebras, allowing one to obtain information about C⋆-algebras by studying Hilbert C⋆-modules over them. Hilbert C⋆-modules provide a natural generalization of Hilbert spaces arising when the field of scalars C is replaced by an arbitrary C⋆-algebra.
    [Show full text]
  • Geometric Algebra Techniques for General Relativity
    Geometric Algebra Techniques for General Relativity Matthew R. Francis∗ and Arthur Kosowsky† Dept. of Physics and Astronomy, Rutgers University 136 Frelinghuysen Road, Piscataway, NJ 08854 (Dated: February 4, 2008) Geometric (Clifford) algebra provides an efficient mathematical language for describing physical problems. We formulate general relativity in this language. The resulting formalism combines the efficiency of differential forms with the straightforwardness of coordinate methods. We focus our attention on orthonormal frames and the associated connection bivector, using them to find the Schwarzschild and Kerr solutions, along with a detailed exposition of the Petrov types for the Weyl tensor. PACS numbers: 02.40.-k; 04.20.Cv Keywords: General relativity; Clifford algebras; solution techniques I. INTRODUCTION Geometric (or Clifford) algebra provides a simple and natural language for describing geometric concepts, a point which has been argued persuasively by Hestenes [1] and Lounesto [2] among many others. Geometric algebra (GA) unifies many other mathematical formalisms describing specific aspects of geometry, including complex variables, matrix algebra, projective geometry, and differential geometry. Gravitation, which is usually viewed as a geometric theory, is a natural candidate for translation into the language of geometric algebra. This has been done for some aspects of gravitational theory; notably, Hestenes and Sobczyk have shown how geometric algebra greatly simplifies certain calculations involving the curvature tensor and provides techniques for classifying the Weyl tensor [3, 4]. Lasenby, Doran, and Gull [5] have also discussed gravitation using geometric algebra via a reformulation in terms of a gauge principle. In this paper, we formulate standard general relativity in terms of geometric algebra. A comprehensive overview like the one presented here has not previously appeared in the literature, although unpublished works of Hestenes and of Doran take significant steps in this direction.
    [Show full text]
  • Smoothing Maps Into Algebraic Sets and Spaces of Flat Connections
    SMOOTHING MAPS INTO ALGEBRAIC SETS AND SPACES OF FLAT CONNECTIONS THOMAS BAIRD AND DANIEL A. RAMRAS n Abstract. Let X ⊂ R be a real algebraic set and M a smooth, closed manifold. We show that all continuous maps M ! X are homotopic (in X) to C1 maps. We apply this result to study characteristic classes of vector bundles associated to continuous families of complex group representations, and we establish lower bounds on the ranks of the homotopy groups of spaces of flat connections over aspherical manifolds. 1. Introduction The first goal of this paper is to prove the following result about the differential topology of algebraic sets. Theorem 1.1 (Section2) . Let X ⊂ Rn be a (possibly singular) real algebraic set, and let f : M ! X be a continuous map from a smooth, closed manifold M. Then there exists a map g : M ! X, and a homotopy H : M × I ! X connecting f and g g, such that the composite M ! X,! Rn is C1. The problem of smoothing maps into algebraic sets seems natural, but we have not found mention of it in the literature. We consulted several experts in real algebraic geometry; some expected our result to hold, and some did not. Our proof proceeds by embedding X as the singular set of an irreducible, quasi- projective variety Y and using a resolution of singularities Ye ! Y for which the inverse image of X is a divisor with normal crossing singularities. Basic facts about neighborhoods of algebraic sets then reduce the problem to the case of normal crossing divisors, which can be handled by differential-geometric means.
    [Show full text]
  • Hamilton's Ricci Flow
    The University of Melbourne, Department of Mathematics and Statistics Hamilton's Ricci Flow Nick Sheridan Supervisor: Associate Professor Craig Hodgson Second Reader: Professor Hyam Rubinstein Honours Thesis, November 2006. Abstract The aim of this project is to introduce the basics of Hamilton's Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it \rounder", in the hope that one may draw topological conclusions from the existence of such \round" metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and Poincar´eConjectures. We begin with a brief survey of the differential geometry that is needed in the Ricci flow, then proceed to introduce its basic properties and the basic techniques used to understand it, for example, proving existence and uniqueness and bounds on derivatives of curvature under the Ricci flow using the maximum principle. We use these results to prove the \original" Ricci flow theorem { the 1982 theorem of Richard Hamilton that closed 3-manifolds which admit metrics of strictly positive Ricci curvature are diffeomorphic to quotients of the round 3-sphere by finite groups of isometries acting freely. We conclude with a qualitative discussion of the ideas behind the proof of the Geometrization Conjecture using the Ricci flow. Most of the project is based on the book by Chow and Knopf [6], the notes by Peter Topping [28] (which have recently been made into a book, see [29]), the papers of Richard Hamilton (in particular [9]) and the lecture course on Geometric Evolution Equations presented by Ben Andrews at the 2006 ICE-EM Graduate School held at the University of Queensland.
    [Show full text]
  • WHAT IS a CONNECTION, and WHAT IS IT GOOD FOR? Contents 1. Introduction 2 2. the Search for a Good Directional Derivative 3 3. F
    WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG Abstract. In the study of differentiable manifolds, there are several different objects that go by the name of \connection". I will describe some of these objects, and show how they are related to each other. The motivation for many notions of a connection is the search for a sufficiently nice directional derivative, and this will be my starting point as well. The story will by necessity include many supporting characters from differential geometry, all of whom will receive a brief but hopefully sufficient introduction. I apologize for my ungrammatical title. Contents 1. Introduction 2 2. The search for a good directional derivative 3 3. Fiber bundles and Ehresmann connections 7 4. A quick word about curvature 10 5. Principal bundles and principal bundle connections 11 6. Associated bundles 14 7. Vector bundles and Koszul connections 15 8. The tangent bundle 18 References 19 Date: 26 March 2008. 1 1. Introduction In the study of differentiable manifolds, there are several different objects that go by the name of \connection", and this has been confusing me for some time now. One solution to this dilemma was to promise myself that I would some day present a talk about connections in the Olivetti Club at Cornell University. That day has come, and this document contains my notes for this talk. In the interests of brevity, I do not include too many technical details, and instead refer the reader to some lovely references. My main references were [2], [4], and [5].
    [Show full text]
  • Lecture 8: the Sectional and Ricci Curvatures
    LECTURE 8: THE SECTIONAL AND RICCI CURVATURES 1. The Sectional Curvature We start with some simple linear algebra. As usual we denote by ⊗2(^2V ∗) the set of 4-tensors that is anti-symmetric with respect to the first two entries and with respect to the last two entries. Lemma 1.1. Suppose T 2 ⊗2(^2V ∗), X; Y 2 V . Let X0 = aX +bY; Y 0 = cX +dY , then T (X0;Y 0;X0;Y 0) = (ad − bc)2T (X; Y; X; Y ): Proof. This follows from a very simple computation: T (X0;Y 0;X0;Y 0) = T (aX + bY; cX + dY; aX + bY; cX + dY ) = (ad − bc)T (X; Y; aX + bY; cX + dY ) = (ad − bc)2T (X; Y; X; Y ): 1 Now suppose (M; g) is a Riemannian manifold. Recall that 2 g ^ g is a curvature- like tensor, such that 1 g ^ g(X ;Y ;X ;Y ) = hX ;X ihY ;Y i − hX ;Y i2: 2 p p p p p p p p p p 1 Applying the previous lemma to Rm and 2 g ^ g, we immediately get Proposition 1.2. The quantity Rm(Xp;Yp;Xp;Yp) K(Xp;Yp) := 2 hXp;XpihYp;Ypi − hXp;Ypi depends only on the two dimensional plane Πp = span(Xp;Yp) ⊂ TpM, i.e. it is independent of the choices of basis fXp;Ypg of Πp. Definition 1.3. We will call K(Πp) = K(Xp;Yp) the sectional curvature of (M; g) at p with respect to the plane Πp. Remark. The sectional curvature K is NOT a function on M (for dim M > 2), but a function on the Grassmann bundle Gm;2(M) of M.
    [Show full text]
  • GEOMETRIC INTERPRETATIONS of CURVATURE Contents 1. Notation and Summation Conventions 1 2. Affine Connections 1 3. Parallel Tran
    GEOMETRIC INTERPRETATIONS OF CURVATURE ZHENGQU WAN Abstract. This is an expository paper on geometric meaning of various kinds of curvature on a Riemann manifold. Contents 1. Notation and Summation Conventions 1 2. Affine Connections 1 3. Parallel Transport 3 4. Geodesics and the Exponential Map 4 5. Riemannian Curvature Tensor 5 6. Taylor Expansion of the Metric in Normal Coordinates and the Geometric Interpretation of Ricci and Scalar Curvature 9 Acknowledgments 13 References 13 1. Notation and Summation Conventions We assume knowledge of the basic theory of smooth manifolds, vector fields and tensors. We will assume all manifolds are smooth, i.e. C1, second countable and Hausdorff. All functions, curves and vector fields will also be smooth unless otherwise stated. Einstein summation convention will be adopted in this paper. In some cases, the index types on either side of an equation will not match and @ so a summation will be needed. The tangent vector field @xi induced by local i coordinates (x ) will be denoted as @i. 2. Affine Connections Riemann curvature is a measure of the noncommutativity of parallel transporta- tion of tangent vectors. To define parallel transport, we need the notion of affine connections. Definition 2.1. Let M be an n-dimensional manifold. An affine connection, or connection, is a map r : X(M) × X(M) ! X(M), where X(M) denotes the space of smooth vector fields, such that for vector fields V1;V2; V; W1;W2 2 X(M) and function f : M! R, (1) r(fV1 + V2;W ) = fr(V1;W ) + r(V2;W ), (2) r(V; aW1 + W2) = ar(V; W1) + r(V; W2), for all a 2 R.
    [Show full text]