Solvent Deuterium Isotope Effect on Hydrolysis of Nd3+ Ion , and As Was

Total Page:16

File Type:pdf, Size:1020Kb

Solvent Deuterium Isotope Effect on Hydrolysis of Nd3+ Ion , and As Was Notizen 1493 Solvent Deuterium Isotope Effect on Hydrolysis Experimental of Nd3+ Ion Reagents and apparatus A neodymium perchlorate sample solution and Mastjnobu Ma e d a *, T oshihiko A m ay a , and other reagents used were prepared and analyzed H id e t a k e K ak iha na according to the same procedures as those in the *Department of Applid Chemistry, previous papers5-6. Nagoya Institute of Technology, All the apparatus employed were the same as Gokiso, Showa-ku, Nagoya 466, Japan those in Ref. 7. Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Preparation of a test solution O-okayama, Meguro-ku, Tokyo 152, Japan A test solution was prepared as follows. A (Z. Naturforsch. 32 b, 1493-1495 [1977]; received August 30, 1977) slightly acidic neodymium perchlorate solution, which had been freed from CO 2 by passing purified Deuterium Isotope Effect, Formation Constant, Heavy Water, Hydrolysis, Neodymium Ion N2 gas, was electrolyzed to reduce L+ ions by using a d. c. power supply until precipitates appeared. In order to saturate the solution with Nd(OL )3 precipi­ The hydrolysis equilibria of Nd3+ ion in tates the mixture was stirred with a magnetic rod light- and heavy-water solutions containing for two days. The precipitates of Nd(OL )3 were 3 mol dm -3 (Li)C104 as an ionic medium were removed by filtration with G 4 glass filters. All the studied at 25 °C by measuring the lyonium- procedures were carried out under an atmosphere ion concentration with a glass electrode. of N 2 gas in a room kept at 25 ± 1 °C. Analysis of the emf data indicated the forma­ tion of only the mononuclear complex Emf measurements Nd(OL)2+ in both light and heavy water. The A test solution thus prepared, in which the total formation constant was smaller in D 2O concentration of perchlorate ions was kept at (log */?2,i = -—16.54 ± 0.04) than in H 2O 3 mol dm -3 by addition of LiC 10 4, was acidified in (log *ß2,i = — 15.90 ± 0.06). The formation small steps by constant-current coulometry, and constant K<z,\ for the heavy-water system the lyonium-ion concentration was measured by means of a glass electrode8. The same cell assembly (log i?2,i = 12.28) had a larger value than as described in Ref. 9 was used for emf measure­ that for the light-water system (log K%t 1 = ments and coulometric titrations. 11.86 ). All the measurements were performed at 25,00 ± Introduction 0,02 °C in a parrafin oil thermostat in a room thermostated at 25 ± 1 °C. As was reported in previous papers1-7, the authors studied the hydrolytic reactions of various metal ions in both light and heavy water. The composi­ Results and Discussion tions of complexes formed by hydrolysis in heavy The values of Z (log d)s for the heavy-water water were found to be analogous to those in light system are graphically shown in Fig. 1. water, and the formation constant */?P,q of the complexes in D 2O were smaller than those in H 2O. In a previous work 7 the authors measured the ionic product of D 2O containing 3 mol dm -3 LiC104 and examined the deuterium isotope effect on formation constants i£p,q for hydrolysis species of boric acid. It was found that the K v<ri values in heavy water were slightly larger than those in light water. The deuterium isotope effect on i£P,q values for other hydrolysis species was not reported. In the present work, potentiometric measure­ ments of the hydrolysis of Nd3+ ion were carried out in heavy water as well as in light water in order to elucidate the deuterium isotope effect. These experi­ ments used 3 mol dm -3 (Li)C104 as an ionic medium, because the ionic product of D 2O in this system is available7. Requests for reprints should be sent to Dr. M . M a e d a , Fig. 1. Average number, Z, of OD bound per Nd3+ as a Department of Applied Chemistry, Nagoya Institute function of log d. The drawn curve was calculated of Technology, Gokiso, Showa-ku, Nagoya 466, Japan. with the formation constant of log *ßz.i = — 16.54. 1494 N otizen It is seen that the plot is a function of only d and computer. One possible explanation for this in­ independent of B. The plot analogous to that in consistency may be that the maxium Z values Fig. 1 was obtained in the light-w^ater system. This reached in the present work is much larger than indicates that only mononuclear complexes are those in the previous studies and that the low-Z formed in both light and heavy water. region, where the NdOH2+ complex was probably On the basis of these data the compositions and formed, was not measured in the present work. formation constants of the hydrolysis species were B u r k o v et al . 12 reported that the main hydrolytic estimated by graphical procedures. The concentra­ reaction of Nd3+ ion in 3 mol dm -3 (Na)C104 aqueous tion of the lyonium ion set free by hydrolysis, BZ, solution is the formation of the dimer Nd 2(OH)24+. is given by the following form, They titrated an acidic neodymium perchlorate BZ = 2 p *jffPlibl-P (1) solution with an alkali, and their maximum Z value did not exceed 0.005. The authors titrated a solution Since the values of Z do not exceed 0.02 in the saturated with Nd(OH )3 precipitates with an acid solutions studied, the graphical calculations can be and obtained the maximum Z value of 0.02. Such simplified by using the approximation b = B. Thus, differences in experimental procedure might cause equation ( 1 ) gives the inconsistency in composition of hydrolysis species, if the attainment of hydrolysis equilibria is Z = £p*ft,,l-p (2) slow. The formation constant *ß2.i of the Nd(OL) 2+ According to Eq. (2), 1/2 Zl 2 values were plotted as a function of —log 1. The data for the heavy species in D 2O was smaller than that in H 2O. This water system are shown in Fig. 2. It is apparent trend is consistent with that for other metal ion hydrolysis species1-7. The formation constants K 2,i that 1/2 zd 2 values are independent of d values, which means p = 2. The same result was obtained wTere calculated using the *^ 2,1 values and the values for the light water system. Thus, it is concluded that of K w for H 2O (p K w) = 13.88) and D 2 0 (pÜLW = the hydrolysis species formed in light and heavy 14.41)7.Theiip,q values for hydrolysis species of Y3+ and lanthanoid ions were also calculated by use of water is Nd(OL)2+. The formation constants read the *ßp,q values in 3 mol dm -3 (Li)C104 solution from the intercepts were — 16.54 ±0.04 (in D 2O) reported previously5*6. The calculated ifp.q values and — 15.90 ±0.06 (in H 2O) in log *ß unit. are summarized in Table I. The K Pt(l values in the The presence of the Nd(OH) 2+ species was not reported previously. All the previous investiga­ heavy water system are larger than those in the light water system. This means that there are some tors 10-12 found only NdOH2+ as a mononuclear species. This complex was not detected in the isotope effects in hydrolysis other than that present work, although its possibility was examined ascribed to the difference between the ionic products by a least squares method with an electronic of light and heavy water. Notation L: lyon, H or D, d : concentration of the free deuterium ion, 1 : concentration of the free lyonium ion, B : total concentration of Nd3+, b : concentration of free Nd3+, */?p>q: formation constant for the reaction qM>+ + PL 2O = Mq(OL)p(«i-pH -f- pL +, Zp,q formation constant for the reaction qMz+ -f pOL- = Mq(OL)p(M-P)+, Fig. 2. 1/2 Zd2 as a function of — log d. The straight Z = (1—L—Kw/1)/B, the average number of line was calculated with the formation constant of lyonium ions split off per Nd3+, log *ß2.i = — 16.54. K w: ionic product of water. Table I. i£p,q values for hydrolysis of Y3+ and lanthanoid ions in H 2O and D 2O containing 3 mol dm -3 (Li)C104- Y 3+ La3+ Nd3+ Gd3+ Er3+ h 2o d 2o h 2o d 2o h 2o d 2o h 2o d 2o h 2o d 2o log K \,\ - - 3.84 4.06 - - 5.68 6.07 log K 2,i 10.96 II .82 - - 11.86 12.28 - - 10.5 6 11.42 log-K:2 2 13.72 14.07 _______ - __________ - ________ - _________ - _________ 14.04 14.53 1 H. K a k i h a n a and M . M a e d a , Bull. Chem. Soc. 3 H. K a k i h a n a , T. A m a y a , and M . M a e d a , ibid. 43, Jpn. 43, 109 [1970]. 3155 [1970]. 2 M . M a e d a and H. K a k i h a n a , ibid. 43, 1097 4 H. K a k i h a n a , T. A m a y a , and M .
Recommended publications
  • The Air Oxidation of 4,6-Di (2-Phenyl-2-Propyl) Pyrogallol. Spectroscopic and Kinetic Studies of the Intermediates
    Carlsberg Res. Commun. Vol. 42, p. 11-25 THE AIR OXIDATION OF 4,6-DI (2-PHENYL-2-PROPYL) PYROGALLOL. SPECTROSCOPIC AND KINETIC STUDIES OF THE INTERMEDIATES. by HENRY I. ABRASH Department of Chemistry, Carlsberg Laboratory Gamle Carlsbergvej 10 - DK-2500 Copenhagen, Valby~ 1) Current address: Department of Chemistry, California State University at Northridge, Northridge, California 91324, USA Key words: 4,6-di (2-phenyl-2-propyl) pyrogallol, consecutive reactions, oxidation, oxygen, pH, quinone, semiquinone, spectra Two colored extinction bands, one with ~'max near 520 nm and the other near 770 nm, form and decay during air oxidations of 4,6-di(2-phenyl-2-propyl)pyrogallol in alkaline methanol. The 770 nm band appears to be due to the semiquinone monoanion while the extinction near 500 nm is thought to be due to both the semiquinone and 3-hydroxy-o-quinone. Although the rates of formation and decay of the two bands are indistinguishable in the presence of excess dissolved oxygen, the 770 nm band disappears slightly before the 500 nm extinction when the pyrogallol reactant is initially in excess of the dissolved oxygen. Except at high methoxide concentrations, the kinetics indicate a system of two consecutive reactions with pseudo first-order rate constants k~ and k 2. The pH' dependence of k~ indicates that the neutral pyrogallol, its monoanion and dianion all react, the rate increasing with the negative charge of the species. The k2/k~ ratio is constant at 5 from pH' 11 to 16. Extinction coefficients at both wavelengths increase with pH'. The 770 nm extinction disappears immediately after acidification while the 500 nm extinction decays at a rate consistent with oxidation.
    [Show full text]
  • Chapter 1 Chemistry of Non-Aqueous Solutions
    EFOP-3.4.3-16-2016-00014 projekt Lecture notes in English for the Chemistry of non-aqueous solutions, melts and extremely concentrated aqueous solutions (code of the course KMN131E-1) Pál Sipos University of Szeged, Faculty of Science and Informatics Institute of Chemistry Department of Inorganic and Analytical Chemistry Szeged, 2020. Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.szechenyi2020.hu EFOP-3.4.3-16-2016-00014 projekt Content Course description – aims, outcomes and prior knowledge 5 1. Chemistry of non-aqueous solutions 6 1.1 Physical properties of the molecular liquids 10 1.2 Chemical properties of the molecular liquids – acceptor and donor numbers 18 1.2.1 DN scales 18 1.2.1 AN scales 19 1.3 Classification of the solvents according to Kolthoff 24 1.4 The effect of solvent properties on chemical reactions 27 1.5 Solvation and complexation of ions and electrolytes in non-aqueous solvents 29 1.5.1 The heat of dissolution 29 1.5.2 Solvation of ions, ion-solvent interactions 31 1.5.3 The structure of the solvated ions 35 1.5.4 The effect of solvents on the complex formation 37 1.5.5 Solvation of ions in solvent mixtures 39 1.5.6 The permittivity of solvents and the association of ions 42 1.5.7 The structure of the ion-pairs 46 1.6 Acid-base reactions in non-aqueous solvents 48 1.6.1 Acid-base reactions in amphiprotic solvents of high permittivity 50 1.6.2 Acid-base reactions in aprotic solvents of high permittivity 56 1.6.3 Acid-base reactions in amphiprotic solvents of low permittivity 61 1.6.4 Acid-base reactions in amphiprotic solvents of low permittivity 61 1.7 The pH scale in non-aqueous solvents 62 1.8 Acid-base titrations in non-aqueous solvents 66 1.9 Redox reactions in non-aqueous solutions 70 2 EFOP-3.4.3-16-2016-00014 projekt 1.7.1 Potential windows of non-aqueous solvents 74 1.10 Questions and problems 77 2.
    [Show full text]
  • Total of 10 Pages Only May Be Xeroxed
    THE ACID CATALYZ D HYDROLYSIS OF M THYL ISOCYANIDE CENTRE FOR NEWFOUNDLAND STUDIES TOTAL OF 10 PAGES ONLY MAY BE XEROXED (Without Author's Permission) Y J Y lal V ( IM) 334618 THE ACID CATALYZED HYDROLYSIS OF METHYL ISOCYANIDE by © Yu-YUan Liew (Lim) A Thesis S'ubmi t ted to Memorial University of Newfoundland in partial fulfillment of the requirements for the degree of Master of Science Department of Chemistry May, 1972 ·.: '· ·. •, - i - ··.\., ACKNOWLEDGEMENT I wish to express my sju.::ere gratitude to Dr. A. R. Stein for his help, guidance and encouragement in making this investi- gation possible. I l-TOuld also like to thank Mr. D.H. Seymour for ::- the glass work, Drs. G. Ling and I. Mazurkiewicz (Department of Pharmacology, ~niversity of Ottawa) for their encouragement and help and my friends who helped make this thesis possible. I am also grateful to the National Research Council of Canada and Memorial University of Newfoundland for financial assistance. ii ·TAaLE .Of CONTENTS ACKNOWLEDGEMENT. • • • • • . • • • • • . • . • . • • . • . • . • • . • . • . • • • . • . • • • . i TABLE OF CONTENTS. • • • • • . • • . • . • • • . • . • • . • . • • . • • • . • . • • • . • • . • • . • • • . • • • • • . • i i LIST OF TABLES. • . i v LIST OF FIG'URES. • • • . • . • • • . • . • • . • . • . • . • • . • • . • . • . • . • vi ABSTRACT . .... .. ...................................... .. r • ~ ............... viii INTRODU~ .ION . ......•.•.•............ , • . • . • . 1 EXPERimNTAL. • . • . • . • . 13 1. General Considerations. • • • • • • • • • •
    [Show full text]
  • SI Analytics Ph Handbook
    pH handbook HELPFUL GUIDE FOR PRACTICAL APPLICATION AND USE Welcome to SI Analytics! We express our core competence, namely the production of analytical instruments, with our company name SI Analytics. SI also stands for the main products of our company: sensors and instruments. As part of the history of SCHOTT® AG, SI Analytics has more than 75 years experience in glass technology and in the development of analytical equipment. As always, our products are manufactured in Mainz with a high level of innovation and quality. Our electrodes, titrators and capillary viscometers will continue to be the right tools in any location where expertise in analytical measurement technology is required. In 2011 SI Analytics became part of the listed company Xylem Inc., headquartered in Rye Brook / N.Y., USA. Xylem is a leading international provider of water solutions. We look forward to presenting the pH handbook to you! The previous publication "Interesting facts about pH measurement" has been restructured, made clearer and more engaging, and extra information has been added. The focus has been consciously put on linking general information with our lab findings and making this accessible to you in a practical format. Complemented by the reference to our range of products and with practical recommendations for use with specific applications, the pH primer is an indispensable accompaniment for everyday lab work. We at SI Analytics would be happy to work successfully together with you in the future. SI Analytics GmbH Dr. Robert Reining CEO CONTENTS SECTION 1 Basic concepts of potentiometry and pH measurement 1.1 Definition of acid and base .........................................................
    [Show full text]
  • Redox-Driven Conformational Dynamics in a Photosystem-II-Inspired
    Redox-driven Conformational Dynamics in a Photosystem-II-inspired β-hairpin Maquette Determined through Spectroscopy and Simulation Hyea Hwang†,1, Tyler G. McCaslin†,2,3 Anthony Hazel4, Cynthia V. Pagba2,3 Christina M. ∗ Nevin2,3, Anna Pavlova4, Bridgette A. Barry2,3 and James C. Gumbart2,3,4, 1School of Materials Science and Engineering, 2School of Chemistry and Biochemistry, 3Petit Institute for Bioengineering and Biosciences, and 4School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 † These authors contributed equally to this work. ∗ To whom correspondence should be addressed; Email: [email protected]; Phone: 404-385-0797 1 Abstract Tyrosine-based radical transfer plays an important role in photosynthesis, respiration, and DNA synthesis. Radical transfer can occur either by electron transfer (ET) or proton coupled electron transfer (PCET), depending on the pH. Reversible conformational changes in the surrounding protein matrix may control reactivity of radical intermediates. De novo designed Peptide A is a synthetic 18 amino-acid β-hairpin, which contains a single tyrosine (Y5) and carries out a kinetically significant PCET reaction between Y5 and a cross-strand histidine (H14). In Peptide A, amide II’ (CN) changes are observed in the UV resonance Raman (UVRR) spectrum, associated with tyrosine ET and PCET; these bands were attributed previously to a reversible change in secondary structure. Here, we use molecular dynamics simulations to define this conformational change in Peptide A and its H14-to-cyclohexylalanine variant, Peptide C. Three different Y5 charge states, tyrosine (YH), tyrosinate (Y–), and neutral tyrosyl radical (Y•), are considered. The simulations show that Peptide A-YH and A-Y– retain secondary structure and noncovalent interactions, whereas A-Y• is unstable.
    [Show full text]
  • B* Hydrochloric Acid And. Perchloric Acid 77
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 1964 KINETICS AND MECHANISM OF THE PROTONOLYSIS OF CERTAIN ALLYLTINS JOSEPH ANTHONY VERDONE Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation VERDONE, JOSEPH ANTHONY, "KINETICS AND MECHANISM OF THE PROTONOLYSIS OF CERTAIN ALLYLTINS" (1964). Doctoral Dissertations. 795. https://scholars.unh.edu/dissertation/795 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. KINETICS AND MECHANISM OF THE PROTONOLYSIS OP CERTAIN ALLYLTINS BY JOSEPH ANTHONY VERDONE B.S., Lebanon Valley College, 1958 A THESIS Submitted to tbe University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Chemistry November 1965 This thesis has been examined and approved. / 'u f * t 7 1 - ' y ■'‘'I'-- .r / v. ' A 'r J x r H ' ^ - 1 Xs\ + \uAj*- ( 3 z c c £ £ ? . ^ I T L A A (Date) ACKNOWLEDGEMENTS The author wishes to thank Dr. Henry G. Kuivila for his guidance and patience throughout the course of this work. Financial support from the Air Force Office of Scientific Research for part of this work is gratefully acknowledged. iii TABLE OP CONTENTS Page LIST OP TABLES............................. vi LIST OP F I GURES .................... .... viii I. INTRODUCTION ............................ 1 II. RESULTS AND DISCUSSION. • 6 1.
    [Show full text]
  • Natural Sulfide Minerals As Electrode Materials for Electrochemical Analysis in Dipolar Aprotic Solvents
    Int. J. Electrochem. Sci., 13 (2018) 11113 – 11135, doi: 10.20964/2018.11.74 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Review Natural Sulfide Minerals as Electrode Materials for Electrochemical Analysis in Dipolar Aprotic Solvents Zorka Stanić University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanović 12, P.O. Box 60, 34000 Kragujevac, Serbia E-mail: [email protected], [email protected] Received: 20 August 2018 / Accepted: 19 September 2018 / Published: 1 October 2018 Dipolar aprotic solvents are compounds with the relative permittivity higher than 15 and a dipole moment greater than 2 D. Solvents of this type are applied in the field of kinetic, catalytic and electrochemical studies. Many organic molecules with high molecular weight are readily dissolved in dipolar aprotic solvents. These solvents have relatively high pKS and wide-area working potential which allows the determination of a large number of compounds in them. This review was written to provide the insight of electrochemistry in non-aqueous solutions, primarily based on the characterization and application of some solid-state sensors in a non-aqueous environment. Firstly, it highlights the results obtained over many years of investigation in our laboratory with the aim to contribute to the development of pure and applied chemistry in non-aqueous solutions. The review is divided into two main parts. The first part contains a discussion of solvent properties which further basically determine their application in electrochemistry. Second part mainly deals with the characteristics and use of the natural sulfide minerals (pyrite, chalcopyrite, and arsenopyrite) as electrochemical sensors in non-aqueous solutions for different purposes.
    [Show full text]
  • Solvolytic Displacement Reactions Burns Lab
    Bálint Gál Solvolytic displacement reactions Burns Lab Outline Key players 1. Brief history and current picture of displacement reactions 2. Neighboring group participation (halogens) 3. Salt effects and ion pairs 4. Role of the solvent Key references • “Ion pairing in nucleophilic substitution reactions.” Eugene Kwan, April 2014 • “Medium effects on the rates and mechanisms of solvolytic reactions." Bentley, T.W.; Schleyer, P.v.R. Advances in Physical Organic Chemistry 1977, 14, 1-67 • “Ions and ion pairs in solvolysis reactions”. Raber, D.J.; S. Winstein A. Streitweiser P. v. R. Schleyer Harris, J.M.; Schleyer, P.v.R. Advances in Physical Organic UCLA Berkeley (Princeton, Erlangen, Chemistry. 1972, 2, 248-274. Georgia) • “Solvolytic displacement reactions.” Streitweiser A. Chem. Rev. 1956, 56, 571 Definition of solvolysis First introduced by Steigman and Hammett for first-order Winstein S. JACS series nucleophilic displacements by solvent present in large excess. “The role of neighboring groups in displacement reactions.” They also noted the “strange” tendency of rates: tertiary > “Correlation of solvolysis rates.” secondary > primary. “Salt effects and ion pairs in solvolysis and related reactions.” Steigman, J. and Hammett, L. P. JACS 1937, 59, 2536 This is a large field, this presentation will focus on mechanistic IUPAC definition. “Generally, reaction with a solvent, or with studies most relevant to dihalide solvolysis. a lyonium ion or lyate ion involving the rupture of one or more bonds in the reacting solute. More specifically the term is used for substitution elimination and fragmentation reactions in which a solvent species is the nucleophile ('alcoholysis' if the solvent is an alcohol, etc.).” Bálint Gál Solvolytic displacement reactions Burns Lab Hughes-Ingold Scheme Winstein’s modification to the SN1 mechanism involves contact The classical mechanism details two limiting mechanisms (SN1 ion pairs and solvent-separated ion pairs.
    [Show full text]
  • Electrochemistry in Nonaqueous Solutions Related Titles
    Kosuke Izutsu Electrochemistry in Nonaqueous Solutions Related Titles Endres, F., MacFarlane, D., Abbott, A. (eds.) Electrodeposition from Ionic Liquids 2008 ISBN: 978-3-527-31565-9 Eftekhari, A. (ed.) Nanostructured Materials in Electrochemistry 2008 ISBN: 978-3-527-31876-6 Hamann, C. H., Hamnett, A., Vielstich, W. Electrochemistry Second, Completely Revised and Updated Edition 2007 ISBN: 978-3-527-31069-2 Kosuke Izutsu Electrochemistry in Nonaqueous Solutions Second, Revised and Enlarged Edition The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Prof. Dr. Kosuke Izutsu publisher do not warrant the information contained 4-31-6-208 Kichijoji-honcho in these books, including this book, to be free of Musashino 180-0004 errors. Readers are advised to keep in mind that Japan statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de. # 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
    [Show full text]
  • Glossary of Terms Used in Physical Organic Chemistry
    PUre & AppL. Chem,, Vol. 51, pp. 1725-1801. 0033-4545/79/0801-1725 $02.00/0 Pergamon Press Ltd. 1979. Printed in Great Britain. ©IUPAC PROVISIONAL INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DIVISION COMMISSION ON PHYSICAL ORGANIC CHEMISTRY* GLOSSARY OF TERMS USED IN PHYSICAL ORGANIC CHEMISTRY Compiled and Edited by VICTOR GOLD Comments on these proposals should be sent within 8 months of Publication to the S=etary of the Commission: Dr. J. R. PENTON Technisch-Chenmches Laboratorium der EidgenOssischen Technischen Hochschule Zürich Universitlltstrasse 6 CH-8092 Zürich, Switzerland Comments from the viewpoint of languages other than English are encouraged. These may have special significance regarding the eventual publication in various countries of translations of the nomenclature finally approved by IUPAC. *The mernbership of the Commission during the period in which this Glossary was prepared was as follows: J. F. DUNNETT (Titular Mernber, 1973-79; Chairman, 1978-; USA) A. R. H. COLE (Associate Member, 1974-79; Australia) V. GOLD (Titular Mernber, 1973·79; UK) R. D. GUTHRJE (Associate Mernber, 1977-81; USA) G.ILLUMINATI (Titular Mernber, 1977-81; ltaly) R. A. Y. JONES(AssociateMernber,l977-81; UK) J. MARCH(AssociateMernber,1977-81; USA) J. R. PENTON (Titular Mernber and Secretary, 1973·79; Switzerland) M. J. PERKINS (Titular Mernber, 1977-81; UK) J. REEDIJK (AssociateMernber,1977-81; Netherlands) C. RÜCHARDT (Titular Mernber, 1973-77; Federal Republic ofGermany) K. SCHWETLICK (Titular Mernber, 1977-81; German Dernocratic Republic) A. STREITWIESER(Titular Member, 1973-77; Associate Mernber, 1977-81; USA) J. TOUL!,l!C (TitularMernber,l973-79; France) H. ZOLLINGER (Titular Mernber, 1973-79; Chairman, 1973-78; Switzerland) CONTRIBUTORS TO THE GLOSSARY w.
    [Show full text]
  • OF 9-Azid0feu0aen2
    THE M20HANISM OF- TIG K3TQNIG SCmilDT REACTION AND KIHLTICS OF THE ACID-CATALYSED REARRÂI^GEMENT OF 9-AZID0FEU0aEN2 being a thesis submitted to the University of London for the degree of Doctor of Philosophy in the Faculty of Science by John Vineent Evans, B.Sc. (Lend.) Battersea College of Technology January, 1958. C) ; ProQuest Number: 10804731 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uesL ProQuest 10804731 Published by ProQuest LLO (2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT OF THE THESIS Fluor enone, dis solved in 96 and 100 % sulphuric acid, has been allowed to react with sodium aside and the resultant mixtures diluted with both water and anhydrous methanol • 9-Methoxyphenanthridine,the product to be expected from nucleophilic attack by the methanol,was not formed and phenanthridine was obtained in good yield from all experiments. The formation of this compound both under anhydrous conditions and in the presence of water shows Smith's mechanism for the kotonic Schmidt reaction, which involves dehydration to a Beckmann-type intermediate and subsequent rehydration, to be unlikely.
    [Show full text]
  • Autoprotolysis Constants Aqueous Organic
    Pure & App!. Chem., Vol. 59, No. 12, pp. 1693—1702, 1987. Printed in Great Britain. © 1987 IUPAC INTERNATIONALUNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON ELECTROANALYTICAL CHEMISTRY* AUTOPROTOLYSIS CONSTANTS IN NONAQUEOUS SOLVENTS AND AQUEOUS ORGANIC SOLVENT MIXTURES Prepared for publication by S. RONDININI, P. LONGHI, P. R. MUSSINI AND T. MUSSINI Department of Physical Chemistry and Electrochemistry, University of Milan, 1-20133 Milano, Italy * Membershipof the Commission during the preparation of the report (1985—1987) was as follows: Chairman: K. Izutsu (Japan); Vice-Chairman: E. Pungor (Hungary); Secretary: M. Senda (Japan); Titular Members: J. Buffle (Switzerland); J. Juillard (France); K. M. Kadish (USA); R. Kalvoda (Czechoslovakia); Associate Members: A. K. Covington (UK); W. Davison (UK); R. A. Durst (USA); M. Gross (France); H. Kao (China); R. C. Kapoor (India); H. P. van Leeuven (Netherlands); Y. Marcus (Israel); T. Mussini (Italy); J. G. Osteryoung (USA); N. Tanaka (Japan); K. Tóth (Hungary); National Representatives: G. E. Batley (Australia); B. Gilbert (Belgium); W. C. Purdy (Canada); A. A.Vlek (Czechoslovakia); H. B. Nielsen (Denmark); H. Monien (FRG); M. L'Her (France); Gy. Farsang (Hungary); G. Prabhakara Rao (India); W. F. Smyth (Ireland); E. Grushka (Israel); S. R. Cavallari (Italy); W. Frankvoort (Netherlands); Z. Galus (Poland); G. Johans- son (Sweden); M. L. Berkem (Turkey); H. Thompson (UK); J. Jordan (USA); I. Piljac (Yugoslavia). Republication of this report is permitted without the need for formal JUPAC permission on condition that an acknowledgement, with full reference together with IUPAC copyright symbol (© 1987 IUPAC), is printed. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant JUPAC National Adhering Organization.
    [Show full text]