Solvolytic Displacement Reactions Burns Lab
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 + 3HC1 Effect of Water and Ammonia, Respectively, Upon
VOL. 23, 1937 CHEMISTRY: SLOB UTSKY, A UDRIETHAND CAMPBELL 611 ACID CATALYSIS IN LIQUID AMMONIA. I. AMMONOL YSIS OF DIETHYLMALONA TE BY CHARLES SLOBUTSEY, L. F. AUDRIETH AND R. W. CAMPBELL DEPARTMENT OF CHEMISTRY, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS Communicated November 3, 1937 Numerous investigations have shown that liquid ammonia possesses unusual properties as a solvent' for many inorganic and organic compounds. Like water it is the parent substance of a system of acids, bases and salts.2 Liquid ammonia also reacts directly with many substances. Solvolysis takes place and in the case of ammonia such reactions are termed ammono- lytic reactions. Just as phosphorus trichloride is hydrolyzed by water (1), so it may be ammonolyzed3 by ammonia to give the nitrogen analogs of phosphorous and hydrochloric acids (2). PCI + 3HOH -- P(OH)3 + 3HC1 (1) PCI3 + 5HNH2 -+ P(NH)(NH2) + 3NH4C1 (2) Many hydrolytic reactions are catalyzed in aqueous solutions by acids or bases. Thus, the inversion of cane sugar is catalyzed by acids and the velocity of the reaction is a function of the concentration of the hydrogen ion. Esters also undergo hydrolysis and such reactions are markedly catalyzed by the hydrogen ion, or in terms of the modern Bronsted concept of acidity, by the onium4 ion, or solvated proton. It was, therefore, to have been expected that the rate of ammonolysis of esters in liquid ammonia would be accelerated by the presence of ammonium salts, which have been shown to possess acid character in liquid ammonia. It has already been demonstrated qualitatively that ammonium salts do exert a catalytic effect in other ammonolytic reactions. -
Kinetic and Equilibrium Acidities of Nitrocycloalkanes J
Kinetic and Equilibrium Acidities of Nitrocycloalkanes J. Org. Chem., Vol. 43, No. 16, 1978 3113 Acknowledgment. We are grateful to the National Science 13) M. Eigen, Angew, Chem., lnt. Ed. Engl., 3, l(1964). 14) E. Grunwald and D. Eustace, ref IO, Chapter 4,have shown that usually Foundation and the National Institutes of Health for support one or two water molecules separate the reactants in proton transfers of of this research. Comments of a referee and of Professor A. J. this type. Kresge were helpful in preparing a revised version of this 15) R. A. More O’Ferrall, ref IO, Chapter 8. 16) R. A. Ogg and M. Polyani, Trans. Faraday Soc., 31, 604 (1935). manuscript. 17) E. A. Moelwyn-Hughes and D. Glen, Roc. R. SOC.London, Ser. A,, 212, 260 (1952). References and Notes (18) C. D. Ritchie, “Solute-Solvent Interations”, J. F. Coetzee and C. 0. Ritchie, Eds., Marcel Dekker, New York, N.Y., 1969,Chapter 4,pp 266-268. (1) National Institutes of Health Fellow, 1967-1970. (19) R. A. Marcus, J. Phys. Chem., 72, 891 (1968). (2) R. P. Bell and D. M. Goodall, Proc. R. Soc.London, Ser. A, 294, 273 (1966); (20)Hydroxide (or alkoxide) ions are believed to be solvated by three tightly D. J. Barnes and R. P. Bell, ibid., 318,421 (1970);R. P. Bell and B. J. Cox, bound (inner sphere) water molecules. [The additional (outer sphere) water J. Chem. SOC.6, 194 (1970). molecules that are also present are not shown.] Judging from the energy (3) V. -
The Air Oxidation of 4,6-Di (2-Phenyl-2-Propyl) Pyrogallol. Spectroscopic and Kinetic Studies of the Intermediates
Carlsberg Res. Commun. Vol. 42, p. 11-25 THE AIR OXIDATION OF 4,6-DI (2-PHENYL-2-PROPYL) PYROGALLOL. SPECTROSCOPIC AND KINETIC STUDIES OF THE INTERMEDIATES. by HENRY I. ABRASH Department of Chemistry, Carlsberg Laboratory Gamle Carlsbergvej 10 - DK-2500 Copenhagen, Valby~ 1) Current address: Department of Chemistry, California State University at Northridge, Northridge, California 91324, USA Key words: 4,6-di (2-phenyl-2-propyl) pyrogallol, consecutive reactions, oxidation, oxygen, pH, quinone, semiquinone, spectra Two colored extinction bands, one with ~'max near 520 nm and the other near 770 nm, form and decay during air oxidations of 4,6-di(2-phenyl-2-propyl)pyrogallol in alkaline methanol. The 770 nm band appears to be due to the semiquinone monoanion while the extinction near 500 nm is thought to be due to both the semiquinone and 3-hydroxy-o-quinone. Although the rates of formation and decay of the two bands are indistinguishable in the presence of excess dissolved oxygen, the 770 nm band disappears slightly before the 500 nm extinction when the pyrogallol reactant is initially in excess of the dissolved oxygen. Except at high methoxide concentrations, the kinetics indicate a system of two consecutive reactions with pseudo first-order rate constants k~ and k 2. The pH' dependence of k~ indicates that the neutral pyrogallol, its monoanion and dianion all react, the rate increasing with the negative charge of the species. The k2/k~ ratio is constant at 5 from pH' 11 to 16. Extinction coefficients at both wavelengths increase with pH'. The 770 nm extinction disappears immediately after acidification while the 500 nm extinction decays at a rate consistent with oxidation. -
Solvent Deuterium Isotope Effect on Hydrolysis of Nd3+ Ion , and As Was
Notizen 1493 Solvent Deuterium Isotope Effect on Hydrolysis Experimental of Nd3+ Ion Reagents and apparatus A neodymium perchlorate sample solution and Mastjnobu Ma e d a *, T oshihiko A m ay a , and other reagents used were prepared and analyzed H id e t a k e K ak iha na according to the same procedures as those in the *Department of Applid Chemistry, previous papers5-6. Nagoya Institute of Technology, All the apparatus employed were the same as Gokiso, Showa-ku, Nagoya 466, Japan those in Ref. 7. Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Preparation of a test solution O-okayama, Meguro-ku, Tokyo 152, Japan A test solution was prepared as follows. A (Z. Naturforsch. 32 b, 1493-1495 [1977]; received August 30, 1977) slightly acidic neodymium perchlorate solution, which had been freed from CO 2 by passing purified Deuterium Isotope Effect, Formation Constant, Heavy Water, Hydrolysis, Neodymium Ion N2 gas, was electrolyzed to reduce L+ ions by using a d. c. power supply until precipitates appeared. In order to saturate the solution with Nd(OL )3 precipi The hydrolysis equilibria of Nd3+ ion in tates the mixture was stirred with a magnetic rod light- and heavy-water solutions containing for two days. The precipitates of Nd(OL )3 were 3 mol dm -3 (Li)C104 as an ionic medium were removed by filtration with G 4 glass filters. All the studied at 25 °C by measuring the lyonium- procedures were carried out under an atmosphere ion concentration with a glass electrode. of N 2 gas in a room kept at 25 ± 1 °C. -
Chapter 1 Chemistry of Non-Aqueous Solutions
EFOP-3.4.3-16-2016-00014 projekt Lecture notes in English for the Chemistry of non-aqueous solutions, melts and extremely concentrated aqueous solutions (code of the course KMN131E-1) Pál Sipos University of Szeged, Faculty of Science and Informatics Institute of Chemistry Department of Inorganic and Analytical Chemistry Szeged, 2020. Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.szechenyi2020.hu EFOP-3.4.3-16-2016-00014 projekt Content Course description – aims, outcomes and prior knowledge 5 1. Chemistry of non-aqueous solutions 6 1.1 Physical properties of the molecular liquids 10 1.2 Chemical properties of the molecular liquids – acceptor and donor numbers 18 1.2.1 DN scales 18 1.2.1 AN scales 19 1.3 Classification of the solvents according to Kolthoff 24 1.4 The effect of solvent properties on chemical reactions 27 1.5 Solvation and complexation of ions and electrolytes in non-aqueous solvents 29 1.5.1 The heat of dissolution 29 1.5.2 Solvation of ions, ion-solvent interactions 31 1.5.3 The structure of the solvated ions 35 1.5.4 The effect of solvents on the complex formation 37 1.5.5 Solvation of ions in solvent mixtures 39 1.5.6 The permittivity of solvents and the association of ions 42 1.5.7 The structure of the ion-pairs 46 1.6 Acid-base reactions in non-aqueous solvents 48 1.6.1 Acid-base reactions in amphiprotic solvents of high permittivity 50 1.6.2 Acid-base reactions in aprotic solvents of high permittivity 56 1.6.3 Acid-base reactions in amphiprotic solvents of low permittivity 61 1.6.4 Acid-base reactions in amphiprotic solvents of low permittivity 61 1.7 The pH scale in non-aqueous solvents 62 1.8 Acid-base titrations in non-aqueous solvents 66 1.9 Redox reactions in non-aqueous solutions 70 2 EFOP-3.4.3-16-2016-00014 projekt 1.7.1 Potential windows of non-aqueous solvents 74 1.10 Questions and problems 77 2. -
S 1 Reaction Remember That a 3˚ Alkyl Halide Will Not Undergo a S 2 Reaction the Steric Hindrance in the Transition State
SN1 Reaction Remember that a 3˚ alkyl halide will not undergo a SN2 reaction The steric hindrance in the transition state is too high If t-Butyl iodide is reacted with methanol, however, a substitution product is obtained This product does NOT proceed through a SN2 reaction First proof is that the rate for the reaction does not depend on methanol concentration Occurs through a SN1 reaction Substitution – Nucleophilic – Unimolecular (1) SN1 - In a SN1 reaction the leaving group departs BEFORE a nucleophile attacks For t-butyl iodide this generates a planar 3˚ carbocation The carbocation can then react with solvent (or nucleophile) to generate the product If solvent reacts (like the methanol as shown) the reaction is called a “solvolysis” The Energy Diagram for a SN1 Reaction therefore has an Intermediate - And is a two step reaction CH3 Potential H3C energy CH3 I OCH CH3 3 H3C CH3 CH3 H3C CH3 Reaction Coordinate Why does a SN1 Mechanism Occur? - Whenever the potential energy of a reaction is disfavored for a SN2 reaction the SN1 mechanism becomes a possibility SN2 SN1 Potential energy I OCH3 CH3 H3C CH3 CH3 H3C CH3 Reaction Coordinate Rate Characteristics The rate for a SN1 reaction is a first order reaction Rate = k [substrate] The first step is the rate determining step The nucleophile is NOT involved in the rate determining step Therefore the rate of a SN1 reaction is independent of nucleophile concentration (or nucleophile characteristics, e.g. strength) What is Important for a SN1 Reaction? The primary factor concerning the rate of -
Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate
Studies of Phenyl N-Phenyl Phosphoramidochloridate Bull. Korean Chem. Soc. 2014, Vol. 35, No. 8 2465 http://dx.doi.org/10.5012/bkcs.2014.35.8.2465 Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate Hojune Choi, Kiyull Yang, Han Joong Koh,†,* and In Sun Koo* Department of Chemistry Education and Research Instituted of Natural Science, Gyeongsang National University, Jinju 660-701, Korea. *E-mail: [email protected] †Department of Science Education, Chonju National University of Education, Chonju, Korea. *E-mail: [email protected] Received March 29, 2014, Accepted April 29, 2014 The rate constants of solvolysis of phenyl N-phenyl phosphoramidochloridate (PhNHPO(Cl)OPh, Target Compound-TC1) have been determined by a conductivity method. The solvolysis rate constants of TC1 are well correlated with the extended Grunwald-Winstein equation, using the NT solvent nucleophilicity scale and YCl solvent ionizing scale, and sensitivity values of 0.85 ± 0.14 and 0.53 ± 0.04 for l and m, respectively. These l and m values were similar to those obtained previously for the complex chemical substances dimethyl thiophosphorochloridate; N,N,N',N'-tetramethyldiamidophosphorochloridate; 2-phenyl-2-ketoethyl tosylate; diphenyl thiophosphinyl chloride; and 9-fluorenyl chloroformate. As with the five previously studied solvolyses, an SN2 pathway is proposed for the solvolyses of TC1. For four representative solvents, the rate constants were measured at several temperatures, and activation parameters (∆H≠ and ∆S≠) were estimated. These activation parameters are also in line with the values expected for an SN2 reaction. Key Words : Phenyl N-phenyl phosphoramidochloridate, Extended Grunwald-Winstein equation, SN2 mech- anism, Activation parameters Introduction mediate or is the result of a single transition state (TS).2 The reaction mechanism of phosphoryl compounds, such Phosphoryl transfer is an important aspect of biological as that of ‘phenyl N-phenyl phosphoramidochloridate’ chemistry and organic synthesis. -
Total of 10 Pages Only May Be Xeroxed
THE ACID CATALYZ D HYDROLYSIS OF M THYL ISOCYANIDE CENTRE FOR NEWFOUNDLAND STUDIES TOTAL OF 10 PAGES ONLY MAY BE XEROXED (Without Author's Permission) Y J Y lal V ( IM) 334618 THE ACID CATALYZED HYDROLYSIS OF METHYL ISOCYANIDE by © Yu-YUan Liew (Lim) A Thesis S'ubmi t ted to Memorial University of Newfoundland in partial fulfillment of the requirements for the degree of Master of Science Department of Chemistry May, 1972 ·.: '· ·. •, - i - ··.\., ACKNOWLEDGEMENT I wish to express my sju.::ere gratitude to Dr. A. R. Stein for his help, guidance and encouragement in making this investi- gation possible. I l-TOuld also like to thank Mr. D.H. Seymour for ::- the glass work, Drs. G. Ling and I. Mazurkiewicz (Department of Pharmacology, ~niversity of Ottawa) for their encouragement and help and my friends who helped make this thesis possible. I am also grateful to the National Research Council of Canada and Memorial University of Newfoundland for financial assistance. ii ·TAaLE .Of CONTENTS ACKNOWLEDGEMENT. • • • • • . • • • • • . • . • . • • . • . • . • • . • . • . • • • . • . • • • . i TABLE OF CONTENTS. • • • • • . • • . • . • • • . • . • • . • . • • . • • • . • . • • • . • • . • • . • • • . • • • • • . • i i LIST OF TABLES. • . i v LIST OF FIG'URES. • • • . • . • • • . • . • • . • . • . • . • • . • • . • . • . • . • vi ABSTRACT . .... .. ...................................... .. r • ~ ............... viii INTRODU~ .ION . ......•.•.•............ , • . • . • . 1 EXPERimNTAL. • . • . • . • . 13 1. General Considerations. • • • • • • • • • • -
Initial State and Transition State Solvation for the Solvolysis of ^Razis
宙시 State and Transition State Solvation for the Solvolysis of trans-[Co(N-ete^2ClJ^ Bull. Korean Chem. Soc.f Vol. 11, No. 4, 1990 309 aqueous HC1 solution. The reaction product was extracted 2, (a) H. Kotsuki, Y. Ushio, I. Kadota, and M. O산 ii,/ ()rg. three times with ether (20 ml x 3) and the organic옹 were Chem., 54, 5153 (1989); (b) H. Kots니 d, Y. Ushio, I. separated and dried over anhydrous magnesium sulfate. The Kadota, and M. Ochi, Chem. Lett., 927 (1988); (c) B. P. ether was removed by rotatory evaporator. The GLC ana M니 ndy and M. Bjorklund. Tetrahedron Lett., 26, 3899 lysis indicated an exo/endo ratio of 83:17 (quantitative yield). (1985); (d) H. A. Bates and P.-N. Deng, / ()rg. Chem., General procedure for endo-5,7-dimethyl-6,8-dioxabicy- 48, 4479 (1983). clo[3.2.1]octane (5). To a dried ZnCl2(2 eq.) was added drop 3, (a) B. P. Mundy and W. G. Bommann,/ ()rg. Chem., 49, wise 0.2 g (1.4 mmol) of methyl vinyl keton dimer (1) in 2 ml 5264 (1984); (b) T. Cohen and M. Bhupathy, Tetrahed- ) of CH2C12 and 3 eq. of Zn(BH4 2 (0.8M solution in THF) res ron Lett., 24, 4163 (1983); (c) P. Chaquin, J-P. Morizur, pectively at 0°C. After 2 hrs stirring at 0°C, 10 mZ of 15% and J. KossanyiJ. Am. Chem. Sog, 99,903(1977); (d) K. aqueous HC1 solution was added to this reaction mixture and Mori, Tetrahedron, 30, 4223 (1974). -
SI Analytics Ph Handbook
pH handbook HELPFUL GUIDE FOR PRACTICAL APPLICATION AND USE Welcome to SI Analytics! We express our core competence, namely the production of analytical instruments, with our company name SI Analytics. SI also stands for the main products of our company: sensors and instruments. As part of the history of SCHOTT® AG, SI Analytics has more than 75 years experience in glass technology and in the development of analytical equipment. As always, our products are manufactured in Mainz with a high level of innovation and quality. Our electrodes, titrators and capillary viscometers will continue to be the right tools in any location where expertise in analytical measurement technology is required. In 2011 SI Analytics became part of the listed company Xylem Inc., headquartered in Rye Brook / N.Y., USA. Xylem is a leading international provider of water solutions. We look forward to presenting the pH handbook to you! The previous publication "Interesting facts about pH measurement" has been restructured, made clearer and more engaging, and extra information has been added. The focus has been consciously put on linking general information with our lab findings and making this accessible to you in a practical format. Complemented by the reference to our range of products and with practical recommendations for use with specific applications, the pH primer is an indispensable accompaniment for everyday lab work. We at SI Analytics would be happy to work successfully together with you in the future. SI Analytics GmbH Dr. Robert Reining CEO CONTENTS SECTION 1 Basic concepts of potentiometry and pH measurement 1.1 Definition of acid and base ......................................................... -
Xerox University Microfilms 300 North Zeeb Rood Ann Arbor, Michigan 48106 11
INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image^pn the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
Redox-Driven Conformational Dynamics in a Photosystem-II-Inspired
Redox-driven Conformational Dynamics in a Photosystem-II-inspired β-hairpin Maquette Determined through Spectroscopy and Simulation Hyea Hwang†,1, Tyler G. McCaslin†,2,3 Anthony Hazel4, Cynthia V. Pagba2,3 Christina M. ∗ Nevin2,3, Anna Pavlova4, Bridgette A. Barry2,3 and James C. Gumbart2,3,4, 1School of Materials Science and Engineering, 2School of Chemistry and Biochemistry, 3Petit Institute for Bioengineering and Biosciences, and 4School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 † These authors contributed equally to this work. ∗ To whom correspondence should be addressed; Email: [email protected]; Phone: 404-385-0797 1 Abstract Tyrosine-based radical transfer plays an important role in photosynthesis, respiration, and DNA synthesis. Radical transfer can occur either by electron transfer (ET) or proton coupled electron transfer (PCET), depending on the pH. Reversible conformational changes in the surrounding protein matrix may control reactivity of radical intermediates. De novo designed Peptide A is a synthetic 18 amino-acid β-hairpin, which contains a single tyrosine (Y5) and carries out a kinetically significant PCET reaction between Y5 and a cross-strand histidine (H14). In Peptide A, amide II’ (CN) changes are observed in the UV resonance Raman (UVRR) spectrum, associated with tyrosine ET and PCET; these bands were attributed previously to a reversible change in secondary structure. Here, we use molecular dynamics simulations to define this conformational change in Peptide A and its H14-to-cyclohexylalanine variant, Peptide C. Three different Y5 charge states, tyrosine (YH), tyrosinate (Y–), and neutral tyrosyl radical (Y•), are considered. The simulations show that Peptide A-YH and A-Y– retain secondary structure and noncovalent interactions, whereas A-Y• is unstable.