Genome-Wide Association Study Provides Insights Into the Genetic Architecture of Bone Size and Mass in Chickens

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Association Study Provides Insights Into the Genetic Architecture of Bone Size and Mass in Chickens Genome Genome-wide association study provides insights into the genetic architecture of bone size and mass in chickens Journal: Genome Manuscript ID gen-2019-0022.R2 Manuscript Type: Article Date Submitted by the 20-Nov-2019 Author: Complete List of Authors: GUO, Jun; Jiangsu Institute of Poultry Science, layer breeding Qu, Liang; Jiangsu Institute of Poultry Science DOU, Taocun; Jiangsu Institute of Poultry Science, layer breeding Shen, Manman; Jiangsu Institute of Poultry Science Hu, Yuping;Draft Jiangsu Institute of Poultry Science Ma, Meng; Jiangsu Institute of Poultry Science WANG, Kehua; Jiangsu Institute of Poultry Science, layer breeding Bone length, Dominance effect, Genome-wide association study, Keyword: Heritability, Linear mixed model Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 29 Genome 1 Genome-wide association study provides insights into the genetic 2 architecture of bone size and mass in chickens 3 4 Jun Guo, Liang Qu, Tao-Cun Dou, Man-Man Shen, Yu-Ping Hu, Meng Ma and Ke-Hua Wang* 5 6 Jiangsu Institute of Poultry Science, Key Laboratory for Poultry Genetics and Breeding of Jiangsu 7 province, Yangzhou, Jiangsu, 225125, China 8 9 *Corresponding author:Kehua Wang 10 Jiangsu Institute of Poultry Science at Yangzhou, China. 11 Mailing address: Draft 12 No. 58 Cangjie Road, 225125, Yangzhou , China 13 Tel: +86(514) 85599012 14 Fax: +86(514)85599035 15 Phone number:13805276606 16 Email:[email protected] 17 1 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 2 of 29 18 19 Abstract: Bone size is an important trait for chickens due to its association with osteoporosis in 20 layers and meat production in broilers. Here, we employed high density genotyping platforms to 21 detect candidate genes for bone traits. Estimates of the narrow heritabilities ranged from 0.37 ± 22 0.04 for shank length to 0.59 ± 0.04 for tibia length. The dominance heritability was 0.12±0.04 23 for shank length. Using a linear mixed model approach, we identified a promising locus within 24 NCAPG on chromosome 4, which was associated with tibia length and mass, femur length and 25 area and shank length. In addition, three other loci were associated with bone size or mass at a 26 Bonferroni-corrected genome-wide significance threshold of 1%. One region on chicken 27 chromosome 1 between 168.38 and 171.82 Mb, harboredHTR2A, LPAR6, CAB39L, and TRPC4. 28 A second region that accounted for 2.2%Draft of the phenotypic variance was located around WNT9A 29 on chromosome 2, where allele substitution was predicted to be associated with tibia length. Four 30 candidate genes identified on chromosome 27 comprising SPOP, NGFR, GIP, and HOXB3 were 31 associated with tibia length and mass, femur length and area, and shank length. Genome 32 partitioning analysis indicated that the variance explained by each chromosome was proportional to 33 its length. 34 Keywords: Bone length; Dominance effect; Genome-wide association study; Heritability; Linear 35 mixed model 36 2 https://mc06.manuscriptcentral.com/genome-pubs Page 3 of 29 Genome 37 Introduction 38 Bone growth is of importance to poultry production as skeletal problems are associated with 39 economic losses and welfare issue(Bradshaw et al. 2002; Kapell et al. 2012). Long bone 40 distortions are a common disease in broiler production, although the causes of these deformities 41 are multifactorial diseases. In Europe, about 44 billion broiler chickens with leg disorders are 42 sacrificed annually (Turner et al. 2003). Osteoporosis leads to the unbalanced bone resorption and 43 the loss of structural bone, and it is a major health problem in layers. Osteoporosis accounts for 44 20% to 35% of all mortalities during the egg laying cycle in caged hens (Anderson 2002; 45 Whitehead and Fleming 2000). Poultry selection breeding systems have traditionally focused on 46 the improvement of economic traits, but the selection on welfare traits such as bone-related traits 47 has been observed in recent years (Kapell et al. 2012; Whitehead 2004). 48 In general, bone length and mass are regardedDraft as important parameters for evaluating bone growth 49 in chickens and other species (Tsudzuki et al. 2007; Gao et al. 2010). Numerous factors can affect 50 bone length and mass, and most probably have genetic origins. González-Cerón et al. (2015) 51 reported that the heritabilities of tibia length and mass in a broiler populationwere0.54 ± 0.07 and 52 0.31 ± 0.06, respectively. Ragognetti et al. (2015) found that the heritabilities of tibia length and 53 mass in a F2 populationwere0.23 ± 0.08 and 0.23 ± 0.07, respectively. Abdellatif (1989) reported 54 that the heritability of shank length was 0.58 ± 0.28. Tsudzuki et al. (2007) estimated that shank 55 length had a high heritability of 0.37 in a crossbred population. Bone length and mass are highly 56 genetically determined, but the genetic architecture that underlies these traits is still poorly 57 defined. 58 The aim of the present study was to elucidate the genetic architecture of bone traits in the chicken 59 using a genome-wide association study (GWAS) approach. To do this we used an F2 population 60 obtained from White Leghorn and Dongxiang Blue-shelled chickens, and identified single 61 nucleotide polymorphisms (SNPs) related to bone growth. We investigated whether the bone 3 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 4 of 29 62 traits were determined by common variants and estimated the genetic parameters for the bone 63 traits. 64 65 Material and methods 66 Ethics statement 67 All procedures involving animals were in compliance with the guidelines for the care and use of 68 experimental animals established by the Ministry of Agriculture of China. The ethics committee 69 of Jiangsu Poultry Science Institute specifically approved the present study. 70 Study design 71 The F2 population was generated from a reciprocal cross between an indigenous breed (Dongxiang Blue-shelled 72 chickens) and commercial layer(White Leghorn). Dongxiang Blue-shelled chickens were introduced from 73 Jiangxi province into an experimental farm Draftat Jiangsu Institute of Poultry Science in 1998. White Leghorn 74 chickens were kindly provided by Shanghai Poultry Breeding Company. Six White Leghorn cocks were mated 75 with 133 Dongxiang hens and six Dongxiang cocks were mated with 80 White Leghorn hens, and the F1 76 generations comprised of 1,029 birds (White Leghorn cocks × Dongxiang hens)and 552 birds (Dongxiang cocks 77 × White Leghorn hens).The F2 generations were produced by the F1 individuals within the respective crosses to 78 obtain 1,856 cockerels and 1,893 pullets. All of the F2 birds were measured to determine their bone traits. The 79 laying mash contained 16.16% crude protein, 10.64 MJ·kg−1 metabolizable energy, 3.4% calcium, and 0.52% 80 total phosphorus. 81 Trait measurement 82 The shank length was quantified using a measuring tape at 508 days old as the distance from the 83 hock joint to the tarsometatarsus. The F2 chickens were then sacrificed to obtain other bone 84 measurements. The right femur and tibiae were dissected from the carcass. Muscle and connective 85 tissue were carefully removed from the bone with a scalpel. The tibia and femur lengths were 86 measured with Vernier calipers. The femur area was determined by dual energy X-ray 87 absorptiometry using the Discovery DXA system (Hologic, Inc. Bedford, MA, USA). 88 Genotyping 4 https://mc06.manuscriptcentral.com/genome-pubs Page 5 of 29 Genome 89 DNA was extracted from the whole blood according to a standard protocol(Moore and Dowhan 90 2002). Genotyping analyses of 1,534 samples from the F2 generation were conducted using an 91 Affymetrix Axiom 600K Chicken Genotyping Array (Affymetrix, Inc., Santa Clara, CA, USA). 92 More details of the genotyping array were described by Kranis et al. (2013). The quality of the 93 array data was evaluated with Affymetrix Power Tools and PLINK software (Purcell et al. 2007). 94 SNPs were excluded if they had a minor-allele frequency (MAF) <1%. SNPs that deviated from 95 the Hardy–Weinberg equilibrium (P value < 1e−6) were removed. SNPs on the sex chromosome 96 were removed. Samples with call rates <95% were removed. Phasing analyses were performed 97 with Beagle software (version 4.0) (Browning and Browning 2007). Finally, 435,867 autosomal 98 SNPs and 1,512 samples passed the quality control procedure. 99 Association analysis 100 Before the association test, an independentDraft SNP set was established using PLINK with a window 101 size of 25 SNPs, a step of five SNPs, and an r2 threshold of 0.2. The principal components (PCs) 102 were then obtained using the linkage equilibrium SNPs. The top five PCs were assigned as 103 covariates in the linear mixed model. In the present study, the effective number of independent 104 tests was 59,308, and thus, the genome-wide suggestive and significant P-values were 1.69e−5 and 105 8.43e−7, respectively. We searched for the candidate genes closest to the associated SNPs in 106 GeneCards (http://www.genecards.org/), Ensembl (http://asia.ensembl.org, version 89 ), and 107 NCBI (http://www.ncbi.nlm.nih.gov) database. The positions of interesting SNPs were obtained 108 from Ensembl version 89 and NCBI Gallus_gallus-5.0. 109 Conditional analysis was conducted to examine the potential associated SNPs that might be 110 masked by a strong signal. Briefly, the initial screen involved testing with the strongest SNP 111 covariate. Association analysis conditioning was then implemented based on the selected SNP(s) 112 to iteratively search for the top SNPs one by one using a stepwise model selection procedure until 113 no SNP had a conditional P-value that passed the significance level.
Recommended publications
  • Genome-Wide Association Study of Body Weight
    Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight Hawlader A. Al-Mamun, Paul Kwan, Samuel A. Clark, Mohammad H. Ferdosi, Ross Tellam, Cedric Gondro To cite this version: Hawlader A. Al-Mamun, Paul Kwan, Samuel A. Clark, Mohammad H. Ferdosi, Ross Tellam, et al.. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genetics Selection Evolution, 2015, 47 (1), pp.66. 10.1186/s12711-015-0142-4. hal-01341302 HAL Id: hal-01341302 https://hal.archives-ouvertes.fr/hal-01341302 Submitted on 4 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. et al. Genetics Selection Evolution Al-Mamun (2015) 47:66 Genetics DOI 10.1186/s12711-015-0142-4 Selection Evolution RESEARCH ARTICLE Open Access Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight Hawlader A. Al-Mamun1,2, Paul Kwan2, Samuel A.
    [Show full text]
  • WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/EP2014/054384 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 6 March 2014 (06.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13305253.0 6 March 2013 (06.03.2013) EP (84) Designated States (unless otherwise indicated, for every (71) Applicants: INSTITUT CURIE [FR/FR]; 26 rue d'Ulm, kind of regional protection available): ARIPO (BW, GH, F-75248 Paris cedex 05 (FR). CENTRE NATIONAL DE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, LA RECHERCHE SCIENTIFIQUE [FR/FR]; 3 rue UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Michel Ange, F-75016 Paris (FR).
    [Show full text]
  • Genetic Architecture of Quantitative Traits in Beef Cattle Revealed by Genome Wide Association Studies of Imputed Whole Genome S
    Zhang et al. BMC Genomics (2020) 21:36 https://doi.org/10.1186/s12864-019-6362-1 RESEARCH ARTICLE Open Access Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits Feng Zhang1,2,3,4, Yining Wang1,2, Robert Mukiibi2, Liuhong Chen1,2, Michael Vinsky1, Graham Plastow2, John Basarab5, Paul Stothard2 and Changxi Li1,2* Abstract Background: Genome wide association studies (GWAS) on residual feed intake (RFI) and its component traits including daily dry matter intake (DMI), average daily gain (ADG), and metabolic body weight (MWT) were conducted in a population of 7573 animals from multiple beef cattle breeds based on 7,853,211 imputed whole genome sequence variants. The GWAS results were used to elucidate genetic architectures of the feed efficiency related traits in beef cattle. Results: The DNA variant allele substitution effects approximated a bell-shaped distribution for all the traits while the distribution of additive genetic variances explained by single DNA variants followed a scaled inverse chi- squared distribution to a greater extent. With a threshold of P-value < 1.00E-05, 16, 72, 88, and 116 lead DNA variants on multiple chromosomes were significantly associated with RFI, DMI, ADG, and MWT, respectively. In addition, lead DNA variants with potentially large pleiotropic effects on DMI, ADG, and MWT were found on chromosomes 6, 14 and 20. On average, missense, 3’UTR, 5’UTR, and other regulatory region variants exhibited larger allele substitution effects in comparison to other functional classes. Intergenic and intron variants captured smaller proportions of additive genetic variance per DNA variant.
    [Show full text]
  • LCORL (NM 153686) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC207306L4 LCORL (NM_153686) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: LCORL (NM_153686) Human Tagged ORF Clone Tag: mGFP Symbol: LCORL Synonyms: MLR1 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC207306). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_153686 ORF Size: 954 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 LCORL (NM_153686) Human Tagged ORF Clone – RC207306L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_153686.4, NP_710153.2 RefSeq Size: 3577 bp RefSeq ORF: 957 bp Locus ID: 254251 UniProt ID: Q8N3X6, B4DSW0 Domains: HTH_psq Protein Families: Transcription Factors MW: 35.4 kDa Gene Summary: This gene encodes a transcription factor that appears to function in spermatogenesis.
    [Show full text]
  • High-Resolution Analysis of Selection Sweeps Identified Between Fine
    Gutiérrez‑Gil et al. Genet Sel Evol (2017) 49:81 DOI 10.1186/s12711-017-0354-x Genetics Selection Evolution RESEARCH ARTICLE Open Access High‑resolution analysis of selection sweeps identifed between fne‑wool Merino and coarse‑wool Churra sheep breeds Beatriz Gutiérrez‑Gil1* , Cristina Esteban‑Blanco1,2, Pamela Wiener3, Praveen Krishna Chitneedi1, Aroa Suarez‑Vega1 and Juan‑Jose Arranz1 Abstract Background: With the aim of identifying selection signals in three Merino sheep lines that are highly specialized for fne wool production (Australian Industry Merino, Australian Merino and Australian Poll Merino) and considering that these lines have been subjected to selection not only for wool traits but also for growth and carcass traits and parasite resistance, we contrasted the OvineSNP50 BeadChip (50 K-chip) pooled genotypes of these Merino lines with the genotypes of a coarse-wool breed, phylogenetically related breed, Spanish Churra dairy sheep. Genome re-sequenc‑ ing datasets of the two breeds were analyzed to further explore the genetic variation of the regions initially identifed as putative selection signals. Results: Based on the 50 K-chip genotypes, we used the overlapping selection signals (SS) identifed by four selec‑ tion sweep mapping analyses (that detect genetic diferentiation, reduced heterozygosity and patterns of haplotype diversity) to defne 18 convergence candidate regions (CCR), fve associated with positive selection in Australian Merino and the remainder indicating positive selection in Churra. Subsequent analysis of whole-genome sequences from 15 Churra and 13 Merino samples identifed 142,400 genetic variants (139,745 bi-allelic SNPs and 2655 indels) within the 18 defned CCR. Annotation of 1291 variants that were signifcantly associated with breed identity between Churra and Merino samples identifed 257 intragenic variants that caused 296 functional annotation variants, 275 of which were located across 31 coding genes.
    [Show full text]
  • Supplementary Information – Postema Et Al., the Genetics of Situs Inversus Totalis Without Primary Ciliary Dyskinesia
    1 Supplementary information – Postema et al., The genetics of situs inversus totalis without primary ciliary dyskinesia Table of Contents: Supplementary Methods 2 Supplementary Results 5 Supplementary References 6 Supplementary Tables and Figures Table S1. Subject characteristics 9 Table S2. Inbreeding coefficients per subject 10 Figure S1. Multidimensional scaling to capture overall genomic diversity 11 among the 30 study samples Table S3. Significantly enriched gene-sets under a recessive mutation model 12 Table S4. Broader list of candidate genes, and the sources that led to their 13 inclusion Table S5. Potential recessive and X-linked mutations in the unsolved cases 15 Table S6. Potential mutations in the unsolved cases, dominant model 22 2 1.0 Supplementary Methods 1.1 Participants Fifteen people with radiologically documented SIT, including nine without PCD and six with Kartagener syndrome, and 15 healthy controls matched for age, sex, education and handedness, were recruited from Ghent University Hospital and Middelheim Hospital Antwerp. Details about the recruitment and selection procedure have been described elsewhere (1). Briefly, among the 15 people with radiologically documented SIT, those who had symptoms reminiscent of PCD, or who were formally diagnosed with PCD according to their medical record, were categorized as having Kartagener syndrome. Those who had no reported symptoms or formal diagnosis of PCD were assigned to the non-PCD SIT group. Handedness was assessed using the Edinburgh Handedness Inventory (EHI) (2). Tables 1 and S1 give overviews of the participants and their characteristics. Note that one non-PCD SIT subject reported being forced to switch from left- to right-handedness in childhood, in which case five out of nine of the non-PCD SIT cases are naturally left-handed (Table 1, Table S1).
    [Show full text]
  • A Genome-Wide Association Study for Body Weight in Japanese Thoroughbred Racehorses Clarifies Candidate Regions on Chromosomes 3, 9, 15, and 18
    —Full Paper— A genome-wide association study for body weight in Japanese Thoroughbred racehorses clarifies candidate regions on chromosomes 3, 9, 15, and 18 Teruaki TOZAKI1*, Mio KIKUCHI1, Hironaga KAKOI1, Kei-ichi HIROTA1 and Shun-ichi NAGATA1 1Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan Body weight is an important trait to confirm growth and development in humans and animals. In Thoroughbred racehorses, it is measured in the postnatal, training, and racing periods to evaluate growth and training degrees. The body weight of mature Thoroughbred J. Equine Sci. racehorses generally ranges from 400 to 600 kg, and this broad range is likely influenced Vol. 28, No. 4 by environmental and genetic factors. Therefore, a genome-wide association study pp. 127–134, 2017 (GWAS) using the Equine SNP70 BeadChip was performed to identify the genomic regions associated with body weight in Japanese Thoroughbred racehorses using 851 individuals. The average body weight of these horses was 473.9 kg (standard deviation: 28.0) at the age of 3, and GWAS identified statistically significant SNPs on chromosomes 3 (BIEC2_808466, P=2.32E-14), 9 (BIEC2_1105503, P=1.03E-7), 15 (BIEC2_322669, P=9.50E-6), and 18 (BIEC2_417274, P=1.44E-14), which were associated with body weight as a quantitative trait. The genomic regions on chromosomes 3, 9, 15, and 18 included ligand-dependent nuclear receptor compressor-like protein (LCORL), zinc finger and AT hook domain containing (ZFAT), tribbles pseudokinase 2 (TRIB2), and myostatin (MSTN), respectively, as candidate genes. LCORL and ZFAT are associated with withers height in horses, whereas MSTN affects muscle mass.
    [Show full text]
  • Primary Tumor Site 137 Larynix
    US 20190187143A1 ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0187143 A1 Wallweber ( 43 ) Pub . Date : Jun . 20 , 2019 ( 54 ) COMPOSITIONS AND METHODS TO Publication Classification DETECT HEAD AND NECK CANCER (51 ) Int. Cl. (71 ) Applicant : Laboratory Corporation of America GOIN 33 / 574 ( 2006 .01 ) GOIN 33 /52 (2006 . 01) Holdings , Burlington , NC (US ) (52 ) U . S . CI. (72 ) Inventor : Gerald J . Wallweber , Foster City , CA CPC .. GOIN 33 /57407 ( 2013 .01 ) ; GOIN 33 /5748 (US ) ( 2013 .01 ) ; GOIN 33 /52 ( 2013 .01 ) (57 ) ABSTRACT ( 21 ) Appl. No. : 16 /224 , 974 Disclosed are compositions and methods to detect proteins associated with Head and Neck Cancer, generally , or more ( 22 ) Filed : Dec . 19 , 2018 particularly , biomarkers of Head and Neck Squamous Cell Carcinoma (HNSCC ) . Such markers may be useful to allow Related U . S . Application Data individuals susceptible to HNSCC to manage their lifestyle (60 ) Provisional application No. 62/ 608 ,296 , filed on Dec . and /or medical treatment to avoid further progression of 20 , 2017 . disease . Primary Tumor Site primarytumor Site 137 Larynix Har Oralen cavityel . Gene Accuracy Kappa Sensitivity Specificity 1 CAB39L 0 . 9600 0 . 7745 0 .9831 0 .7818 2 ADAM12 0 . 9688 0 . 7506 0 . 9938 0 .6727 . 3 SH3BGRL2 0 .9596 0 .6972 0 . 9846 0 . 6636 4 NRG2 0 .9553 0 . 6710 0 .9808 0 .6545 5 COL13A11 0 . 9546 0 . 6376 0 . 9854 0 .5909 6 GRIN2D 1 0 . 9539 0 .6326 0 . 9862 0 .5727 7 LOXL2 0 . 9525 0 .5906 0 . 9915 0 .4909 8 HSD1786 0 . 9411 0 .
    [Show full text]
  • Sheep Genome Functional Annotation Reveals Proximal Regulatory Elements Contributed to the Evolution of Modern Breeds
    ARTICLE DOI: 10.1038/s41467-017-02809-1 OPEN Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds Marina Naval-Sanchez1, Quan Nguyen1, Sean McWilliam1, Laercio R. Porto-Neto1, Ross Tellam1, Tony Vuocolo1, Antonio Reverter1, Miguel Perez-Enciso 2,3, Rudiger Brauning4, Shannon Clarke4, Alan McCulloch4, Wahid Zamani5, Saeid Naderi 6, Hamid Reza Rezaei7, Francois Pompanon 8, Pierre Taberlet8, Kim C. Worley9, Richard A. Gibbs9, Donna M. Muzny9, Shalini N. Jhangiani9, Noelle Cockett10, Hans Daetwyler11,12 & James Kijas1 1234567890():,; Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis)to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species. 1 CSIRO Agriculture and Food, 306 Carmody Road, St. Lucia 4067 QLD, Australia. 2 Centre for Research in Agricultural Genomics (CRAG), Bellaterra 08193, Spain. 3 ICREA, Carrer de Lluís Companys 23, Barcelona 08010, Spain.
    [Show full text]
  • Expression Levels of LCORL Are Associated with Body Size in Horses
    Expression Levels of LCORL Are Associated with Body Size in Horses Julia Metzger, Rahel Schrimpf, Ute Philipp, Ottmar Distl* Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany Abstract Body size is an important characteristic for horses of various breeds and essential for the classification of ponies concerning the limit value of 148 cm (58.27 inches) height at the withers. Genome-wide association analyses revealed the highest associated quantitative trait locus for height at the withers on horse chromosome (ECA) 3 upstream of the candidate gene LCORL. Using 214 Hanoverian horses genotyped on the Illumina equine SNP50 BeadChip and 42 different horse breeds across all size ranges, we confirmed the highly associated single nucleotide polymorphism BIEC2-808543 (2log10P = 8.3) and the adjacent gene LCORL as the most promising candidate for body size. We investigated the relative expression levels of LCORL and its two neighbouring genes NCAPG and DCAF16 using quantitative real-time PCR (RT-qPCR). We could demonstrate a significant association of the relative LCORL expression levels with the size of the horses and the BIEC2- 808543 genotypes within and across horse breeds. In heterozygous C/T-horses expression levels of LCORL were significantly decreased by 40% and in homozygous C/C-horses by 56% relative to the smaller T/T-horses. Bioinformatic analyses indicated that this SNP T.C mutation is disrupting a putative binding site of the transcription factor TFIID which is important for the transcription process of genes involved in skeletal bone development. Thus, our findings suggest that expression levels of LCORL play a key role for body size within and across horse breeds and regulation of the expression of LCORL is associated with genetic variants of BIEC2-808543.
    [Show full text]
  • NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility
    International Journal of Molecular Sciences Article NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility 1,2, 1, 3 4 1 1 1 Xin Hu y, Yishen Xing y, Xing Fu , Qiyuan Yang , Ling Ren , Yahui Wang , Qian Li , Junya Li 1,* and Lupei Zhang 1,* 1 Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (X.H.); [email protected] (Y.X.); [email protected] (L.R.); [email protected] (Y.W.); [email protected] (Q.L.) 2 Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium 3 School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; [email protected] 4 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; [email protected] * Correspondence: [email protected] (L.Z.); [email protected] (J.L.) These authors contributed equally to this work. y Received: 29 January 2020; Accepted: 11 February 2020; Published: 13 February 2020 Abstract: NCAPG is a subunit of condensin I that plays a crucial role in chromatin condensation during mitosis. NCAPG has been demonstrated to be associated with farm animal growth traits. However, its role in regulating myoblast differentiation is still unclear. We used myoblasts derived from fetal bovine tissue as an in vitro model and found that NCAPG was expressed during myogenic differentiation in the cytoplasm and nucleus. Silencing NCAPG prolonged the mitosis and impaired the differentiation due to increased myoblast apoptosis.
    [Show full text]
  • Plant & Animal Genome V
    January 9-13, 2016 PLANT & ANIMAL GENOME XXIV Town & Country Hotel THE INTERNATIONAL CONFERENCE San Diego, CA ON THE STATUS OF PLANT & ANIMAL GENOME RESEARCH FINAL PROGRAM & EXHIBIT GUIDE Organizing Committee Chairman: Stephen R. Heller, NIST (USA) Ī PLANT COORGANIZERS Juan F. Medrano, University of California, Dave Clements, Johns Hopkins University, Davis, USA USA Huaijun Zhou, University of California, Catherine Feuillet, Bayer CropScience, USA Davis, USA J. Perry Gustafson, University of Missouri, (Retired ), USA Ī ABSTRACT & WEBSITE Jerome P. Miksche, Emeritus Director, COORDINATORS USDA, Plant Genome Program, USA David Grant, USDA/ARS/CICGR, USA Graham Moore, John Innes Centre, UK Gerard Lazo, USDA/ARS/WRRC, USA Susan R. Wessler, University of California, Victoria Carollo Blake, USA Riverside, USA Rod A. Wing, University of Arizona, USA; Ī TRAVEL GRANTS COORDINATOR International Rice Research Institute, Tom Blake, Professor Emeritus, Philippines Montana State University, USA Ī ANIMAL COORGANIZERS Ī SPECIAL DUTY COORDINATORS Daniel Ciobanu, University of Nebraska – Hans Cheng, USDA/ARS, USA Lincoln, USA Max Rothschild, Iowa State University, USA Kwan-Suk Kim, Chungbuk National University, South Korea Sponsors and Supporters ORGANIZER Scherago International Ī USDA, Agricultural Research Service 111 Town Square Place Ī USDA, National Agricultural Library Suite 1208 USDA, National Institute of Food and Agriculture Ī Jersey City, NJ 07310 Ī John Innes Centre Phone: (201) 653-4777 Fax: (201) 653-5705 Cover artwork provided by Applied Biosystems. Originally developed for the company’s “Genetic Harvest” Agriculture Seminars, this image Email: [email protected] represents the importance of molecular genetic approaches in plant and animal research. Website: www.intlpag.org About Frasergen Frasergen is an innovative leader in cutting-edge bioinformatics and overseas in high-throughput genome sequencing, big genome data genomics.
    [Show full text]