Decompression Illness in United States Air Force: High Risk Occupations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Use of Heliox in Treating Decompression Illness
The Diving Medical Advisory Committee DMAC, Eighth Floor, 52 Grosvenor Gardens, London SW1W 0AU, UK www.dmac-diving.org Tel: +44 (0) 20 7824 5520 [email protected] The Use of Heliox in Treating Decompression Illness DMAC 23 Rev. 1 – June 2014 Supersedes DMAC 23, which is now withdrawn There are many ways of treating decompression illness (DCI) at increased pressure. In the past 20 years, much has been published on the use of oxygen and helium/oxygen mixtures at different depths. There is, however, a paucity of carefully designed scientific studies. Most information is available from mathematical models, animal experiments and case reports. During a therapeutic compression, the use of a different inert gas from that breathed during the dive may facilitate bubble resolution. Gas diffusivity and solubility in blood and tissue is expected to play a complex role in bubble growth and shrinkage. Mathematical models, supported by some animal studies, suggest that breathing a heliox gas mixture during recompression could be beneficial for nitrogen elimination after air dives. In humans, diving to 50 msw, with air or nitrox, almost all cases of DCI can be adequately treated at 2.8 bar (18 msw), where 100% oxygen is both safe and effective. Serious neurological and vestibular DCI with only partial improvements during initial compression at 18 msw on oxygen may benefit from further recompression to 30 msw with heliox 50:50 (Comex therapeutic table 30 – CX30). There have been cases successfully treated on 50:50 heliox (CX30), on the US Navy recompression tables with 80:20 and 60:40 heliox (USN treatment table 6A) instead of air and in heliox saturation. -
Dysbarism - Barotrauma
DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA. -
Hyperbaric Oxygen Therapy for Decompression Illness/Gas Embolism (All Ages)
Clinical commissioning policy: Hyperbaric oxygen therapy for decompression illness/gas embolism (all ages) For implementation from 1 April 2019 NHS England Reference: 170047P NHS England INFORMATION READER BOX Directorate Medical Operations and Information Specialised Commissioning Nursing Trans. & Corp. Ops. Commissioning Strategy Finance Publications Gateway Reference: 07603 Document Purpose Policy Clinical commissioning policy: Hyperbaric oxygen therapy for Document Name decompression illness/gas embolism (all ages) Author Specialised Commissioning Team Publication Date 20 July 2018 Target Audience CCG Clinical Leaders, Care Trust CEs, Foundation Trust CEs , Medical Directors, Directors of PH, Directors of Nursing, NHS England Regional Directors, NHS England Directors of Commissioning Operations, Directors of Finance, NHS Trust CEs Additional Circulation #VALUE! List Description Routinely Commissioned - NHS England will routinely commission this specialised treatment in accordance with the criteria described in this policy. Cross Reference 0 Superseded Docs 0 (if applicable) Action Required 0 Timing / Deadlines By 00 January 1900 (if applicable) Contact Details for [email protected] further information 0 0 0 0 0 0 Document Status This is a controlled document. Whilst this document may be printed, the electronic version posted on the intranet is the controlled copy. Any printed copies of this document are not controlled. As a controlled document, this document should not be saved onto local or network drives but should always be accessed from the intranet. 2 For implementation from 1 April 2019 Standard Operating Procedure: Clinical Commissioning Policy: Hyperbaric oxygen therapy for decompression illness/gas embolism (all ages) First published: July 2018 Prepared by NHS England Specialised Services Clinical Reference Group for Hyperbaric oxygen therapy Published by NHS England, in electronic format only. -
What Are the Health Effects from Exposure to Carbon Monoxide?
CO Lesson 2 CARBON MONOXIDE: LESSON TWO What are the Health Effects from Exposure to Carbon Monoxide? LESSON SUMMARY Carbon monoxide (CO) is an odorless, tasteless, colorless and nonirritating Grade Level: 9 – 12 gas that is impossible to detect by an exposed person. CO is produced by the Subject(s) Addressed: incomplete combustion of carbon-based fuels, including gas, wood, oil and Science, Biology coal. Exposure to CO is the leading cause of fatal poisonings in the United Class Time: 1 Period States and many other countries. When inhaled, CO is readily absorbed from the lungs into the bloodstream, where it binds tightly to hemoglobin in the Inquiry Category: Guided place of oxygen. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of the physiological mechanisms underlying CO toxicity. For specific learning and standards addressed, please see pages 30 and 31. MATERIALS INCORPORATION OF TECHNOLOGY Computer and/or projector with video capabilities INDIAN EDUCATION FOR ALL Fires utilizing carbon-based fuels, such as wood, produce carbon monoxide as a dangerous byproduct when the combustion is incomplete. Fire was important for the survival of early Native American tribes. The traditional teepees were well designed with sophisticated airflow patterns, enabling fires to be contained within the shelter while minimizing carbon monoxide exposure. However, fire was used for purposes other than just heat and cooking. According to the historian Henry Lewis, Native Americans used fire to aid in hunting, crop management, insect collection, warfare and many other activities. Today, fire is used to heat rocks used in sweat lodges. -
THE 6 MAJOR BODY SYSTEMS and How They Interact with Each Other to Keep the “Body Machine” Alive and Working Well
THE 6 MAJOR BODY SYSTEMS And how they interact with each other to keep the “body machine” alive and working well. CIRCULATORY SYSTEM / CARDIOVASCULAR SYSTEM PRIMARY PURPOSE: transport blood throughout the body by circulating PRIMARY ORGANS/PARTS: Heart, blood vessels (arteries, veins, capillaries) (1) Transports/carries nutrients and oxygen through the blood to most parts of the body (2) Transports/carries waste in cells and carbon-dioxide (CO2) away from the parts: (a) Cell waste goes to the kidneys for filter and disposal (b) Carbon-dioxide (CO2) goes to the lungs to exhale (breathe out) Kidneys and Lungs have a close relationship with Cardiovascular system Kidneys: filter through blood to take out the waste and get it eventually out of the body Lungs: breathes in oxygen and gives it to the blood for Circulatory system to carry throughout the body; and takes unneeded carbon-dioxide (CO2) from the blood and breathes that out. Circulatory/Cardiovascular System through the blood to most parts of the body provides nutrients and oxygen which is needed for our bodies to have ENERGY! RESPIRATORY SYSTEM PRIMARY PURPOSE: Breathing - taking in Oxygen, pushing out Carbon-Dioxide (CO2) PRIMARY ORGANS: Lungs, trachea (tube going from lungs to nose/mouth) (1) Inhales (breathes in) Oxygen - good for the body - gives it to the Circulatory System to be transported throughout the body through the blood. (2) Exhales (breathes out) Carbon-Dioxide (CO2) - lungs get this gas from the blood (Circ. Sys.) and pushes it out of the body DIGESTIVE SYSTEM PRIMARY PURPOSE: take in food; break down food into nutrients (good) and waste (unneeded) PRIMARY ORGANS: Stomach, large and small intestines, esophagus (tube from stomach to mouth) (1) Digestive System gets nutrients (good) from food and hands it over to the blood and Circulatory System then carries those nutrients where they need to go. -
Overview of the Circulatory System Fill in the Blank
Overview Of The Circulatory System Fill In The Blank If orthotropic or rheumatoid Bernardo usually Germanising his erotica euphemize contractually or expect centrally and Malaprop, how pessimum is Tore? Obcordate Darius hale meltingly. Liberating and aerobatic Marco vandalise, but Lynn quickly unlives her margins. LESSON 1. Bio 104 Chapters 17 20 Cardiovascular System 33. Short-Answer Questions About Circulatory and Lymphatic System Infections. Circulatory system the concept to blood pressure and available and flake the currency of William Harvey II Overview the Concept Objectives The student will 1. Cardiovascular System Higher Education Pearson. Outline The Digestive System develop your textbook to one you clock in the blanks Where do. As the pulmonary circulation at the remaining circles from each blank to fill the in humans and cocaine affect the pulmonary vein in. Circulatory and Lymphatic System Infections GALILEO Open. The vascular diseases that red blood comes with their amazing heart failure occurs most of ingested food pieces of circulatory system, resulting pattern of the. 7 Circulatory System Diseases Symptoms Risks and More. For each definition given below fill date the inmate with the crate part that completes the term. The respiratory system access in blanks worksheet answers human digestive. FREE Circulatory System Activities and Classroom Resources Teacher Planet. Blood and Circulation Webquest Gates Chili. Then to pass through the systemic artery is vital for developing this system circulatory system is blood pressure, where they extend like you can adjust their understanding its chambers. Blood cannot flow diagrams a particular part in the circulatory system blank to. There are separated by which vitamins, fill the vessels that makes cells found, body and describing the. -
Since Nitrogen Is at Least 5 Times More Soluble in Fat Than In
STUDIES ON DYSBARISM I. DEVELOPMENT OF DECOMPRESSION SYNDROME IN GENETICALLY OBESE MICE WILLIAM ANTOPOL, M.D.; JOHN KALBERER, JR., M.S.; SAMUEL KOOPERSTEIN, M.D.; STEPHEN SUGAAR, M.D., AND CHRYSSANTHOS CHRYSSANTHOU, M.D. From the Joseph and Helen Yeamans Levy Laboratories, Beth Israel Hospital, and the Medical Department of the Port of New York Authority, New York, N.Y. Since nitrogen is at least 5 times more soluble in fat than in other tissues,l" the proportion of adipose tissue in the body influences the amount and rate of nitrogen released into the bloodstream after rapid decompression from high atmospheric pressure.5 It was the purpose of this investigation to find a modality in which the decompression syndrome could be produced regularly in small ani- mals, so that a great number of them could be exposed simultaneously to pressure. In view of the influence of adipose tissue in the decompres- sion syndrome, genetically obese mice were employed in these studies. Decompression illness ("bends") could be produced in the obese mice but not in their normal nonobese siblings or other strains of normal mice. These facts are especially significant in the light of recent reports cor- relating air crew obesity with fatal cases of dysbarism.8 MATERIAL AND METHODS Hereditary obese hyperglycemic mice of both sexes, 3 to 6 months of age were used. There were 2 weight ranges, 2I to 38 gm. (average 32 gm.) and 38 to 65 gm. (average 54 gm.), and, in addition, corresponding thin siblings weighing I7 to 27 gm. (average I9 gm.). The mice were obtained from the Roscoe B. -
I960 DISSERTATION Ohio Ohio State University the Ohio State University Kenneth Rae Coburn, B
THE CARDIOVASCULAR AND RESPIRATORY RESPONSES OF DOGS TO LETHAL CONCENTRATIONS OF CARBON MONOXIDE DISSERTATION Pi Q Pi resented in Partial Fulfillment of the Requirements for the egree Doctor of Philosophy in the Graduate School of the Ohio State University BY Kenneth Rae Coburn, B. S. The Ohio State University i960 Approved by AdvisorA r ^ T ri Department of Physiology ACKNOWLEDGMENTS I wish, to express my sincere appreciation for the guidance, enthusiasm and invaluable aid of Doctors Fred A0 Hitchcock, Earl T. Carter and Joseph F„ Tomashefski without whose assistance this study could never have been carried out. I am grateful to all those of the Cardiopulmonary Laboratory of the Ohio State Tuberculosis Hospital for the aid and assistance which they offered. CONTENTS Introduction ........................................................................ 1 Survey of the Literature A. Early History of CO Poisoning............................................ 4 B. Absorption and Excretion of C O...................................................... 5 C. Oxygen, Carbon Monoxide and Hemoglobin........ 8 D. Blood and Circulatory Changes in CO Poisoning...............................15 a. Blood Changes . 15 b. Blood Vessels and CO ................................................16 c. Behaviour of the Heart ...................................................16 E. Effect of CO on Respiration .............. 18 F. Recent Integrated Studies.............................................................................. 19 Methods and Procedures A. Anesthesia -
Delayed Treatment of Decompression Sickness with Short, No-Air-Break Tables: Review of 140 Cases
REVIEW ARTICLE Delayed Treatment of Decompression Sickness with Short, No-Air-Break Tables: Review of 140 Cases Paul Cianci and John B. Slade,Jr. CIANCI P, SLADE JR JB. Delayed treatment of decompression sick- increasing frequency, often having dived very provoc- ness with short, no-air-break tables: review of 140 cases. Aviat Space ative profiles, many suffering from severe DCS, and Environ Med 2006; 77:1003–8. Introduction: Most cases of decompression sickness (DCS) in the U.S. with long delays to treatment. are treated with hyperbaric oxygen using U.S. Navy Treatment Tables 5 In 1963 and 1964, the Navy Experimental Dive Unit and 6, although detailed analysis shows that those tables were based on received reports of 133 cases of DCS in which the stan- limited data. We reviewed the development of these protocols and offer dard USN tables at the time were used (28). Full relief an alternative treatment table more suitable for monoplace chambers did not result in 24% of initial recompressions. When that has proven effective in the treatment of DCS in patients presenting to our facility. Methods: We reviewed the outcomes for 140 cases of outcomes using USN Tables 3 and 4 were analyzed, a DCS in civilian divers treated with the shorter tables at our facility from 47% incidence of failure of the first treatment was January 1983 through December 2002. Results: Onset of symptoms noted. However, there were no instances of treatment averaged 9.3 h after surfacing. At presentation, 44% of the patients failure when DCS had occurred following rigid USN demonstrated mental aberration. -
Respiratory System Respiratory System the Role of the Respiratory System Is to Take in Oxygen and Release Carbon Dioxide from the Body
Essential Question: How do major organ systems work together in living organisms? Standards: S7L2d. Explain that tissues, organs, and organ systems serve the needs cells have for oxygen, food, and waste removal. S7L2e. Explain the purpose of the major organ systems in the human body (i.e., digestion, respiration, reproduction, circulation, excretion, movement, control and coordination, and for protection from disease). Activating Strategy: Respiratory & Circulatory Activity – Have students record their at rest pulse. Then have students do jumping jacks beside their desk or outside for 2-3 minutes. After calling time have students record their pulse rate again. Ask the students to describe the activity and explain why they are breathing harder and their pulse rate is faster after the activity. Activating Strategy: Look at the animated picture to the right. What is the man doing? What is coming out of his mouth? Why? What is happening to his heart rate? Why? What is the connection between his breathing harder and his heart rate increasing? Why do Professional Football players breath pure oxygen on the sideline? Respiratory System Respiratory System The role of the Respiratory System is to take in oxygen and release carbon dioxide from the body. Nose/Mouth Trachea Lungs Alveoli Diaphragm Trachea connects the mouth and throat to the lungs (commonly known as the windpipe) Lungs Take in oxygen and expel carbon dioxide as we breathe Alveoli Where the exchange of oxygen and carbon dioxide occur in your blood http://www.youtube.com/watch?v=AJpur6XUiq4 -
The Mars Project: Avoiding Decompression Sickness on a Distant Planet
NASA/TM--2000-210188 The Mars Project: Avoiding Decompression Sickness on a Distant Planet Johnny Conkin, Ph.D. National Space Biomedical Research Institute Houston, Texas 77030-3498 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058-3696 May 2000 Acknowledgments The following people provided helpful comments and suggestions: Amrapali M. Shah, Hugh D. Van Liew, James M. Waligora, Joseph P. Dervay, R. Srini Srinivasan, Michael R. Powell, Micheal L. Gernhardt, Karin C. Loftin, and Michael N. Rouen. The National Aeronautics and Space Administration supported part of this work through the NASA Cooperative Agreement NCC 9-58 with the National Space Biomedical Research Institute. The views expressed by the author do not represent official views of the National Aeronautics and Space Administration. Available from: NASA Center for AeroSpace Information National Technical Information Service 7121StandardDrive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 301-621-0390 703-605-6000 This report is also available in electronic form at http://techreports.larc.nasa.gov/cgi-bin/NTRS Contents Page Acronyms and Nomenclature ................................................................................................ vi Abstract ................................................................................................................................. vii Introduction .......................................................................................................................... -
Grade 6: the Heart and Circulatory System Lesson 1: the Heart Lesson 2: the Heart Rate Lesson 3: the Circulatory System and Blood
Grade 6: The Heart and Circulatory System Lesson 1: The Heart Lesson 2: The Heart Rate Lesson 3: The Circulatory System and Blood Objectives: 1. Students will identify the four chambers of the heart 2. Students will identify four important structures of the Circulatory System and what they do. 3. Students will explain heart rate and be able to take their resting and active heart rates. 4. Students will describe the major functions of the Circulatory System. 5. Students will explain the role of the heart in circulation 6. Students will give a basic explanation of the cardio-pulmonary sequence. 7. Students will describe systemic circulation. Materials: Lesson 1: • Animal heart (Example: cow, pig, sheep) • Note cards • Picture of the heart (See Figure 1) • Dissection tools (Scissors, pan, etc.) Lesson 2: • Small drum • Watch or clock with second hand, or time • Optional: Stethoscope Lesson 3: • Corn Syrup • Plastic Beads: flat red disks, white ovals, green or blue seed beads • “Explain” experiment (per group): o Two small balloons or large finger cots o One clear tube (1/2” diameter) about 8” long o One clear tube (3/4” diameter) about 8” long o 16 - 20 oz. water o Red food coloring o Measuring cup o Funnel o Two empty plastic containers (such as cottage cheese or yogurt cartons) Activity Summary: In this lesson students will learn the basic functioning of the heart, Circulatory System and blood, the connection to lung functioning, and the activity of the Grade 6: The Heart & Circulatory System – Revised 2008 Page 1 Circulatory System in the body.