Comments on Unresponsive Decompression Illness Case Bengusu Mirasoglu* and Samil Aktas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Use of Heliox in Treating Decompression Illness
The Diving Medical Advisory Committee DMAC, Eighth Floor, 52 Grosvenor Gardens, London SW1W 0AU, UK www.dmac-diving.org Tel: +44 (0) 20 7824 5520 [email protected] The Use of Heliox in Treating Decompression Illness DMAC 23 Rev. 1 – June 2014 Supersedes DMAC 23, which is now withdrawn There are many ways of treating decompression illness (DCI) at increased pressure. In the past 20 years, much has been published on the use of oxygen and helium/oxygen mixtures at different depths. There is, however, a paucity of carefully designed scientific studies. Most information is available from mathematical models, animal experiments and case reports. During a therapeutic compression, the use of a different inert gas from that breathed during the dive may facilitate bubble resolution. Gas diffusivity and solubility in blood and tissue is expected to play a complex role in bubble growth and shrinkage. Mathematical models, supported by some animal studies, suggest that breathing a heliox gas mixture during recompression could be beneficial for nitrogen elimination after air dives. In humans, diving to 50 msw, with air or nitrox, almost all cases of DCI can be adequately treated at 2.8 bar (18 msw), where 100% oxygen is both safe and effective. Serious neurological and vestibular DCI with only partial improvements during initial compression at 18 msw on oxygen may benefit from further recompression to 30 msw with heliox 50:50 (Comex therapeutic table 30 – CX30). There have been cases successfully treated on 50:50 heliox (CX30), on the US Navy recompression tables with 80:20 and 60:40 heliox (USN treatment table 6A) instead of air and in heliox saturation. -
Dysbarism - Barotrauma
DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA. -
Hyperbaric Oxygen Therapy for Decompression Illness/Gas Embolism (All Ages)
Clinical commissioning policy: Hyperbaric oxygen therapy for decompression illness/gas embolism (all ages) For implementation from 1 April 2019 NHS England Reference: 170047P NHS England INFORMATION READER BOX Directorate Medical Operations and Information Specialised Commissioning Nursing Trans. & Corp. Ops. Commissioning Strategy Finance Publications Gateway Reference: 07603 Document Purpose Policy Clinical commissioning policy: Hyperbaric oxygen therapy for Document Name decompression illness/gas embolism (all ages) Author Specialised Commissioning Team Publication Date 20 July 2018 Target Audience CCG Clinical Leaders, Care Trust CEs, Foundation Trust CEs , Medical Directors, Directors of PH, Directors of Nursing, NHS England Regional Directors, NHS England Directors of Commissioning Operations, Directors of Finance, NHS Trust CEs Additional Circulation #VALUE! List Description Routinely Commissioned - NHS England will routinely commission this specialised treatment in accordance with the criteria described in this policy. Cross Reference 0 Superseded Docs 0 (if applicable) Action Required 0 Timing / Deadlines By 00 January 1900 (if applicable) Contact Details for [email protected] further information 0 0 0 0 0 0 Document Status This is a controlled document. Whilst this document may be printed, the electronic version posted on the intranet is the controlled copy. Any printed copies of this document are not controlled. As a controlled document, this document should not be saved onto local or network drives but should always be accessed from the intranet. 2 For implementation from 1 April 2019 Standard Operating Procedure: Clinical Commissioning Policy: Hyperbaric oxygen therapy for decompression illness/gas embolism (all ages) First published: July 2018 Prepared by NHS England Specialised Services Clinical Reference Group for Hyperbaric oxygen therapy Published by NHS England, in electronic format only. -
(Medical and Mechanical) Treatment of Erectile Dysfunction
130 SOP Conservative (Medical and Mechanical) Treatment of Erectile Dysfunctionjsm_12023 130..171 Hartmut Porst, MD,* Arthur Burnett, MD, MBA, FACS,† Gerald Brock, MD, FRCSC,‡ Hussein Ghanem, MD,§ Francois Giuliano, MD,¶ Sidney Glina, MD,** Wayne Hellstrom, MD, FACS,†† Antonio Martin-Morales, MD,‡‡ Andrea Salonia, MD,§§ Ira Sharlip, MD,¶¶ and the ISSM Standards Committee for Sexual Medicine *Private Urological/Andrological Practice, Hamburg, Germany; †The James Buchanan Brady Urological Institute, The Johns Hopkins Hospital, Baltimore, MD, USA; ‡Division of Urology, University of Western, ON, Canada; §Sexology & STDs, Cairo University, Cairo, Egypt; ¶Neuro-Urology-Andrology Unit, Department of Physical Medicine and Rehabilitation, Raymond Poincaré Hospital, Garches, France; **Instituto H.Ellis, São Paulo, Brazil; ††Department of Urology, Section of Andrology and Male Infertility, Tulane University School of Medicine, New Orleans, LA, USA; ‡‡Unidad Andrología, Servicio Urología Hospital, Regional Universitario Carlos Haya, Málaga, Spain; §§Department of Urology & Urological Reseach Institute (URI), Universiti Vita Saluta San Raffaele, Milan, Italy; ¶¶University of California at San Francisco, San Francisco, CA, USA DOI: 10.1111/jsm.12023 ABSTRACT Introduction. Erectile dysfunction (ED) is the most frequently treated male sexual dysfunction worldwide. ED is a chronic condition that exerts a negative impact on male self-esteem and nearly all life domains including interper- sonal, family, and business relationships. Aim. The aim of this study -
The Lookout Winter 2018
The Lookout Winter 2018 THE LOOKOUT MANIFEST A Message From the Wheelhouse GUE Fundamentals 2018 Diving Highlights Wreck Profile: Reliance SAS_11 Exploration Report News & Updates THE LOOKOUT Published by: Northern Atlantic Dive Expeditions, Inc. https://northernatlanticdive.com A Message From the Wheelhouse [email protected] Thanks for checking out Issue #11 of The Lookout, our annual newsletter covering wide ranging topics that are historical, Editors-in-Chief: technical, and relevant to our diving community in Massachusetts. This issue includes articles on our GUE Heather Knowles Fundamentals class, and trips to Florida, Kingston, Alexandria David Caldwell Bay and Truk Lagoon! We revisit an oldie, but goodie with a wreck profile on the Reliance. We also share an exploration Copyright © 2018 Northern Atlantic Dive update on our project, the unidentified vessel, SAS_11. Expeditions, Inc. We’d like to thank all our customers and crew for your All Rights Reserved continued support and participation aboard Gauntlet. The 2019 diving season will be an exciting one. We hope that you’ll join us on our adventures whether you are looking for training or just some great wreck diving off the coast of New England! We hope you enjoy this issue of The Lookout! Heather and Dave Issue 11 !1 The Lookout Winter 2018 GUE Fundamentals: Never Too Late! Training pathways for divers entering technical diving used to be straightforward. Most divers progressed through open circuit (OC) technical training beginning with advanced nitrox and decompression procedures courses, followed by trimix training through the two or three levels. With the mainstream market entry and growth of closed-circuit rebreathers (CCR), many open circuit trimix divers moved over to this technology, continuing to dive at their highest level after learning the basic foundational skills of the CCR. -
Recreational Technical Diving 2
NOTICE CONCERNING COPYRIGHT RESTRICTIONS The copyright law of the United States [Title 17, United States Code] governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the reproduction is not to be used for any purpose other than private study, scholarship, or research. If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that use may be liable for copyright infringement. The institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. No further reproduction and distribution of this copy is permitted by transmission or any other means. 96 Diving and Hyperbaric Medicine Volume 43 No. 2 June 2013 Diving and Hyperbaric Medicine Volume 43 No. 2 June 2013 97 Recreational technical diving part 2: decompression from deep available military air decompression tables, which were bubble growth and resolution due to gas diffusion between technical dives validated against databases of dives with known outcomes, bubbles and the surrounding tissue.8•9 The second class no such trimix tables were available to technical divers. of algorithms is much simpler, focusing on predictions of David J Doolette and Simon J Mitchell the number of bubbles that form during decompression.10 GAS-CONTENT DECOMPRESSION ALGORITHMS These latter bubble-counting algorithms will be outlined 11 12 Abstract here because they are widely available to technical divers. -
Delayed Treatment of Decompression Sickness with Short, No-Air-Break Tables: Review of 140 Cases
REVIEW ARTICLE Delayed Treatment of Decompression Sickness with Short, No-Air-Break Tables: Review of 140 Cases Paul Cianci and John B. Slade,Jr. CIANCI P, SLADE JR JB. Delayed treatment of decompression sick- increasing frequency, often having dived very provoc- ness with short, no-air-break tables: review of 140 cases. Aviat Space ative profiles, many suffering from severe DCS, and Environ Med 2006; 77:1003–8. Introduction: Most cases of decompression sickness (DCS) in the U.S. with long delays to treatment. are treated with hyperbaric oxygen using U.S. Navy Treatment Tables 5 In 1963 and 1964, the Navy Experimental Dive Unit and 6, although detailed analysis shows that those tables were based on received reports of 133 cases of DCS in which the stan- limited data. We reviewed the development of these protocols and offer dard USN tables at the time were used (28). Full relief an alternative treatment table more suitable for monoplace chambers did not result in 24% of initial recompressions. When that has proven effective in the treatment of DCS in patients presenting to our facility. Methods: We reviewed the outcomes for 140 cases of outcomes using USN Tables 3 and 4 were analyzed, a DCS in civilian divers treated with the shorter tables at our facility from 47% incidence of failure of the first treatment was January 1983 through December 2002. Results: Onset of symptoms noted. However, there were no instances of treatment averaged 9.3 h after surfacing. At presentation, 44% of the patients failure when DCS had occurred following rigid USN demonstrated mental aberration. -
Decompression Illness
Decompression Illness DCI • Decompression illness (DCI) includes DCS and • Diagnosis – generally hx, estimation of AGE likelihood • ~1-10/10,000 dives • Sx depend on location of insult • Higher in cold water, deep; lower in recreational • <24 hrs possible, >24 hrs unlikely, >36 hrs warm water diving (1-4/10k) very unlikely, >48 hrs almost impossible • Traditional/Golding Classification unless altitude change • Type I (MSK, skin, lymph, fatigue) • There is no pathognomonic test for DCI • Type II (neuro, cardio-resp, ENT, shock) • AGE • Tx 100% Surface O2 • Descriptive/Francis Smith Class • • Evolution (spontaneous recovery, static, relapsing) • IVF • Progressive (increasing #, severity of s/sx) • Evacuation considerations • Organ System • Airway, foley, pressurized cabin or as low as • Neuro, cardio-pulm, MSK, skin, lymph, ENT possible • Time of onset (before or after surfacing) • HBOT • Gas burden • Low (conservative within NoD), Med (D Dive), High (violation dive table) • Evidence of barotrauma DCS Pathophysiology • Henry’s Law – amount of inert gas • Inflammatory & thrombogenic absorbed by blood/tissue increased at processes depth • Association with oxidative stress, microparticles • Boyle’s Law P1V1= P2V2 • Bubbles biologically active – form • Bubble effects plasma-protein coat activating WBC, plts, • Intravascular - embolism, vasospasm, fibrin web ischemia, transbolism, venous stasis, • “Thick skin” stabilizes bubble, decreases hemorrhage, blood-bubble interactions, diffusion of inert gas out of bubble mechanical stripping of endothelial -
Sponges on Coral Reefs: a Community Shaped by Competitive Cooperation
Boll. Mus. Ist. Biol. Univ. Genova, 68: 85-148, 2003 (2004) 85 SPONGES ON CORAL REEFS: A COMMUNITY SHAPED BY COMPETITIVE COOPERATION KLAUS RÜTZLER Department of Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, USA E-mail: [email protected] ABSTRACT Conservationists and resource managers throughout the world continue to overlook the important role of sponges in reef ecology. This neglect persists for three primary reasons: sponges remain an enigmatic group, because they are difficult to identify and to maintain under laboratory conditions; the few scientists working with the group are highly specialized and have not yet produced authoritative, well-illustrated field manuals for large geographic areas; even studies at particular sites have yet to reach comprehensive levels. Sponges are complex benthic sessile invertebrates that are intimately associated with other animals and numerous plants and microbes. They are specialized filter feeders, require solid substrate to flourish, and have varying growth forms (encrusting to branching erect), which allow single specimens to make multiple contacts with their substrate. Coral reefs and associated communities offer an abundance of suitable substrates, ranging from coral rock to mangrove stilt roots. Owing to their high diversity, large biomass, complex physiology and chemistry, and long evolutionary history, sponges (and their endo-symbionts) play a key role in a host of ecological processes: space competition, habitat provision, predation, chemical defense, primary production, nutrient cycling, nitrification, food chains, bioerosion, mineralization, and cementation. Although certain sponges appear to benefit from the rapid deterioration of coral reefs currently under way in numerous locations as a result of habitat destruction, pollution, water warming, and overexploitation, sponge communities too will die off as soon as their substrates disappear under the forces of bioerosion and water dynamics. -
How to Have Sex in a Canoe: Oar Maintenance and Troubleshooting Francisco J
4/1/2019 How to have sex in a canoe: Oar maintenance and troubleshooting Francisco J. Garcia MD, FRCSC Clinical Assistant Professor, University of Saskatchewan Consultant in Urology, Specialist in Andrology and Sexual Medicine Follow: @drfjgarcia Email: [email protected] 1 Objectives: • Be familiar with the domains of male sexual dysfunction (MSD) • Be able to identify common disorders of each sexual domain • Be able to educate patients on their disorder/dysfunction • Be able to initiate 1st line therapies for common MSD diagnoses • Be familiar with erectile dysfunction as a cardiac marker • Be familiar with anatomical diseases of the penis • Be familiar with low testosterone diagnosis, risks and therapy 2 1 4/1/2019 Domains of sexual function • Desire • Orgasm • Ejaculation • Erectile function • Anatomy Image source: Google Images 3 Orgasmic dysfunction • Delayed orgasm • Painful orgasm • Hypo‐orgasmia • Anorgasmia • Persistent Genital Arousal Disorder 4 2 4/1/2019 Ejaculatory Dysfunction • Premature ejaculation • Delayed Ejaculation • Painful Ejaculation • Retrograde Ejaculation • Anejaculation Image source: Google Images 5 Erectile Dysfunction • Arteriogenic • Anatomic • Neurogenic • Endocrine • Psychologic Image source: testshock.com 6 3 4/1/2019 Anatomic • Peyronie’s Disease • Congenital Penile curvature • Penile fractures • Iatrogenic/self‐inflicted 7 Desire • TDS/ADAM/Hypogonadism • Psychological • Situational • Iatrogenic (medication/treatment related) • Metabolic disease (Cardiac, Metabolic syndrome, diabetes, thyroid disease, etc) Image source: Google Images 8 4 4/1/2019 Erectile dysfunction • Lessons to learn: • ED is not luxury diagnosis • Asking about it is not only relevant but crucial to your practice • Every erectile problem is ultimately fixable. • “I’ve yet to meet a penis I can’t make erect.” Created by: Dr. -
Surface-Supplied Diving Contents
Surface-supplied diving Contents Market 3 Surface-supplied diving IHC Hytech - Surface-supplied diving 4 Reliable partner for efficient surface-supplied diving solutions Products 4 6 Decompression chambers 10 Containerised systems 13 Handling systems 14 Heaters and scrubbers 15 Control panels 16 Communication and lighting 17 Analysers 18 High-quality components 20 Personal gear 26 IHC Life-cycle support 13 14 21 2 IHC Hytech Market Surface-supplied diving Wet bell handling system Safety and regulations The commercial diving discipline is subject to huge IHC Hytech understands that its customers don’t want to constraints and risks, caused by many different factors, spend too much time on paperwork. Its equipment and such as poor visibility and illumination, confined spaces, systemse ar provided with the right certificates ex works. This sea states, temperature differences, currents, underwater means that a faster deployment of diving systems is possible, noise, decompression sickness and marine life, for example. which therefore reduces costs for customers. Therefore it is governed by an abundance of safety rules and regulations from governmental institutions, business Internationalisation associations and classification societies. Technical and Development in deep and ultra-deep water is booming, operational guidelines are founded on the basis of the most notably in Brazil, West Africa and South East Asia. The approved code of practices as developed for work in the UK decommissioning market is also developing in the north west and Norwegian sector of the North Sea and Atlantic. They give of Europe and the Gulf of Mexico, requiring new solutions. Next strict directions on the design and usage of diving equipment door, the North Sea has among the worst encountered diving for offshore. -
REEF ENCOUNTER the News Journal of the International Society for Reef Studies ISRS Information
Volume 31, No. 1 April 2016 Number 43 RREEEEFF EENNCCOOUUNNTTEERR ICRS 13, Honolulu, Hawaii - Society Awards & Honors COP21 - Global Coral Bleaching – Modelling – 3D Printing Deep Reef Surveys – Coral Settlement Devices – Sargassum Lophelia Sediment Removal- Caribbean Reefs at Risk The News Journal of the International Society for Reef Studies ISSN 0225-27987 REEF ENCOUNTER The News Journal of the International Society for Reef Studies ISRS Information REEF ENCOUNTER Reef Encounter is the Newsletter and Magazine Style Journal of the International Society for Reef Studies. It was first published in 1983. Following a short break in production it was re-launched in electronic (pdf) form. Contributions are welcome, especially from members. Please submit items directly to the relevant editor (see the back cover for author’s instructions). Coordinating Editor Rupert Ormond (email: [email protected]) Deputy Editor Caroline Rogers (email: [email protected]) Editor Reef Perspectives (Scientific Opinions) Rupert Ormond (email: [email protected]) Editor Reef Currents (General Articles) Caroline Rogers (email: [email protected]) Editors Reef Edge (Scientific Letters) Dennis Hubbard (email: [email protected]) Alastair Harborne (email: [email protected]) Edwin Hernandez-Delgado (email: [email protected]) Nicolas Pascal (email: [email protected]) Editor News & Announcements Sue Wells (email: [email protected]) Editor Book & Product Reviews Walt Jaap (email: [email protected]) INTERNATIONAL SOCIETY FOR REEF STUDIES The International Society for Reef Studies was founded in 1980 at a meeting in Cambridge, UK. Its aim under the constitution is to promote, for the benefit of the public, the production and dissemination of scientific knowledge and understanding concerning coral reefs, both living and fossil.