Eco-Evolutionary Dynamics of Sexual Dimorphism

Total Page:16

File Type:pdf, Size:1020Kb

Eco-Evolutionary Dynamics of Sexual Dimorphism TREE 2534 No. of Pages 4 Forum Eco-Evolutionary sexual dimorphism (i.e., the trait differences Studies that correlate variation in ecologi- between females and males; arrow 2 in cal conditions to population or species Dynamics of Sexual Figure 1B). Sexual dimorphism is ubiquitous variation in dimorphism are informative Dimorphism in nature and encompasses a varietyoftraits but cannot distinguish ecological causes that may impact communityandecosystem from effects of dimorphism (e.g., [7]). 1,2, ,@ David C. Fryxell , * dynamics. Given the recent interest in Thus, experimental manipulations are 2,@ Doriane E. Weiler, understanding community and ecosystem needed to test for community and eco- 3,@ effects of intraspecific trait variation in gen- system effects of sexual dimorphism. Michael T. Kinnison, and 2,@ eral [4], the lack of empirical research on the Such direct tests have only recently Eric P. Palkovacs ecological consequences of sexual dimor- emerged (arrow 3, Figure 1B) and have phism is surprising (arrow 3, Figure 1B). been performed at two levels of biological Sexual dimorphism is widespread, organization: the individual level and the but we have a limited understand- Evolved Sexual Dimorphism in population level. ing of its significance for commu- Ecological Roles nities and ecosystems. Several There has long been evidence of ecologi- The Extended Phenotype of new experiments demonstrate that cal dimorphism (i.e., sexual dimorphism in Dimorphism sexual dimorphism can have far- ecological roles). For example, the sexes Sex differences at the individual level can reaching ecological effects. These commonly differ in diets in the field. These have community and ecosystem conse- results suggest that sexual dimor- effects may be pronounced in cases of quences when communities assemble or ‘ phism and sexual selection are sexual size dimorphism, in which the ecosystems exist as extended pheno- ’ potent, but largely overlooked larger sex can feed on larger prey. In types of individual hosts (i.e., foundation species without strong size dimorphism, species). For example, Nell and col- components of eco-evolutionary dynamics. ecological dimorphism may still be strong leagues [8] demonstrated that female due to dimorphism in functional traits. For genotypes of the mulefat shrub (Baccha- example, the sexes of the recently extinct ris salicifolia) had more flowers and grew Eco-evolutionary dynamics describe huia (Heteralocha acutirostris), a New more quickly than did male genotypes reciprocal effects between evolution and Zealand bird species that exhibited one cultivated in the same garden population, community, and ecosystem of the most extreme cases of sexual (Figure 2C). This trait dimorphism led to ecology. These dynamics can be broadly dimorphism in beak shape known, must dimorphism in hosted arthropod commu- important when natural selection causes have fed on significantly different resour- nity composition; the more flower-laden rapid trait changes to occur in a population, ces (Figure 2A) [5]. Another extreme eco- females had higher predator densities, because the trait changes can have com- logical dimorphism is found in adult presumably because of increased visita- munity- and ecosystem-wide consequen- mosquitoes: females feed on animal tion by nectar-feeding insect prey. Simi- ces [1] (Figure 1A). There may also be blood, while males feed on plant nectar larly, Tsuji and Fukami [9] studied the ecological consequences of evolutionary (e.g., Ochlerotatus sp., Figure 2B). microbe communities assembling on responses to sexual selection. This male versus female flowers in the dioe- hypothesis is primarily supported by theory Ecological dimorphism could be significant cious shrub Eurya emarginata (Figure 2D). and experiments demonstrating that sex- even when sexual dimorphism is relatively Female flowers contained less nectar and ual selection can affect population ecology inconspicuous. Forexample, thesexes may had significantly lower bacterial and fun- [2] and by work showing that sexual selec- show little morphological dimorphism, but gal concentrations compared with male tion can affect functional traits (i.e., those ecological dimorphism could arise from dif- flowers, apparently a result of differential hypothesized to have community or eco- ferential habitat use [6]. More generally, it visitation by insects. Based on this and system effects) [3]. However, the role of may be that most sexual organisms display related work, it may be that microbiomes sexual selection in communities and eco- some degree of ecological dimorphism due are commonly forms of ‘extended sexual systems remains largely untested. to divergent nutritional requirements dimorphism’ in plants and animals. between the sexes, a product of differential Selection has community and ecosystem reproductive investment. Even weak dimor- Studyingsexualdimorphismintheextended consequences through its effects on traits phism could be important for communities phenotypes of foundation species provides (Figure 1). Sexual selection can shape the and ecosystems in abundant or otherwise a clear-cut relationship between sexual trait distribution of a population by affecting ecologically important populations. dimorphism and community and Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 1 TREE 2534 No. of Pages 4 (A) (B) Natura l Natural Sexual sele con selecon selecon Evoluon 1 2 Feedback Popu laon Nondimorphic Sexua l fun conal trait 5 4 traits dimorph ism distrib uon E.g., species interacons 3 Community and Commun ity and ecosystem ecosyst em ecology ecolo gy Figure 1. The Conceptual Model. (A) The field of ‘eco-evolutionary dynamics’ has classically focused on the community and ecosystem effects of evolution by natural selection (blue arrows) and has not focused on sexually dimorphic traits. The field has further aimed to parse feedbacks between evolution and ecology when they act on similar timescales. (B) Recently, researchers have called for the explicit incorporation of sexual selection into this framework [2,3], which we expand in our conceptual model to include two separate aspects of the trait distribution of a population: sexually dimorphic traits and nondimorphic traits. While both natural selection (1) and sexual selection (2) affect sexual dimorphism (together, an effect referred to as ‘sex-specific selection’), to understand the link between sexual selection and communities and ecosystems, we must understand the effect of sexual dimorphism on communities and ecosystems (3). Given that communities and ecosystems shape sexual selection (4) and natural selection (5), future work could aim to parse eco-evolutionary feedbacks associated with sexual dimorphism. ecosystem ecology. However, there is often seeks to compare differences in effects of ecological effects of mosquitofish are interest in communities and ecosystems populations with trait distributions that are largely shaped by the sex ratio of popula- assembling at larger spatial scales than more female or male biased. tions, which vary widely in nature. those associated with individual hosts. Moreover, from the eco-evolutionary Fryxell and colleagues [10] manipulated In the other sex ratio experiment, Start dynamics perspective, the overarching goal population sex ratios of sexually dimorphic and De Lisle [11] manipulated sex ratios is to test the ecological effects of evolution- mosquitofish (Gambusia affinis) in pond of predaceous newts (Notophthalmus vir- ary change, which occurs in populations. mesocosms(Figure2E).Incontrasttomale idescens) in pond mesocosms Thus, the unifying level of analysis for under- mosquitofish, females exhibit continuous (Figure 2F). While these newts do not standing the effects of sexual dimorphism growth and have higher feeding and excre- show strong differences in feeding traits on communities and ecosystems, and tion rates. In pond mesocosms, female- per se, the sexes differ substantially in incorporating those effects into an eco-evo- biased populations induced stronger tro- habitat use. Results showed that lutionary perspective, is at the population phic cascades, causing changes even to female-biased populations spent more level. ecosystem properties such as water tem- time in the benthic zone and grazed down perature and pH. When comparing the benthic prey relative to pelagic prey, thus Populations Link Dimorphism Evo effect size of sex ratio (female-biased vs. inducing a community shift towards the to Eco male-biased) to the effect size of mosquito- dominance of pelagic prey. These results To date, effects of sexual dimorphism fish presence versus absence, sex ratio highlight that, even in cases of inconspic- have been studied experimentally at the effects were up to approximately half as uous morphological dimorphism, ecologi- population level through the manipulation strong as the effects of mosquitofish pres- cal effects of sexual dimorphism can still of population sex ratios. This approach ence itself. Thus, the strong and diverse be significant. 2 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy TREE 2534 No. of Pages 4 (A) (B) (C) (D) (E) (F) Figure 2. Taxa Described in the Main Text. Some of these taxa have hypothesized community and ecosystem effects of sexual dimorphism, (A) huia (Heteralocha acutirostris) and (B) mosquitoes (e.g., Ochlerotatus sp., pictured), whereas others from recent experiments show significant effects of sexual dimorphism, (C) mulefat (Baccharis salicifolia), a dioecious shrub from the American southwest; (D) a dioecious shrub
Recommended publications
  • Highlights of the Museum of Zoology Highlights on the Blue Route
    Highlights of the Museum of Zoology Highlights on the Blue Route Ray-finned Fishes 1 The ray-finned fishes are the most diverse group of backboned animals alive today. From the air-breathing Polypterus with its bony scales to the inflated porcupine fish covered in spines; fish that hear by picking up sounds with the swim bladder and transferring them to the ear along a series of bones to the electrosense of mormyrids; the long fins of flying fish helping them to glide above the ocean surface to the amazing camouflage of the leafy seadragon… the range of adaptations seen in these animals is extraordinary. The origin of limbs 2 The work of Prof Jenny Clack (1947-2020) and her team here at the Museum has revolutionised our understanding of the origin of limbs in vertebrates. Her work on the Devonian tetrapods Acanthostega and Ichthyostega showed that they had eight fingers and seven toes respectively on their paddle-like limbs. These animals also had functional gills and other features that suggest that they were aquatic. More recent work on early Carboniferous sites is shedding light on early vertebrate life on land. LeatherbackTurtle, Dermochelys coriacea 3 Leatherbacks are the largest living turtles. They have a wide geographical range, but their numbers are falling. Eggs are laid on tropical beaches, and hatchlings must fend for themselves against many perils. Only around one in a thousand leatherback hatchlings reach adulthood. With such a low survival rate, the harvesting of turtle eggs has had a devastating impact on leatherback populations. Nile Crocodile, Crocodylus niloticus 4 This skeleton was collected by Dr Hugh Cott (1900- 1987).
    [Show full text]
  • Importance of Dewlap Display in Male Mating Success in Free- Ranging Brown Anoles (Anolis Sagrei) Author(S): Richard R
    Importance of Dewlap Display in Male Mating Success in Free- Ranging Brown Anoles (Anolis sagrei) Author(s): Richard R. Tokarz, Ann V. Paterson, Stephen McMann Source: Journal of Herpetology, 39(1):174-177. 2005. Published By: The Society for the Study of Amphibians and Reptiles DOI: http://dx.doi.org/10.1670/0022-1511(2005)039[0174:IODDIM]2.0.CO;2 URL: http://www.bioone.org/doi/ full/10.1670/0022-1511%282005%29039%5B0174%3AIODDIM%5D2.0.CO %3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. SHORTER COMMUNICATIONS Journal of Herpetology, Vol. 39, No. 1, pp. 174–177, 2005 Copyright 2005 Society for the Study of Amphibians and Reptiles Importance of Dewlap Display in Male Mating Success in Free-Ranging Brown Anoles (Anolis sagrei) 1,2 3,4 3,5 RICHARD R.
    [Show full text]
  • Mating Systems and Parental Investment Mating Systems
    Mating systems and parental investment Mating systems Pattern of matings in a population green anole Antithesis = promiscuity Polygyny Polygyny Scramble: no attempts to defend females, resources horseshoe crabs Northern barred frog Female defense: must be clustered elk Montezuma’s oropendola Dulichiella spp. Polygyny Resource distribution Resource defense: males defend food, nest sites Distribution of females affects Red-winged blackbird Lamprologus cichlid males’ ability to guard them Males cannot monopolize wide-ranging females dunnock 1 Polygyny threshold Polygyny threshold Male with no other females (monogamy) Male with other female(s) polygyny threshold ??? Quality of male’s territory Polygyny threshold Male dominance polygyny When females and sage grouse Polygyny threshold = point at which it’s resources too dispersed, better to be polygynous on a good territory males compete Leks = communal display arenas hammerhead bat Uganda kob Leks Leks High variance in male mating success – 10-20% males achieve >50% copulations – one male got 75% copulations Classical lek: males display in sight of each other Exploded lek: males rely wire-tailed manakin on vocal communication, e.g. kakapo 2 Leks Leks • Hotshots • Hotshots – Females attracted to lek by dominant male – Females attracted to lek by dominant male • Hotspots – Leks located in high-use areas Leks Leks • Hotshots Position of most successful – Females attracted to lek by dominant male male territory shifts (hot shot?) • Hotspots black grouse – Leks located in high-use areas • Female
    [Show full text]
  • The Influence of Body Size on Sexual Dimorphism
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2017 The Influence of Body Size on Sexual Dimorphism Haley Elizabeth Horbaly University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Biological and Physical Anthropology Commons Recommended Citation Horbaly, Haley Elizabeth, "The Influence of Body Size on Sexual Dimorphism. " Master's Thesis, University of Tennessee, 2017. https://trace.tennessee.edu/utk_gradthes/4970 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Haley Elizabeth Horbaly entitled "The Influence of Body Size on Sexual Dimorphism." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Arts, with a major in Anthropology. Dawnie W. Steadman, Major Professor We have read this thesis and recommend its acceptance: Benjamin M. Auerbach, Michael W. Kenyhercz Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) The Influence of Body Size on Sexual Dimorphism A Thesis Presented for the Master of Arts Degree The University of Tennessee, Knoxville Haley Elizabeth Horbaly December 2017 Copyright © 2017 by Haley Elizabeth Horbaly All rights reserved.
    [Show full text]
  • Zoology Lab Manual
    General Zoology Lab Supplement Stephen W. Ziser Department of Biology Pinnacle Campus To Accompany the Zoology Lab Manual: Smith, D. G. & M. P. Schenk Exploring Zoology: A Laboratory Guide. Morton Publishing Co. for BIOL 1413 General Zoology 2017.5 Biology 1413 Introductory Zoology – Supplement to Lab Manual; Ziser 2015.12 1 General Zoology Laboratory Exercises 1. Orientation, Lab Safety, Animal Collection . 3 2. Lab Skills & Microscopy . 14 3. Animal Cells & Tissues . 15 4. Animal Organs & Organ Systems . 17 5. Animal Reproduction . 25 6. Animal Development . 27 7. Some Animal-Like Protists . 31 8. The Animal Kingdom . 33 9. Phylum Porifera (Sponges) . 47 10. Phyla Cnidaria (Jellyfish & Corals) & Ctenophora . 49 11. Phylum Platyhelminthes (Flatworms) . 52 12. Phylum Nematoda (Roundworms) . 56 13. Phyla Rotifera . 59 14. Acanthocephala, Gastrotricha & Nematomorpha . 60 15. Phylum Mollusca (Molluscs) . 67 16. Phyla Brachiopoda & Ectoprocta . 73 17. Phylum Annelida (Segmented Worms) . 74 18. Phyla Sipuncula . 78 19. Phylum Arthropoda (I): Trilobita, Myriopoda . 79 20. Phylum Arthropoda (II): Chelicerata . 81 21. Phylum Arthropods (III): Crustacea . 86 22. Phylum Arthropods (IV): Hexapoda . 90 23. Phyla Onycophora & Tardigrada . 97 24. Phylum Echinodermata (Echinoderms) . .104 25. Phyla Chaetognatha & Hemichordata . 108 26. Phylum Chordata (I): Lower Chordates & Agnatha . 109 27. Phylum Chordata (II): Chondrichthyes & Osteichthyes . 112 28. Phylum Chordata (III): Amphibia . 115 29. Phylum Chordata (IV): Reptilia . 118 30. Phylum Chordata (V): Aves . 121 31. Phylum Chordata (VI): Mammalia . 124 Lab Reports & Assignments Identifying Animal Phyla . 39 Identifying Common Freshwater Invertebrates . 42 Lab Report for Practical #1 . 43 Lab Report for Practical #2 . 62 Identification of Insect Orders . 96 Lab Report for Practical #3 .
    [Show full text]
  • Sexual Selection and Mate Choice
    Review TRENDS in Ecology and Evolution Vol.21 No.6 June 2006 Sexual selection and mate choice Malte Andersson1 and Leigh W. Simmons2 1Department of Zoology, University of Gothenburg, SE 405 30 Gothenburg, Sweden 2Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley 6009, WA, Australia The past two decades have seen extensive growth of characterization of genes and their effects, from DNA sexual selection research. Theoretical and empirical sequences via protein to phenotypic expression at the level work has clarified many components of pre- and of the individual, with possible consequences at the postcopulatory sexual selection, such as aggressive population level and above. competition, mate choice, sperm utilization and sexual conflict. Genetic mechanisms of mate choice evolution Evolution of mate choice have been less amenable to empirical testing, but Although mate choice occurs in males and females [4], for molecular genetic analyses can now be used for incisive convenience we refer here to female choice of male traits. experimentation. Here, we highlight some of the As experimental evidence accumulated, mate choice currently debated areas in pre- and postcopulatory became widely recognized, but the genetic mechanisms sexual selection. We identify where new techniques underlying its evolution remain the subject of debate can help estimate the relative roles of the various (Box 1). Showing how mating preferences evolve geneti- selection mechanisms that might work together in the cally is harder than showing that they exist, and the evolution of mating preferences and attractive traits, problem is aggravated by the possibility that several and in sperm–egg interactions.
    [Show full text]
  • Sexual Behaviour of Rams:Male Orientation and Its Endocrine Correlates
    JournalofReproductionandFertilitySupplement54, 259-269 Sexual behaviour of rams:male orientation and its endocrine correlates J. A. Resko1, A. Perkins2, C. E. Roselli1, J. N. Stellflug3 and F. K. Stormshak4 'Department of Physiology and Pharmacology, School of Medicine, Oregon Health Sciences University, Portland, OR 97201-3098, USA; 'Department of Psychology, Carroll College,Helena, MAO 59625, USA; 'US Sheep Experimentation Station, Dubois, ID 83425, USA; and 4Department of Animal Sciences, Oregon State University, Corvallis, OR 97331-6702, USA The components of heterosexual behaviour in rams are reviewed as a basis for understanding partner preference behaviour. A small percentage of rams will not mate with oestrous females and if given a choice will display courtship behaviour towards another ram in preference to a female. Some of the endocrine profiles of these male- oriented rams differ from those of heterosexual controls. These differences include reduced serum concentrations of testosterone, oestradiol and oestrone, reduced capacity to produce testosterone in vitro, and reduced capacity to aromatize androgens in the preoptic-anterior hypothalamus of the brain. Our observation that aromatase activity is significantly lower in the preoptic-anterior hypothalamic area of male-oriented rams than in female-oriented rams may indicate an important neurochemical link to sexual behaviour that should be investigated. The defect in steroid hormone production by the adult testes of the male-oriented ram may represent a defect that can be traced
    [Show full text]
  • Dodos and Birds of Paradise
    ISLANDS AND THEIR LESSONS IN BIODIVERSITYi -Jack R. Holt ISLAND OF THE DODO The extinction of the dodo is representative of modernity in several ways, not the least of which is that the event occurred on a small island. -David Quammen (1996) When I was in London five years ago I had one day to stay in the city before our plane left for New York. With all of London to choose from, what does one do in one day? Well, for me there was no question. I had to go to the British Museum of Natural History. The main attraction was its collection of dinosaurs. I walked throughout the museum, and then paused at a display of animals that had become extinct during historic times. There was a stuffed Passenger Pigeon, birds once so numerous in North America that their flocks blackened the sky as they flew over. Nearby, there was a Dodo, another pigeon. This animal was large. In fact everything about this bird was large except its wings. Its skeleton indicated that the Dodo was flightless. Not only were its wings short, but its breast bone was too small to support flight muscles. Clearly, it could not fly, and its reconstruction made it look even more comical with a bald face and a body covered with fluffy down-like feathers (see Figure 1). Portuguese sailors discovered the Dodo's Island in 1510. The island, a small point of land in the Indian Ocean east of Madagascar, became known as Mauritius. The earliest record of the Dodo was in 1598.
    [Show full text]
  • Polyrhythmic Foraging and Competitive Coexistence Akihiko Mougi
    www.nature.com/scientificreports OPEN Polyrhythmic foraging and competitive coexistence Akihiko Mougi The current ecological understanding still does not fully explain how biodiversity is maintained. One strategy to address this issue is to contrast theoretical prediction with real competitive communities where diverse species share limited resources. I present, in this study, a new competitive coexistence theory-diversity of biological rhythms. I show that diversity in activity cycles plays a key role in coexistence of competing species, using a two predator-one prey system with diel, monthly, and annual cycles for predator foraging. Competitive exclusion always occurs without activity cycles. Activity cycles do, however, allow for coexistence. Furthermore, each activity cycle plays a diferent role in coexistence, and coupling of activity cycles can synergistically broaden the coexistence region. Thus, with all activity cycles, the coexistence region is maximal. The present results suggest that polyrhythmic changes in biological activity in response to the earth’s rotation and revolution are key to competitive coexistence. Also, temporal niche shifts caused by environmental changes can easily eliminate competitive coexistence. Diverse species that coexist in an ecological community are supported by fewer shared limited resources than expected, contrary to theory1. A simple mathematical theory predicts that, at equilibrium, the number of sym- patric species competing for a shared set of limited resources is less than the quantity of resources or prey species2–4. Tis apparent paradox leads ecologists to examine mechanisms that allow competitors to coexist and has produced diverse coexistence theory5–7. Non-equilibrium dynamics is considered as a major driver to prevent interacting species from going into equilibrium and violate the competitive exclusion principle 8,9.
    [Show full text]
  • Predation and the Management of Prairie Grouse
    rgt''::gi°:k..//iS, EiS>3g Uv¢ -m USs,,uI_E 0000 30 i9, . t9 i.<,es,9S<,-0se!<:mNs § | $,S3+: 29 i^. i XL_3r.X.5 i >Sm&23xz.e\3§* 7)iLi;i"v" 3 333.9 _ >i;.i;.is9u9\:S 9.93S9i><.,.::::;;.3i9.00.tl329s9,Z, <'i'-: 3* >gt 0 i =v i : uooBS; v.E.: :::.-.0)f L\j;t;f . gk ::i:::; :0 g 0 - n_ +s_ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ 24 SPECIALCOVERAGE ;= E :2:i9'1J '3 i1 6w'S : 5R igis'3.333. d6Ci:9r9;,,e ",X,, :2- ,,,.,,, ,,,,D,: it 3 _ x s § tg > 3b.9; f :; 3 &.:i: :,':@,,: :, -,:: S EI II 1Ew °00; r r _i s 1ts\J11 1s t11 _ S: 9: m X _ 20 ,Q,FB ___Ff N_ .3_r: :. j,:. .,:: _ISIP.9IkP V :>> | Ttanagementof prairie . grouse _IIS. .: 9:::; E _3|6by ,:. ::: MichaelA. Schroeder and .:. .^. :%9: M:g9tW;x3&90Wt93FiXti-:::: LET:: lvlcllaruD* h 2 1x.r Davuacsn ,1 1 .9 : :9 .:13 ' :: . :<i:> 2 :$ . : 3:.v: . e°9'# ;;.3§2 ESe'E ,.,.,::. :::>':E ': .::ji :E:in: :: 1 .X.-72 , t0Ws:: :, x --: :piaper E ::: ii8.:.g ,:.E: examines the importanceof predationin the life cycles of sage grouse (Centrocercus urophasianus), sharp-tailedgrouse (Tympanuchus phasianellus), greaterprairie-chicken (17 cupido), and lesser prairie-chicken(l: pallidicinctus). Most individualprairie grouse eventuallysuccumb to predation,with substantial effects on nest success, juvenilesurvival, and adult survival. Predatorcontrol has occasionallybeen used as a managementtool with the belief that reducingpreda- tor numberscan enhance viabilityof game populationsin generaland prairie grouse in particular.Although some experimentalresearch has shown that direct reduction of predatornumbers can increase grouse recruitment,most currentman- agement plans recommendindirect management of the grouse-predatorrelation- ship by manipulatinghabitats.
    [Show full text]
  • Notes on the Behavior and Ecology of the Red-Cotingas (Cotingidae: Phoenicircus)
    THEWILSONBULLETIN A QUARTERLY MAGAZINE OF ORNITHOLOGY Published by the Wilson Ornithological Society VOL. 103, No. 4 DECEMBER 199 1 PAGES 539-768 Wilson Bull., 103(4), 199 1, pp. 539-55 1 NOTES ON THE BEHAVIOR AND ECOLOGY OF THE RED-COTINGAS (COTINGIDAE: PHOENICIRCUS) PEPPERW. TRAIL ’ AND PAUL DONAHUE* ABSTRACT.- The two speciesof red-cotingas,Phoenicircus, are little-known birds with a patchy distribution in the rain forestsof northern and central South America. We observed the foraging, displays, and vocalizations of the Guianan Red-Cotinga (P. curnifex) in Su- riname and of the Black-neckedRed-Cotinga (P. nigricollis) in northeasternPeru. Males of both speciesformed small, low-density leks. Almost all display occurred in the first hour after dawn, after which the birds dispersed and were rarely observed. Direct interactions between displaying males were infrequent, and male-male spacingat the lek appeared to be mediated through calling. Display consisted of repeated calling and horizontal flights between perches 5-15 m up in the understory. Display flights are often accompanied by mechanicalwhistling sounds.Although we observedfemale visits to the lek, no copulations or obvious pre-copulatory behaviors were seen. In courtship and vocalizations, as in mor- phology, red-cotingasexhibit charactersof both manakins and cotingas.Received 19 Feb. 1991, accepted 28 May 1991. The red-cotingas, genus Phoenicircus,are two closely related species inhabiting the lowland rain forests of northern and central South America. In both species, the male has a brilliant scarlet crown, breast, rump, and tail. The sides of the head, throat, back, and wings are black in male Black-necked Red-Cotingas (P.
    [Show full text]
  • Display Behavior, Foraging Ecology, and Systematic3 of the Golden-Winged Manakin (Masius Chrysopterus)
    THE WILSON BULLETIN A QUARTERLY MAGAZINE OF ORNITHOLOGY Publishedby the WilsonOrnithological Society VOL. 99, No. 4 DECEMBER 19 8 7 PAGES 521-784 Wilson Bull., 99(4), 1987, pp. 521-539 DISPLAY BEHAVIOR, FORAGING ECOLOGY, AND SYSTEMATIC3 OF THE GOLDEN-WINGED MANAKIN (MASIUS CHRYSOPTERUS) RICHARD 0. PRUM’ AND ANN E. JOHNSON~ ABSTRACT.-The displays and foraging behavior of the Golden-winged Manakin (Masius chrysopterus:Pipridae) were observed at two sites in western Ecuador from May to July 1985. Musius foraged both solitarily and with multispecies foraging flocks, and fed on fmits of 10 plant species from four botanical families. Male Masius occupied 30-40-m diameter display territories arranged in dispersed leks. Males defended territories through frequent advertisement calling, and performed displays on fallen logs and exposed buttress roots within each territory. Courtship display elements included a complex log-approach display, a chin-down display, and a side-to-side bowing display. Pairs ofmales performed coordinated log-approach and side-to-side bowing displays but the function of these coordinated be- haviors was not determined. A phylogenetic analysis of display behaviors strongly indicates that Mzsius is the sister-group to the genus Corapipo and that Zlicura may be the sister- group to these two genera. These conclusions are partially corroborated by morphological and biochemical evidence. Received5 Aug. 1986, accepted27 Feb. 1987. RES~EN. - Los comportamientos de alimentacibn y cortejo de1 saltarin ali-dorado (Mu- siuschrysopterus: Pipridae) se observaron en dos lugares en Ecuador occidental en 10smeses de mayo a julio de 1985. Individuos de Musius buscaron comida solitariamente y en grupos multi-especificos, y se alimentaron en 12 especies de plantas de 4 familias.
    [Show full text]