Post-Translational Lysine Ac (Et) Ylation in Health, Ageing and Disease

Total Page:16

File Type:pdf, Size:1020Kb

Post-Translational Lysine Ac (Et) Ylation in Health, Ageing and Disease Biol. Chem. 2021; ▪▪▪(▪▪▪): 1–44 Review Anna-Theresa Blasl, Sabrina Schulze, Chuan Qin, Leonie G. Graf, Robert Vogt and Michael Lammers* Post-translational lysine ac(et)ylation in health, ageing and disease https://doi.org/10.1515/hsz-2021-0139 protein function, how it is regulated enzymatically and non- Received February 8, 2021; accepted June 18, 2021; enzymatically, how a dysfunction in this post-translational published online August 23, 2021 machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct Abstract: The acetylation/acylation (ac(et)ylation) of lysine sensors and mediators of the cellular metabolic state. side chains is a dynamic post-translational modification Finally, this review highlights technological advances to (PTM) regulating fundamental cellular processes with im- study lysine ac(et)ylation. plications on the organisms’ ageing process: metabolism, transcription, translation, cell proliferation, regulation of Keywords: ageing; KDAC; longevity; lysine acetylation; the cytoskeleton and DNA damage repair. First identified to lysine acetyltransferases; lysine deacetylases; sirtuins; occur on histones, later studies revealed the presence of synthetic biology. lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent Introduction sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetyla- The human genome encodes approximately 20,000–25,000 tion has a direct role in the ageing process. Later studies proteins (International Human Genome Sequencing fi fi identi ed sirtuins as mediators for bene cial effects of 2004). The diversity of this proteome can be substantially ’ caloric/dietary restriction on the organisms health- or life- enlarged by processes such as alternative splicing and span. However, the molecular mechanisms underlying post-translational modifications (PTMs). PTMs range from these effects are only incompletely understood. Progress in attachment of chemical groups such as observed in mass-spectrometry, structural biology, synthetic and semi- phosphorylation of serine, threonine or tyrosine side synthetic biology deepened our understanding of this PTM. chains dynamically regulated by kinases and phospha- This review summarizes recent developments in the tases, to attachment of small proteins such as ubiquitin fi research eld. It shows how lysine ac(et)ylation regulates for regulation of protein turnover, subcellular localization and signal transduction. Moreover, proteolytic processing of proteins is a well-known PTM as exemplified by the Anna-Theresa Blasl and Sabrina Schulze are contributed equally to activation of coagulation factors or the activation of this article. digestive enzymes from inactive zymogens. Proteins can *Corresponding author: Michael Lammers, Department Synthetic and be lipidated to regulate membrane binding/recruitment Structural Biochemistry, Institute for Biochemistry, University of by forming irreversible thioethers between cysteine Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany, side chains and prenyl-groups or by forming reversible E-mail: [email protected]. https://orcid.org/ thioesters by attachment of fatty acids (palmitoylation, 0000-0003-4168-4640 Anna-Theresa Blasl, Sabrina Schulze, Chuan Qin, Leonie G. Graf myristoylation) to cysteine side chains (Chen et al. 2018). and Robert Vogt, Department Synthetic and Structural Biochemistry, Apart from reversible lipidation on cysteine side chains, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff- lysine side chains can undergo reversible lipidation/ Str. 4, D-17487 Greifswald, Germany, E-mail: anna- acylation. [email protected] (A.-T. Blasl), sabrina.schulze@uni- Lysine side chains can be modified by various post- greifswald.de (S. Schulze), [email protected] (C. Qin), translational modifications. Lysines can be modified by [email protected] (L.G. Graf), robert.vogt@uni- greifswald.de (R. Vogt). https://orcid.org/0000-0002-0122-5688 ubiquitination (Ub) or by attachment of a ubiquitin-like (S. Schulze) (Ubl) protein such as SUMO1-5, ISG15 or Nedd8 by Open Access. © 2021 Anna-Theresa Blasl et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License. 2 A.-T. Blasl et al.: Lysine ac(et)ylation in health, ageing and disease formation of an isopeptide bond between the ε-amino and YEATS domains (Figure 1(A)). We will discuss how group of the lysine side chain and the α-carboxyl group of lysine acetylation is involved in disease development and the terminal diGly motif of Ub/Ubl (Celen and Sahin 2020; will put an emphasis on recent technological advances to Swatek and Komander 2016). The ubiquitin can be removed study lysine ac(et)ylation. by deubiquitinases (DUBs). Moreover, lysine side chains can be modified by mono-/di-/tri-methylation, which alters the side chain sterically and enables the binding of Enzymatic regulation of lysine proteins containing specific methyl-lysine reader domains. ac(et)ylation by classical KDACs, Tudor domains enable binding to di- and trimethylated lysines, while MBT domains bind to mono-/di-methylated sirtuins and KATs lysines and PHD domains bind to various methylation 2+ states (mono-/di-/tri-methyl-lysine) (Wang et al. 2020a,b). Classical Zn -dependent lysine PHD domains are zinc containing domains that often occur deacetylases as tandem PHD domains. Chromodomains, PWWP- and WD domains bind to methylated lysine residues. All of After the discovery of lysine acetylation on histones in these domains target various methylated lysines in his- 1963, enzymatic activity to remove acetyl-groups was tone tails and are involved in chromatin remodeling and - discovered in calf thymus in 1969 (Inoue and Fujimoto regulation of gene expression. Lysine side chains can be 1969; Phillips 1963). However, the isolation of the first modified by acetylation and various other acylations lysine deacetylase HDAC1 took until 1996 (Taunton et al. such as the charged succinylation, malonylation or gluta- 1996). Later studies showed the presence of two lysine rylation and aliphatic acylations such as formylation, deacetylase families, which are structurally and based on propionylation, butyrylation, myristoylation or palmitoy- their primary sequences unrelated: 1.) classical histone/ lation (Figure 1(A)–(C)). Recently, lysine 2-hydrox lysine decacetylases (HDACs/KDACs; Zn2+-dependent yisobutyrylation occurring on histones with high stoichi- catalytic mechanism) and sirtuin deacetylases (sirtuins; ometry inducing structural changes in the chromatin was SIRT: silent information regulator; NAD+-dependent shown to regulate glycolysis and being catalyzed by the catalytic mechanism) (Seto and Yoshida 2014; Yoshida KAT p300 (Figure 1(C)) (Dai et al. 2014; Huang et al. et al. 2017). As the deacetylases were first characterized as 2018a,b, 2020). In contrast to mono-/di-/tri-methylation, histone deacetylases, the name was abbreviated with the acetylation/acylation of lysine side chains results in HDAC. However, as recent data show that these enzymes neutralization of the positive charge occurring at the lysine have many substrates besides histones they are also called side chain at physiological pH. lysine deacetylases (KDACs) (Kumar et al. 2021; Peng and Lysine acetylation was identified together with Seto 2011; Sadoul et al. 2011). Today it is known that 11 methylation by Phillips in 1963 to occur on histones and in classical deacetylases are encoded in the human genome 1964 Allfrey reported that acetylation and methylation of (Figure 2(A)) classified into three classes: class I (with histones regulates RNA synthesis, suggesting that it has HDAC1/2/3/8 showing sequence similarity to yeast Rpd3), an impact on gene expression (Allfrey and Mirsky 1964; class II (subclass IIa with HDAC4/5/7/9 and subclass IIb Allfrey et al. 1964; Phillips 1963). Today it is known that not with HDAC6/10 showing sequence similarity to yeast Hda1) only histones are lysine-acetylated, but in fact the number and class IV (with HDAC11 showing sequence similarity to of lysine ac(et)ylation sites rivals that of phosphorylation class I and class II enzymes) (Figure 2(A)) (de Ruijter et al. sites and thousands of proteins are acetylated in all cellular 2003; Haberland et al. 2009). These enzymes of classes I, II compartments and it is present in all kingdoms of life and IV are structurally similar and use a catalytic Zn2+ ion (Choudhary and Mann 2020; Choudhary et al. 2009, 2014; to hydrolyze the amide bond to remove acetyl-groups from Hansen et al. 2019; Kouzarides 2000; Lundby et al. 2012; the ε-amino group of lysine side chains (Figure 2(B) and Weinert et al. 2011, 2015, 2017, 2018). (C)) (Lombardi et al. 2011). This review highlights the physiological role of lysine The catalytic mechanism involves the coordination acetylation. We discuss the regulation of lysine acetylation and polarization of a catalytic water molecule by the mechanistically with respect to cellular metabolic path- catalytic Zn2+-ion (Figure 2(C)). This Zn2+-ion together with ways. It summarizes how lysine acetylation is regulated in a Tyr residue (HDAC8: Y306), which is replaced by a his- cells by writers, the lysine acetyltransferases (KATs), tidine in class IIa KDACs, also interact with the carbonyl erasers, the lysine
Recommended publications
  • Supplementary Materials
    DEPs in osteosarcoma cells comparing to osteoblastic cells Biological Process Protein Percentage of Hits metabolic process (GO:0008152) 29.3 29.3% cellular process (GO:0009987) 20.2 20.2% localization (GO:0051179) 9.4 9.4% biological regulation (GO:0065007) 8 8.0% developmental process (GO:0032502) 7.8 7.8% response to stimulus (GO:0050896) 5.6 5.6% cellular component organization (GO:0071840) 5.6 5.6% multicellular organismal process (GO:0032501) 4.4 4.4% immune system process (GO:0002376) 4.2 4.2% biological adhesion (GO:0022610) 2.7 2.7% apoptotic process (GO:0006915) 1.6 1.6% reproduction (GO:0000003) 0.8 0.8% locomotion (GO:0040011) 0.4 0.4% cell killing (GO:0001906) 0.1 0.1% 100.1% Genes 2179Hits 3870 biological adhesion apoptotic process … reproduction (GO:0000003) , 0.8% (GO:0022610) , 2.7% locomotion (GO:0040011) ,… immune system process cell killing (GO:0001906) , 0.1% (GO:0002376) , 4.2% multicellular organismal process (GO:0032501) , metabolic process 4.4% (GO:0008152) , 29.3% cellular component organization (GO:0071840) , 5.6% response to stimulus (GO:0050896), 5.6% developmental process (GO:0032502) , 7.8% biological regulation (GO:0065007) , 8.0% cellular process (GO:0009987) , 20.2% localization (GO:0051179) , 9.
    [Show full text]
  • Anti-Rab11 Antibody (ARG41900)
    Product datasheet [email protected] ARG41900 Package: 100 μg anti-Rab11 antibody Store at: -20°C Summary Product Description Goat Polyclonal antibody recognizes Rab11 Tested Reactivity Hu, Ms, Rat, Dog, Mk Tested Application IHC-Fr, IHC-P, WB Host Goat Clonality Polyclonal Isotype IgG Target Name Rab11 Antigen Species Mouse Immunogen Purified recombinant peptides within aa. 110 to the C-terminus of Mouse Rab11a, Rab11b and Rab11c (Rab25). Conjugation Un-conjugated Alternate Names RAB11A: Rab-11; Ras-related protein Rab-11A; YL8 RAB11B: GTP-binding protein YPT3; H-YPT3; Ras-related protein Rab-11B RAB25: RAB11C; CATX-8; Ras-related protein Rab-25 Application Instructions Application table Application Dilution IHC-Fr 1:100 - 1:400 IHC-P 1:100 - 1:400 WB 1:250 - 1:2000 Application Note IHC-P: Antigen Retrieval: Heat mediation was recommended. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control Hepa cell lysate Calculated Mw 24 kDa Observed Size ~ 26 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS, 0.05% Sodium azide and 20% Glycerol. Preservative 0.05% Sodium azide www.arigobio.com 1/3 Stabilizer 20% Glycerol Concentration 3 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use.
    [Show full text]
  • SUMO-1 Regulates the Conformational Dynamics of Thymine-DNA
    Smet-Nocca et al. BMC Biochemistry 2011, 12:4 http://www.biomedcentral.com/1471-2091/12/4 RESEARCHARTICLE Open Access SUMO-1 regulates the conformational dynamics of Thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity Caroline Smet-Nocca1, Jean-Michel Wieruszeski2, Hélène Léger1,3, Sebastian Eilebrecht1,3, Arndt Benecke1,3* Abstract Background: The human thymine-DNA glycosylase (TDG) plays a dual role in base excision repair of G:U/T mismatches and in transcription. Regulation of TDG activity by SUMO-1 conjugation was shown to act on both functions. Furthermore, TDG can interact with SUMO-1 in a non-covalent manner. Results: Using NMR spectroscopy we have determined distinct conformational changes in TDG upon either covalent sumoylation on lysine 330 or intermolecular SUMO-1 binding through a unique SUMO-binding motif (SBM) localized in the C-terminal region of TDG. The non-covalent SUMO-1 binding induces a conformational change of the TDG amino-terminal regulatory domain (RD). Such conformational dynamics do not exist with covalent SUMO-1 attachment and could potentially play a broader role in the regulation of TDG functions for instance during transcription. Both covalent and non-covalent processes activate TDG G:U repair similarly. Surprisingly, despite a dissociation of the SBM/SUMO-1 complex in presence of a DNA substrate, SUMO-1 preserves its ability to stimulate TDG activity indicating that the non-covalent interactions are not directly involved in the regulation of TDG activity. SUMO-1 instead acts, as demonstrated here, indirectly by competing with the regulatory domain of TDG for DNA binding.
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Protein Prenylation Reactions As Tools for Site-Specific Protein Labeling and Identification of Prenylation Substrates
    Protein prenylation reactions as tools for site-specific protein labeling and identification of prenylation substrates Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) des Fachbereichs Chemie der Technischen Universität Dortmund Angefertigt am Max-Planck-Institut für molekulare Physiologie in Dortmund Vorgelegt von Dipl.-Chemikerin Thi Thanh Uyen Nguyen aus Jülich Dortmund, April 2009 Die vorliegende Arbeit wurde in der Zeit von Oktober 2005 bis April 2009 am Max-Planck- Institut für molekulare Physiologie in Dortmund unter der Anleitung von Prof. Dr. Roger S. Goody, Prof. Dr. Kirill Alexandrov und Prof. Dr. Herbert Waldmann durchgeführt. 1. Gutachter : Prof. Dr. R. S. Goody 2. Gutachter : Prof. Dr. H. Waldmann The results of this work were published in the following journals: “Exploiting the substrate tolerance of farnesyltransferase for site-selective protein derivatization” U.T.T. Nguyen, J. Cramer, J. Gomis, R. Reents, M. Gutierrez-Rodriguez, R.S. Goody, K. Alexandrov, H. Waldmann, Chembiochem 2007, 8 (4), 408-23. “Development of selective RabGGTase inhibitors and crystal structure of a RabGGTase- inhibitor complex” Z. Guo, Y.W. Wu, K.T. Tan, R.S. Bon, E. Guiu-Rozas, C. Delon, U.T.T. Nguyen, S. Wetzel,S. Arndt, R.S. Goody, W. Blankenfeldt, K. Alexandrov, H. Waldmann, Angew Chem Int Ed Engl 2008, 47 (20), 3747-50. “Analysis of the eukaryotic prenylome by isoprenoid affinity tagging” U.T.T. Nguyen, Z. Guo, C. Delon, Y.W. Wu, C. Deraeve, B. Franzel, R.S. Bon, W. Blankenfeldt, R.S. Goody, H. Waldmann, D. Wolters, K. Alexandrov, Nat Chem Biol 2009, 5 (4), 227-35.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • T-Cell Receptor (TCR) Signaling Promotes the Assembly of Ranbp2
    RESEARCH ARTICLE T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1- SUMO1/Ubc9 nuclear pore subcomplex via PKC--mediated phosphorylation of RanGAP1 Yujiao He1, Zhiguo Yang1†, Chen-si Zhao1†, Zhihui Xiao1†, Yu Gong1, Yun-Yi Li1, Yiqi Chen1, Yunting Du1, Dianying Feng1, Amnon Altman2, Yingqiu Li1* 1MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; 2Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, United States Abstract The nuclear pore complex (NPC) is the sole and selective gateway for nuclear transport, and its dysfunction has been associated with many diseases. The metazoan NPC subcomplex RanBP2, which consists of RanBP2 (Nup358), RanGAP1-SUMO1, and Ubc9, regulates the assembly and function of the NPC. The roles of immune signaling in regulation of NPC remain poorly understood. Here, we show that in human and murine T cells, following T-cell receptor (TCR) stimulation, protein kinase C-q (PKC-q) directly phosphorylates RanGAP1 to facilitate RanBP2 subcomplex assembly and nuclear import and, thus, the nuclear translocation of AP-1 transcription *For correspondence: factor. Mechanistically, TCR stimulation induces the translocation of activated PKC-q to the NPC, 504 506 [email protected] where it interacts with and phosphorylates RanGAP1 on Ser and Ser . RanGAP1 phosphorylation increases its binding affinity for Ubc9, thereby promoting sumoylation of RanGAP1 †These authors contributed and, finally, assembly of the RanBP2 subcomplex. Our findings reveal an unexpected role of PKC-q equally to this work as a direct regulator of nuclear import and uncover a phosphorylation-dependent sumoylation of Competing interests: The RanGAP1, delineating a novel link between TCR signaling and assembly of the RanBP2 NPC authors declare that no subcomplex.
    [Show full text]
  • A Chemical Proteomic Approach to Investigate Rab Prenylation in Living Systems
    A chemical proteomic approach to investigate Rab prenylation in living systems By Alexandra Fay Helen Berry A thesis submitted to Imperial College London in candidature for the degree of Doctor of Philosophy of Imperial College. Department of Chemistry Imperial College London Exhibition Road London SW7 2AZ August 2012 Declaration of Originality I, Alexandra Fay Helen Berry, hereby declare that this thesis, and all the work presented in it, is my own and that it has been generated by me as the result of my own original research, unless otherwise stated. 2 Abstract Protein prenylation is an important post-translational modification that occurs in all eukaryotes; defects in the prenylation machinery can lead to toxicity or pathogenesis. Prenylation is the modification of a protein with a farnesyl or geranylgeranyl isoprenoid, and it facilitates protein- membrane and protein-protein interactions. Proteins of the Ras superfamily of small GTPases are almost all prenylated and of these the Rab family of proteins forms the largest group. Rab proteins are geranylgeranylated with up to two geranylgeranyl groups by the enzyme Rab geranylgeranyltransferase (RGGT). Prenylation of Rabs allows them to locate to the correct intracellular membranes and carry out their roles in vesicle trafficking. Traditional methods for probing prenylation involve the use of tritiated geranylgeranyl pyrophosphate which is hazardous, has lengthy detection times, and is insufficiently sensitive. The work described in this thesis developed systems for labelling Rabs and other geranylgeranylated proteins using a technique known as tagging-by-substrate, enabling rapid analysis of defective Rab prenylation in cells and tissues. An azide analogue of the geranylgeranyl pyrophosphate substrate of RGGT (AzGGpp) was applied for in vitro prenylation of Rabs by recombinant enzyme.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • ADVISORY COMMISSION on CHILDHOOD VACCINES TABLE of CONTENTS December 8, 2017
    ADVISORY COMMISSION ON CHILDHOOD VACCINES TABLE OF CONTENTS December 8, 2017 TAB • ACCV Agenda 1 • ACCV Charter • ACCV Roster • 2017 Meeting Dates • Meeting Minutes 2 o Draft Minutes – September 8, 2017 • Vaccine Injury Compensation Trust Fund Statement 3 o Vaccine Injury Compensation Trust Fund Summary Sheet for the Period of 10/1/2016 – 9/30/2017 • VICP Data and Statistics 4 • Meeting Presentations & Updates 5 o Report from the Division of Injury Compensation Programs 5.1 o Report from the Department of Justice 5.2 o Petitions to Add Injuries to the Vaccine Injury Table Introduction 5.3 o Petition to Add Tics as an Injury to the Vaccine Injury Table 5.4 o Petition to Add Asthma as an Injury to the Vaccine Injury Table 5.5 5.6 o Petition to Add Pediatric Autoimmune Neuropsychiatric Syndrome (PANS), Pediatric Infection-Triggered Autoimmune Neuropsychiatric Disorders (PITANDS), and Pediatric Autoimmune Neuropsychiatric Disorders (PANDAS) as Injuries to the Vaccine Injury Table o Petition to Add Experimental Autoimmune Encephalomyelitis (EAE) and/or 5.7 Acute Demyelinating Encephalomyelitis (ADEM) as injuries to the Vaccine Injury Table 5.8 o Update on the Immunization Safety Office Vaccine Activities (CDC) o Update on the National Institute of Allergy and Infectious Diseases Vaccine 5.9 Activities (NIH) o Update on the Center for Biologics, Evaluation and Research Vaccine 5.10 Activities (FDA) 5.11 o Update from the National Vaccine Program Office • Program Related Articles 6 6.1 o Popular Science, “Why Are We So Bad At Producing The Right
    [Show full text]