Short-Term Rapamycin Persistently Improves Cardiac Function After Cessation of Treatment in Aged Male and Female Mice

Total Page:16

File Type:pdf, Size:1020Kb

Short-Term Rapamycin Persistently Improves Cardiac Function After Cessation of Treatment in Aged Male and Female Mice Short-term rapamycin persistently improves cardiac function after cessation of treatment in aged male and female mice. Ellen Quarles A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Peter Rabinovitch, Chair Michael MacCoss David Marcinek Program Authorized to Offer Degree: Pathology © Copyright 2017 Ellen Quarles University of Washington Abstract Short-term rapamycin persistently improves cardiac function after cessation of treatment in aged male and female mice. Ellen Quarles Chair of the Supervisory Committee: Peter Rabinovitch, Professor and Vice Chair of Research Department of Pathology Cardiac aging is an intrinsic process that results in impaired cardiac function and dysregulation of cellular and molecular quality control mechanisms. These effects are evident in the decline of diastolic function, increase in left ventricular hypertrophy, metabolic substrate shifts, and alterations to the cardiac proteome. This thesis covers the quality control mechanisms that are associated with cardiac aging, results from an anti-aging intervention in aged mice, and a review of mitochondrial dysfunction in the heart. Chapter one is a review of the quality control mechanisms in aging myocardium. Chapter two consists of the results of several mouse experiments that compare the cardiac function, proteomes, and metabolomes of aged and young controls, along with rapamycin treated aged mice. The novelty of this study comes from the inclusion of a group of animals treated only transiently with the drug, then followed for eight weeks post-drug-removal. This persistence cohort may hold clues to deriving long-lasting benefits of rapamycin with only transient treatment. Chapter three includes more results from the cohorts used in chapter two, from work done by our collaborators in two laboratories at the University of Washington. Finally, chapter four is a review of the mechanisms and phenotypes of mitochondrial dysfunction in the aging heart. The goal of my thesis work is to test the persistence of the improvement of cardiac function by rapamycin treatment, and use the correlating changes in the cardiac proteome and metabolome to discover a novel mechanism of functional improvement of the heart in aged animals. TABLE OF CONTENTS List of Figures ................................................................................................................................. v List of Tables ................................................................................................................................. vi Chapter 1. Introduction – Quality control systems in cardiac aging............................................... 1 1.1 Abstract ........................................................................................................................... 1 1.2 Introduction ..................................................................................................................... 1 1.3 Overview of cardiac aging .............................................................................................. 1 1.3.1 Human cardiac aging ..................................................................................................... 1 1.3.2 Large mammal models of cardiac aging ........................................................................ 3 1.3.3 Rodent models of cardiac aging ..................................................................................... 3 1.4 Mechanisms of cardiac aging.......................................................................................... 4 1.4.1 Metabolic changes in cardiac aging ............................................................................... 4 1.4.2 Age-related contractility changes................................................................................... 5 1.5 Quality control mechanisms in cardiac aging ................................................................. 7 1.5.1 mTOR Signaling in regulation of protein homeostasis .................................................. 7 1.5.2 mTORC1 ........................................................................................................................ 7 1.5.3 Proteostasis .................................................................................................................... 8 1.5.4 Autophagy ...................................................................................................................... 9 1.5.5 Ubiquitin-mediated turnover ........................................................................................ 11 1.5.6 Apoptosis ..................................................................................................................... 12 1.5.7 Mitochondrial quality control ...................................................................................... 12 i 1.5.8 Mitochondria fusion and fission .................................................................................. 14 1.5.9 Cardiac matrix homeostasis: matrix metalloproteases ................................................. 15 1.6 Cardiac aging interventions .......................................................................................... 16 1.6.1 Caloric/dietary restriction and mimetics ...................................................................... 16 1.6.2 Mitochondrial antioxidants .......................................................................................... 19 1.6.3 Cardiolipin-targeted therapeutics ................................................................................. 19 1.7 Conclusion .................................................................................................................... 20 Chapter 2. Short term rapamycin persistently improves cardiac function after cessation of treatment in aged male and female mice. ...................................................................................... 21 2.1 Abstract ......................................................................................................................... 21 2.2 Introduction ................................................................................................................... 21 2.3 Results ........................................................................................................................... 22 2.3.1 Rapamycin persistently improves diastolic function. .................................................. 22 2.3.2 Rapamycin dramatically alters proteome abundances in both sexes, however the persistence of these changes varies by sex............................................................................ 25 2.3.3 Metabolome differences seen at 8 weeks of rapamycin treatment are mainly not persistent after a further eight weeks with or without the drug. ........................................... 28 2.3.4 Passive stiffness of the left ventricle ............................................................................ 32 2.3.5 Sarcomeric protein phosphorylation may contribute to reduced passive stiffness and improved diastolic function after rapamycin. ....................................................................... 33 2.3.6 Rapamycin effects on age-related fibrosis of the myocardium.................................... 35 2.3.7 Rapamycin differentially alters respiratory chain complex activity by sex. ................ 36 ii 2.3.8 Do markers of cellular senescence change after rapamycin treatment and if so, are they persistent? ............................................................................................................................. 39 2.4 Discussion ..................................................................................................................... 39 2.4.1 Echocardiography ........................................................................................................ 40 2.4.2 Proteomics and ETC activity ....................................................................................... 40 2.4.3 Metabolomics ............................................................................................................... 41 2.4.4 Senescence ................................................................................................................... 42 2.5 Conclusion .................................................................................................................... 42 2.6 Materials and Methods .................................................................................................. 42 Chapter 3. Additional observations from the rapamycin-persistence animal cohorts .................. 47 3.1 Abstract ......................................................................................................................... 47 3.2 Rapamycin treatment reverses alveolar bone loss in aged mice ................................... 47 3.3 Rapamycin reduces occurrence of tissue lesions in aged mice ..................................... 49 Chapter 4. Mitochondrial dysfunction in cardiac aging................................................................ 51 4.1 Abstract ......................................................................................................................... 51 4.2 Introduction ................................................................................................................... 51 4.3 Mitochondrial energetics in cardiac aging ...................................................................
Recommended publications
  • Ever 2018 Eupo 2018
    European Association for Vision and Eye Research European University Professors of Ophthalmology EVER 2018 Annual Congress October 4-6, 2018 EUPO 2018 Course on Retina, Intraocular Inflammation & Uveitis October 3-4, 2018 Programme book Nice, France www.ever.be www.eupo.eu European Association for Vision and Eye Research EVER 20October 17-1919 in Nice, France www.ever.be 1 Table of contents Word from the president ....................................................................................................................................2 About EVER ..........................................................................................................................................................3 EVER Membership ...............................................................................................................................................4 Speakers’ affiliation to scientific sections .........................................................................................................5 Composition of the board 2018 .........................................................................................................................8 Venue ................................................................................................................................................................... 10 Congress information ....................................................................................................................................... 11 Programme information ....................................................................................................................................15
    [Show full text]
  • Overview and Perspective on RTK Heterointeractions Michael D
    Review Cite This: Chem. Rev. 2019, 119, 5881−5921 pubs.acs.org/CR The RTK Interactome: Overview and Perspective on RTK Heterointeractions Michael D. Paul and Kalina Hristova* Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States ABSTRACT: Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. 19 Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease.
    [Show full text]
  • A Molecular Dynamics Simulation Study for Variant Drug Responses Due to FMS-Like Tyrosine Kinase 3 Cite This: RSC Adv.,2017,7, 29871 G697R Mutation†
    RSC Advances View Article Online PAPER View Journal | View Issue A molecular dynamics simulation study for variant drug responses due to FMS-like tyrosine kinase 3 Cite this: RSC Adv.,2017,7, 29871 G697R mutation† Chien-Cheng Lee,a Yu-Chung Chuang,b Yu-Lin Liub and Chia-Ning Yang *b FMS-like tyrosine kinase 3 (FLT3) is an attractive target for acute myeloid leukemia. Recent studies have suggested that the application of small-molecule kinase inhibitors is a promising treatment strategy for patients with primary activating mutations of FLT3; however, the development of secondary mutations, including those of A627T, N676D, F691I, and G697R, that confer acquired resistance to kinase inhibitors has become a severe problem. In this study, we conducted a series of molecular dynamics simulations on PKC412- and sorafenib-bound FLT3 kinases and different apo forms of the FLT3 kinase to explain the minor and severe G697R mutation-induced resistance to sorafenib and PKC412, respectively. Structural analysis on our simulation results revealed that the type II kinase inhibitor sorafenib (IC50 ¼ 9 nM) Creative Commons Attribution 3.0 Unported Licence. assesses its binding site through either the adenine pocket entrance or the back pocket entrance, whereas the type I kinase inhibitor PKC412 (IC50 ¼ 35 nM) intercalates to its binding site from the front pocket entrance. The G697 residue is located at the end of the FLT3 kinase hinge segment and is close to the front and adenine pockets. In G697R mutation where the substituted R697 residue affects both the front and adenine pocket entrances in different manners, sorafenib may approach its binding site Received 11th April 2017 through the back pocket entrance, whereas PKC412 is blocked by the FLT3 kinase.
    [Show full text]
  • Marine Drugs
    marine drugs Article Neuroprotective Effect of Carotenoid-Rich Enteromorpha prolifera Extract via TrkB/Akt Pathway against Oxidative Stress in Hippocampal Neuronal Cells Seung Yeon Baek and Mee Ree Kim * Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-821-6837; Fax: +82-42-821-8887 Received: 27 June 2020; Accepted: 17 July 2020; Published: 19 July 2020 Abstract: In this study, we found that E. prolifera extract (EAEP) exhibits neuroprotective effects in oxidative stress-induced neuronal cells. EAEP improved cell viability as well as attenuated the formation of intracellular reactive oxygen species (ROS) and apoptotic bodies in glutamate-treated hippocampal neuronal cells (HT-22). Furthermore, EAEP improved the expression of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes such as heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase-1 (NQO-1), and glutamate–cysteine ligase catalytic subunit (GCLC) via the tropomyosin-related kinase receptor B/ protein kinase B (TrkB/Akt) signaling pathway. In contrast, the pre-incubation of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, ameliorated the neuroprotective effects of EAEP in oxidative stress-induced neuronal cells. These results suggest that EAEP protects neuronal cells against oxidative stress-induced apoptosis by upregulating the expression of BDNF and antioxidant enzymes via the activation of the TrkB/Akt pathway. In conclusion, such an effect of EAEP, which is rich in carotenoid-derived compounds, may justify its application as a food supplement in the prevention and treatment of neurodegenerative disorders. Keywords: Enteromorpha prolifera; oxidative stress; apoptosis; BDNF; TrkB/Akt pathway 1.
    [Show full text]
  • The Role of Neurotrophin Receptors in Female Germ-Cell Survival in Mouse and Human Norah Spears1,*, Michael D
    Research article 5481 The role of neurotrophin receptors in female germ-cell survival in mouse and human Norah Spears1,*, Michael D. Molinek1, Lynne L. L. Robinson2, Norma Fulton2, Helen Cameron1, Kohji Shimoda1, Evelyn E. Telfer3, Richard A. Anderson2 and David J. Price1 1Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK 2Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The University of Edinburgh Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SA, UK 3Institute of Cellular and Molecular Biology, University of Edinburgh, Darwin Building, Kings Buildings, Edinburgh, UK *Author for correspondence (e-mail: [email protected]) Accepted 4 July 2003 Development 130, 5481-5491 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00707 Summary During mammalian ovary formation, the production of follicle formation in the mouse. In situ hybridisation ovarian follicles is accompanied by an enormous loss of showed that TrkB was expressed primarily in the germ cells germ cells. It is not known how this loss is regulated. We before and after follicle formation. Mouse neonatal and have investigated the role of the Trk tyrosine kinase fetal ovaries and human fetal ovaries were cultured in the receptors, primarily TrkB, in this process. The ovaries of presence of K252a, a potent inhibitor of all Trk receptors. TrkB–/– and TrkC–/– mice with a mixed (129Sv × C57BL/6) In mice, K252a inhibited the survival of germ cells in newly genetic background were examined shortly after birth. formed (primordial) follicles. This effect was rescued by the Around 50% of TrkB–/– mice had grossly abnormal ovaries addition of basic fibroblast growth factor (bFGF) to the that contained greatly reduced numbers of follicles.
    [Show full text]
  • Chemical Biology of Natural Indolocarbazole Products: 30 Years Since the Discovery of Staurosporine
    The Journal of Antibiotics (2009) 62, 17–26 & 2009 Japan Antibiotics Research Association All rights reserved 0021-8820/09 $32.00 www.nature.com/ja REVIEW ARTICLE Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine Hirofumi Nakano and Satoshi O¯ mura Staurosporine was discovered at the Kitasato Institute in 1977 while screening for microbial alkaloids using chemical detection methods. It was during the same era that protein kinase C was discovered and oncogene v-src was shown to have protein kinase activity. Staurosporine was first isolated from a culture of Actinomyces that originated in a soil sample collected in Mizusawa City, Japan. Thereafter, indolocarbazole compounds have been isolated from a variety of organisms. The biosynthesis of staurosporine and related indolocarbazoles was finally elucidated during the past decade through genetic and biochemical studies. Subsequently, several novel indolocarbazoles have been produced using combinatorial biosynthesis. In 1986, 9 years since its discovery, staurosporine and related indolocarbazoles were shown to be nanomolar inhibitors of protein kinases. They can thus be viewed as forerunners of today’s crop of novel anticancer drugs. The finding led many pharmaceutical companies to search for selective protein kinase inhibitors by screening natural products and through chemical synthesis. In the 1990s, imatinib, a Bcr-Abl tyrosine kinase inhibitor, was synthesized and, following human clinical trials for chronic myelogenous leukemia, it was approved for use in the USA in 2001. In 1992, mammalian topoisomerases were shown to be targets for indolocarbazoles. This opened up new possibilities in that indolocarbazole compounds could selectively interact with ATP- binding sites of not only protein kinases but also other proteins that had slight differences in ATP-binding sites.
    [Show full text]
  • Α-Tocopherol at Nanomolar Concentration Protects PC12 Cells from Hydrogen Peroxide-Induced Death and Modulates Protein Kinase Activities
    Int. J. Mol. Sci. 2012, 13, 11543-11568; doi:10.3390/ijms130911543 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article α-Tocopherol at Nanomolar Concentration Protects PC12 Cells from Hydrogen Peroxide-Induced Death and Modulates Protein Kinase Activities Irina O. Zakharova, Tatyana V. Sokolova, Liubov V. Bayunova, Yulia A. Vlasova, Maria P. Rychkova and Natalia F. Avrova * Department of Comparative Neurochemistry, Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia; E-Mails: [email protected] (I.O.Z.); [email protected] (T.V.S.); [email protected] (L.V.B.); [email protected] (Y.A.V.); [email protected] (M.P.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +7-812-552-7901; Fax: +7-812-552-3012. Received: 9 July 2012; in revised form: 23 August 2012 / Accepted: 4 September 2012 / Published: 14 September 2012 Abstract: The aim of this work was to compare protective and anti-apoptotic effects of α-tocopherol at nanomolar and micromolar concentrations against 0.2 mM H2O2-induced toxicity in the PC12 neuronal cell line and to reveal protein kinases that contribute to α-tocopherol protective action. The protection by 100 nM α-tocopherol against H2O2-induced PC12 cell death was pronounced if the time of pre-incubation with α-tocopherol was 3–18 h. For the first time, the protective effect of α-tocopherol was shown to depend on its concentration in the nanomolar range (1 nM < 10 nM < 100 nM), if the pre-incubation time was 18 h.
    [Show full text]
  • Trkb Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders
    Int. J. Mol. Sci. 2013, 14, 10122-10142; doi:10.3390/ijms140510122 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders Vivek K. Gupta 1,*, Yuyi You 1, Veer Bala Gupta 2, Alexander Klistorner 1,3 and Stuart L. Graham 1,3 1 Australian School of Advanced Medicine, Macquarie University, F10A, 2 Technology Place, North Ryde, Sydney, NSW 2109, Australia; E-Mails: [email protected] (Y.Y.); [email protected] (A.K.); [email protected] (S.L.G.) 2 Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; E-Mail: [email protected] 3 Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-98-123-537; Fax: +61-2-98-123-600. Received: 27 March 2013; in revised form: 27 April 2013 / Accepted: 28 April 2013 / Published: 13 May 2013 Abstract: The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions.
    [Show full text]
  • Tumor-Associated Lymphatic Endothelial Cells Promote Lymphatic Metastasis by Highly Expressing and Secreting SEMA4C
    Published OnlineFirst July 8, 2016; DOI: 10.1158/1078-0432.CCR-16-0741 Cancer Therapy: Preclinical Clinical Cancer Research Tumor-associated Lymphatic Endothelial Cells Promote Lymphatic Metastasis By Highly Expressing and Secreting SEMA4C Jun-Cheng Wei1, Jie Yang1, Dan Liu1, Ming-Fu Wu1, Long Qiao1, Jun-Nai Wang1, Quan-Fu Ma1, Zhen Zeng1, Shuang-Mei Ye1, En-Song Guo1, Xue-Feng Jiang1, Lan-Ying You1, Ying Chen1, Li Zhou1, Xiao-Yuan Huang1, Tao Zhu1, Li Meng1, Jian-Feng Zhou1, Zuo-Hua Feng2, Ding Ma1, and Qing-Lei Gao1 Abstract Purpose: Lymphatic vessels are mainly regarded as passive associated LECs also produced soluble SEMA4C (sSEMA4C). conduits for the dissemination of cancer cells. In this study, we Increased serum sSEMA4C was detected in patients with breast investigate whether and how the tumor-associated lymphatic cancer and cervical cancer. Patients with metastasis had much vessels may play an active role in tumor metastasis. higher levels of serum sSEMA4C. sSEMA4C promoted lymphan- Experimental Design: In situ laser capture microdissection of giogenesis by activating PlexinB2-ERBB2 signaling in LECs, and lymphatic vessels followed by cDNA microarray analysis was promoted the proliferation and migration of tumor cells by used to determine the expression profiling of lymphatic endo- activating PlexinB2-MET signaling, thus promoting lymphatic thelial cells (LEC). Gene expression levels and activity of signaling metastasis. Although the SEMA4C signaling pathways differ pathways were measured by real-time RT-PCR, ELISA, or immu- between LECs and tumor cells, RHOA activation was necessary noblotting. Lymphangiogenesis was assessed by IHC. Lymph for the effects of SEMA4C in both types of cells.
    [Show full text]
  • Structural and Binding Studies of Human CAMKK2 Kinase Domain Bound to Small Molecule Ligands
    bioRxiv preprint doi: https://doi.org/10.1101/538157; this version posted February 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural and binding studies of human CAMKK2 kinase domain bound to small molecule ligands Gerson S. Profeta 1,2, Caio V. dos Reis 1,2, Paulo H. C. Godoi 1,2, Angela M. Fala 1,2, Roger Sartori 2, Anita P. T. Salmazo 2, Priscila Z. Ramos 1,2, Katlin B. Massirer 1,2, Jonathan M. Elkins 2,3, David H. Drewry 4, Opher Gileadi 3 & Rafael M. Couñago 1,2 * 1. Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-875, Brazil 2. Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP, 13083-886, Brazil 3. Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK 4. Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA * Electronic address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/538157; this version posted February 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • N-Acetyl Serotonin Derivatives As Potent Neuroprotectants for Retinas
    N-acetyl serotonin derivatives as potent neuroprotectants for retinas Jianying Shena, Kanika Ghaib, Pradoldej Sompola, Xia Liua, Xuebing Caob,1, P. Michael Iuvonec, and Keqiang Yea,1 Departments of aPathology and Laboratory Medicine and cOphthalmology and Pharmacology, Emory University School of Medicine; Atlanta, GA 30322; and bDepartment of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved January 24, 2012 (received for review November 22, 2011) N-acetylserotonin (NAS) is synthesized from serotonin by arylalkyl- (13, 14). Intraocular injection of NGF, BDNF, and NT-4/5 res- amine N-acetyltransferase (AANAT), which is predominantly ex- cues RGCs after axotomy (15–18). NT-4/5, in combination with pressed in the pineal gland and retina. NAS activates TrkB in a other trophic factors, is involved in the postnatal survival of circadian manner and exhibits antidepressant effects in a TrkB-de- retinal neurons during both development and degeneration (19). pendent manner. It also enhances neurogenesis in hippocampus in Despite the fact that BDNF is not required for RGC survival sleep-deprived mice. Here we report the identification of NAS deriv- during development (20), it promotes survival of RGCs in a va- atives that possess much more robust neurotrophic effects with riety of experimental lesion models both in vitro and in vivo (15, improved pharmacokinetic profiles. The compound N-[2-(5-hydroxy- 21–24). This is consistent with the findings that RGCs express 1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC) selectively the BDNF receptor TrkB (20, 25, 26).
    [Show full text]
  • A Case of Long QT Syndrome
    CASE REPORT A case of long QT syndrome: challenges on a bumpy road Peter Magnusson1,2 & Per-Erik Gustafsson2 1Cardiology Research Unit, Department of Medicine, Karolinska Institutet, Stockholm SE-171 76, Sweden 2Centre for Research and Development, Uppsala University/Region Gavleborg,€ Gavle€ SE-801 87, Sweden Correspondence Key Clinical Message Peter Magnusson, Cardiology Research Unit, Department of Medicine, Karolinska Beta-agonist treatment during pregnancy may unmask the diagnosis of long QT Institutet, Karolinska University Hospital/ syndrome. The QT prolongation can result in functional AV block. A history of Solna, SE-171 76 Stockholm, Sweden. Tel: seizure and/or sudden death in a family member should raise suspicion of ven- +46(0)705 089407; Fax: +46(0)26 154255; tricular tachycardia. More than one mutation may coexist. Refusal of beta- E-mail: [email protected] blocker therapy complicates risk stratification. Funding Information Keywords No sources of funding were declared for this Genetic, implantable cardioverter–defibrillator, long QT syndrome, pregnancy, study. premature ventricular complex, risk stratification, sudden cardiac death. Received: 16 December 2016; Revised: 29 March 2017; Accepted: 4 April 2017 Clinical Case Reports 2017; 5(6): 954–960 doi: 10.1002/ccr3.985 Introduction experienced palpitations, and her ECG was abnormal, revealing PVCs, atrioventricular (AV) 2:1 block and QT Long QT syndrome (LQTS) is linked to mutations in the prolongation (520 msec) in precordial lead V5 during ion channels, which can lead to disturbances in ventricu- sinus rhythm at 90 beats per minute (Fig. 1) and rhythm lar repolarization [1]. This condition puts patients at risk strip while walking (Fig.
    [Show full text]