Microhabitat Predicts Species Differences in Exploratory Behavior in Lake Malawi 2 Cichlids 3 4 Zachary V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Phylogeny of a Rapidly Evolving Clade: the Cichlid Fishes of Lake Malawi
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5107–5110, April 1999 Evolution Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa (adaptive radiationysexual selectionyspeciationyamplified fragment length polymorphismylineage sorting) R. C. ALBERTSON,J.A.MARKERT,P.D.DANLEY, AND T. D. KOCHER† Department of Zoology and Program in Genetics, University of New Hampshire, Durham, NH 03824 Communicated by John C. Avise, University of Georgia, Athens, GA, March 12, 1999 (received for review December 17, 1998) ABSTRACT Lake Malawi contains a flock of >500 spe- sponsible for speciation, then we expect that sister taxa will cies of cichlid fish that have evolved from a common ancestor frequently differ in color pattern but not morphology. within the last million years. The rapid diversification of this Most attempts to determine the relationships among cichlid group has been attributed to morphological adaptation and to species have used morphological characters, which may be sexual selection, but the relative timing and importance of prone to convergence (8). Molecular sequences normally these mechanisms is not known. A phylogeny of the group provide the independent estimate of phylogeny needed to infer would help identify the role each mechanism has played in the evolutionary mechanisms. The Lake Malawi cichlids, however, evolution of the flock. Previous attempts to reconstruct the are speciating faster than alleles can become fixed within a relationships among these taxa using molecular methods have species (9, 10). The coalescence of mtDNA haplotypes found been frustrated by the persistence of ancestral polymorphisms within populations predates the origin of many species (11). In within species. -
1 Exon Probe Sets and Bioinformatics Pipelines for All Levels of Fish Phylogenomics
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics 2 3 Lily C. Hughes1,2,3,*, Guillermo Ortí1,3, Hadeel Saad1, Chenhong Li4, William T. White5, Carole 4 C. Baldwin3, Keith A. Crandall1,2, Dahiana Arcila3,6,7, and Ricardo Betancur-R.7 5 6 1 Department of Biological Sciences, George Washington University, Washington, D.C., U.S.A. 7 2 Computational Biology Institute, Milken Institute of Public Health, George Washington 8 University, Washington, D.C., U.S.A. 9 3 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian 10 Institution, Washington, D.C., U.S.A. 11 4 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China 12 5 CSIRO Australian National Fish Collection, National Research Collections of Australia, 13 Hobart, TAS, Australia 14 6 Sam Noble Oklahoma Museum of Natural History, Norman, O.K., U.S.A. 15 7 Department of Biology, University of Oklahoma, Norman, O.K., U.S.A. 16 17 *Corresponding author: Lily C. Hughes, [email protected]. 18 Current address: Department of Organismal Biology and Anatomy, University of Chicago, 19 Chicago, IL. 20 21 Keywords: Actinopterygii, Protein coding, Systematics, Phylogenetics, Evolution, Target 22 capture 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. -
Automated Measurement of Long-Term Bower Behaviors in Lake Malawi
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.27.968511; this version posted February 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 1 Automated measurement of long-term bower behaviors in Lake Malawi cichlids using 2 depth sensing and action recognition 3 4 Zachary V Johnson1, Lijiang Long1,2, Junyu Li1, Manu Tej Sharma Arrojwala1, Vineeth Aljapur1, 5 Tyrone Lee1, Mark C Lowder1, Karen Gu1, Tucker J Lancaster1,2, Joseph I Stockert1, Jean M 6 Moorman3, Rachel L Lecesne4, Jeffrey T Streelman# 1,2,3, and Patrick T McGrath# 1,2,3,5 7 8 1School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA 9 2Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, 10 Atlanta, GA 30332, USA 11 3Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 12 Atlanta, GA 30332, USA 13 4School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA 14 5School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA 15 16 #Co-corresponding authors: [email protected] (P.T.M.), 17 [email protected] (J.T.S.) 18 19 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.27.968511; this version posted February 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Rare Morph Lake Malawi Mbuna Cichlids Benefit from Reduced Aggression from Con- and Hetero-Specifics
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439056; this version posted April 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Rare morph Lake Malawi mbuna cichlids benefit from reduced aggression from con- and hetero-specifics 2 Running title: Reduced aggression benefits rare morph mbuna 3 4 Alexandra M. Tyers*, Gavan M. Cooke & George F. Turner 5 School of Biological Sciences, Bangor University, Deniol Road, Bangor. Gwynedd. Wales. UK. LL57 2UW 6 * Current address: Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, 50931, Köln 7 8 Corresponding author: A.M. Tyers, [email protected] 9 10 Abstract 11 Balancing selection is important for the maintenance of polymorphism as it can prevent either fixation of one 12 morph through directional selection or genetic drift, or speciation by disruptive selection. Polychromatism can 13 be maintained if the fitness of alternative morphs depends on the relative frequency in a population. In 14 aggressive species, negative frequency-dependent antagonism can prevent an increase in the frequency of rare 15 morphs as they would only benefit from increased fitness while they are rare. Heterospecific aggression is 16 common in nature and has the potential to contribute to rare morph advantage. Here we carry out field 17 observations and laboratory aggression experiments with mbuna cichlids from Lake Malawi, to investigate the 18 role of con- and heterospecific aggression in the maintenance of polychromatism and identify benefits to rare 19 mores which are likely to result from reduced aggression. -
The AQUATIC DESIGN CENTRE
The AQUATIC DESIGN CENTRE ltd 26 Zennor Road Trade Park, Balham, SW12 0PS Ph: 020 7580 6764 [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY Complete Freshwater Livestock (2019) Livebearers Common Name In Stock Y/N Limia melanogaster Y Poecilia latipinna Dalmatian Molly Y Poecilia latipinna Silver Lyre Tail Molly Y Poecilia reticulata Male Guppy Asst Colours Y Poecilia reticulata Red Cap, Cobra, Elephant Ear Guppy Y Poecilia reticulata Female Guppy Y Poecilia sphenops Molly: Black, Canary, Silver, Marble. y Poecilia velifera Sailfin Molly Y Poecilia wingei Endler's Guppy Y Xiphophorus hellerii Swordtail: Pineapple,Red, Green, Black, Lyre Y Xiphophorus hellerii Kohaku Swordtail, Koi, HiFin Xiphophorus maculatus Platy: wagtail,blue,red, sunset, variatus Y Tetras Common Name Aphyocarax paraguayemsis White Tip Tetra Aphyocharax anisitsi Bloodfin Tetra Y Arnoldichthys spilopterus Red Eye Tetra Y Axelrodia riesei Ruby Tetra Bathyaethiops greeni Red Back Congo Tetra Y Boehlkea fredcochui Blue King Tetra Copella meinkeni Spotted Splashing Tetra Crenuchus spilurus Sailfin Characin y Gymnocorymbus ternetzi Black Widow Tetra Y Hasemania nana Silver Tipped Tetra y Hemigrammus erythrozonus Glowlight Tetra y Hemigrammus ocelifer Beacon Tetra y Hemigrammus pulcher Pretty Tetra y Hemigrammus rhodostomus Diamond Back Rummy Nose y Hemigrammus rhodostomus Rummy nose Tetra y Hemigrammus rubrostriatus Hemigrammus vorderwimkieri Platinum Tetra y Hyphessobrycon amandae Ember Tetra y Hyphessobrycon amapaensis Amapa Tetra Y Hyphessobrycon bentosi -
Kenyi Cichlid (Maylandia Lombardoi) Ecological Risk Screening Summary
Kenyi Cichlid (Maylandia lombardoi) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, July 2018 Web Version, 8/3/2018 Photo: Ged~commonswiki. Public domain. Available: https://commons.wikimedia.org/wiki/File:Maylandia_lombardoi.jpg. (July 2018). 1 Native Range and Status in the United States Native Range From Kasembe (2017): “Endemic to Lake Malawi. Occurs at Mbenji Island and Nkhomo reef [Malawi].” From Froese and Pauly (2018): “Africa: Endemic to Mbenji Island, Lake Malawi [Malawi].” 1 Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. From Imperial Tropicals (2018): “Kenyi Cichlid (Pseudotropheus lombardoi) […] $ 7.99 […] UNSEXED 1” FISH” Means of Introductions in the United States This species has not been reported as introduced or established in the United States. Remarks There is taxonomic uncertainty concerning Maylandia lombardoi. Because it has recently been grouped in the genera Metriaclima and Pseudotropheus, these names were also used when searching for information in preparation of this assessment. From Kasembe (2017): “This species previously appeared on the IUCN Red List in the genus Maylandia but is now considered valid in the genus Metriaclima (Konings 2016, Stauffer et al. 2016).” From Seriously Fish (2018): “There is ongoing debate as to the true genus of this species, it having been variously grouped in both Maylandia and Metriaclima, as well as the currently valid Pseudotropheus. -
The Complexity of Alternative Splicing of Hagoromo Mrnas Is Increased in an Explosively Speciated Lineage in East African Cichlids
The complexity of alternative splicing of hagoromo mRNAs is increased in an explosively speciated lineage in East African cichlids Yohey Terai*, Naoko Morikawa*, Koichi Kawakami†, and Norihiro Okada*‡§ *Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; †Department of Developmental Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; and ‡Division of Cell Fusion, National Institute of Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585 Aichi, Japan Edited by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, and approved August 29, 2003 (received for review May 12, 2003) The adaptive radiation of cichlid fishes in the lakes of East Africa other fish, including cichlids. With insertional mutagenesis, the is a prime example of speciation. The choice of cichlid mates on the zebrafish gene hagoromo (hag) was shown to be responsible for basis of a variety of coloration represents a potential basis for pigment pattern formation (17). Recently, we cloned a cichlid speciation that led to adaptive radiation. Here, we characterize the homolog of hag and showed a correlation between the morpho- cichlid homolog of the zebrafish hagoromo (hag) gene that was logical diversity of the Great Lakes lineage and the evolutionary recently cloned and characterized from a pigmentation mutant. rate of amino acid sequence changes in the hag gene (18). Here Although only one hag mRNA was reported in zebrafish, cichlids we show a correlation between the explosive speciation of express nine different hag mRNAs resulting from alternative splic- cichlids and the complexity of alternative splicing variants of this ing. -
Personality, Habitat Selection and Territoriality Kathleen Church A
Habitat Complexity and Behaviour: Personality, Habitat Selection and Territoriality Kathleen Church A Thesis In the Department of Biology Presented in Partial Fulfilment of the Requirements For the Degree of Doctor of Philosophy (Biology) at Concordia University Montréal, Québec, Canada July 2018 © Kathleen Church, 2018 iii Abstract Habitat complexity and behaviour: personality, habitat selection and territoriality Kathleen Church, Ph.D. Concordia University, 2018 Structurally complex habitats support high species diversity and promote ecosystem health and stability, however anthropogenic activity is causing natural forms of complexity to rapidly diminish. At the population level, reductions in complexity negatively affect densities of territorial species, as increased visual distance increases the territory size of individuals. Individual behaviour, including aggression, activity and boldness, is also altered by complexity, due to plastic behavioural responses to complexity, habitat selection by particular personality types, or both processes occurring simultaneously. This thesis explores the behavioural effects of habitat complexity in four chapters. The first chapter, a laboratory experiment based on the ideal free distribution, observes how convict cichlids (Amatitlania nigrofasciata) trade-off the higher foraging success obtainable in open habitats with the greater safety provided in complex habitats under overt predation threat. Dominants always preferred the complex habitat, forming ideal despotic distributions, while subordinates altered their habitat use in response to predation. The second chapter also employs the ideal free distribution to assess how convict cichlids within a dominance hierarchy trade-off between food monopolization and safety in the absence of a iv predator. Dominants again formed ideal despotic distributions in the complex habitat, while dominants with lower energetic states more strongly preferred the complex habitat. -
Mix and Match Color Vision: Tuning Spectral Sensitivity by Differential Opsin Gene Expression in Lake Malawi Cichlids
Current Biology, Vol. 15, 1734–1739, October 11, 2005, ©2005 Elsevier Ltd All rights reserved. DOI 10.1016/j.cub.2005.08.010 Mix and Match Color Vision: Tuning Spectral Sensitivity by Differential Opsin Gene Expression in Lake Malawi Cichlids Juliet W.L. Parry,1 Karen L. Carleton,2 Tyrone Spady,2 shallow water on a clear sandy bottom and in bogs. It Aba Carboo,1 David M. Hunt,1 grazes on algae growing on underwater logs and drift- and James K. Bowmaker1,* wood. Both males and females are blue with white or 1Institute of Ophthalmology yellow tail markings. Melanochromis vermivorus lives in University College London shallow water on a rocky shore, free of sediment. It is London EC1V 9EL omnivorous, feeding on plankton and grazing on rock United Kingdom algae. Breeding males are blue or dark purple with 2 Hubbard Center for Genome Studies black stripes, whereas females are yellow with black Department of Zoology stripes. The third species, Tramitichromis (Lethrinops) University of New Hampshire intermedius, is from the sand-dwelling flock and inhab- Durham, New Hampshire 03824 its sheltered water among weeds. It feeds on insect lar- vae and soft invertebrates extracted from the sedi- ments. Breeding males are silvery with orange and green highlights, whereas females are silver with three Summary large dark spots on their flanks. Cichlid fish of the East African Rift Lakes are re- Cone Classes nowned for their diversity and offer a unique opportu- Each of the three species exhibited rods and primarily nity to study adaptive changes in the visual system only three cone pigments, two longer-wave pigments in in rapidly evolving species flocks [1, 2]. -
View/Download
CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name -
Patterns and Process During the Diversification of the Cichlid Fishes in Lake Malawi, Africa Michael R
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2006 Patterns and process during the diversification of the cichlid fishes in Lake Malawi, Africa Michael R. Kidd University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Kidd, Michael R., "Patterns and process during the diversification of the cichlid fishes in Lake Malawi, Africa" (2006). Doctoral Dissertations. 342. https://scholars.unh.edu/dissertation/342 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. PATTERNS AND PROCESS DURING THE DIVERSIFICATION OF THE CICHLID FISHES IN LAKE MALAWI, AFRICA BY MICHAEL R. KIDD BA, Williams College, 1991 DISSERTATION Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Zoology September, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3231355 Copyright 2006 by Kidd, Michael R. All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.