Polarstern“ in 2005/2006

Total Page:16

File Type:pdf, Size:1020Kb

Polarstern“ in 2005/2006 The Expedition ANTARKTIS-XXIII/2 of the Research Vessel „Polarstern“ in 2005/2006 Edited by Volker Strass with contributions of the participants Ber. Polarforsch. Meeresforsch. 568 (2007) ISSN 1618 - 3193 ANT-XXIII/2 19 November 2005 - 12 January 2006 Cape Town - Lazarev Sea - Punta Arenas Fahrtleiter / Chief Scientist: Volker Strass Koordinator / Coordinator: Eberhard Fahrbach CONTENTS 1. EXPEDITION ANT-XXIII/2: Fahrtverlauf und Zusammenfassung 7 Cruise narrative and summary 13 2. Weather conditions 17 3. Seasonal and interannual variability in krill demography of high latitude krill stocks in the Lazarev Sea - LAKRIS subproject 1 20 4. Horizontal and vertical distribution of krill and zooplankton - LAKRIS subproject 2 32 5. Oceanography 35 5.1 Effects of water mass circulation and sea ice on the abundance of zooplankton in the Lazarev Sea - LAKRIS subproject 3 35 5.2 Hydrographic station work with CTD and water bottle sampling 35 5.3 Underway measurements of currents and echo backscatter with the vessel-mounted acoustic Doppler current profiler 40 5.4 Time series measurements from moored instruments 41 6. Seasonal dynamics of physiological conditions of krill with emphasis on the larvae stages - LAKRIS subproject 4 45 7. Potential krill allergens 52 8. Seasonal lipid dynamics and energetic adaptations of Euphausia superba, with emphasis on juvenile and adult stages - LAKRIS subproject 5 53 8.1 Energetics and feeding ecology of Antarctic euphausiids: comparative lipid analyses of Euphausia superba, E. crystallorophias and Thysanoessa macrura 53 8.2 Lipid metabolism of Clione antarctica as related to its only prey Limacina helicina 55 8.3 Metabolic enzyme activities of Antarctic copepods in comparison with temperate and Arctic species 55 9. Distribution of Chlorophyll a in the Lazarev Sea 56 5 10. Biology of pelagic tunicates in the Lazarev Sea 58 11. Trophic ecology of chaetognaths and their contribution to the vertical carbon flux in the Lazarev Sea 64 12. The ecology of thecosome pteropods in the Lazarev Sea 69 13. Benthopelagic coupling under austral spring conditions 74 14. Near-surface zooplankton sampling by use of the continuous plankton recorder – CPR 82 15. Bathypelagic Plankton 85 16. Sea ice, cetacean, seal and bIrd diversity 88 17. Marine Mammal Automated Perimeter Surveillance (MAPS) 95 18. Adaptive competence and ecology of Antarctic bottom fish 99 19. MABEL: Multidisciplinary Antarctic BEnthic Laboratory 103 APPENDIX 111 A.1 Participating Institutions 112 A.2 Cruise Participants 114 A.3 Ship's Crew 116 A.4 Station list 117 6 1. EXPEDITION ANT-XXIII/2: FAHRTVERLAUF UND ZUSAMMENFASSUNG Volker Strass Alfred-Wegener-Institut Wissenschaftliches Programm Während der Forschungsreise ANT-XXIII/2 diente FS Polarstern dazu, sowohl ein umfangreiches marines Messprogramm durchzuführen als auch die Neumayer- Station und wissenschaftliche Expeditionen auf dem antarktischen Kontinent mit Personal und Material zu versorgen. Der Hauptteil des marinen Forschungsprogramms war der vom BMBF geförderten Lazarewsee Krill Studie (LAKRIS), einem deutschen Beitrag zu SO-GLOBEC, gewidmet. SO-GLOBEC (Southern Ocean Global Ocean Ecosystems Dynamics) ist ein internationales und multidisziplinäres Forschungsprogramm, welches darauf abzielt, Struktur und Funktionsweise des marinen Ökosystems und seine Abhängigkeiten vom physikalischen Umfeld besser verstehen, um darauf aufbauend Fähigkeiten zur Vorhersage von Reaktionen des Ökosystems auf Klimaänderungen zu entwickeln. Für den Südlichen Ozean liegt im Zentrum des Interesses dabei der Krill (Euphausia superba), der eine Schlüsselart im Nahrungsnetz darstellt, und dessen Reproduktion, Rekrutierung und Überlebensraten in Abhängigkeit von physikalischen und biologischen Faktoren. Ein Großteil unserer Kenntnisse über den antarktische Krill stammt aus nur wenigen Regionen, wie beispielsweise des relativ gut untersuchten Schelfs um die Antarktische Halbinsel. Es zeichnet sich aber mehr und mehr ab, dass die Überlebensstrategien von Krill für die verschiedenen Jahreszeiten regional unterschiedlich sind. Unsere Kenntnisse darüber lassen sich also nicht unbedingt von einer Region auf andere übertragen. Das LAKRIS Projekt hat deswegen unter anderem den Zweck, bestehende internationale Messprogramme im Rahmen von SO-GLOBEC und CCAMLR (Convention for the Conservation of Antarctic Marine Living resources) auf der Westseite der Antarktischen Halbinsel, im Südantillenmeer und im Sektor südwestlichen des indischen Ozean durch Untersuchungen in der Lazarewsee zu ergänzen. Innerhalb der großen, die Antarktis umkreisenden Stromsysteme scheint es ein erhöhtes Krill-Vorkommen in dem Sektor zu geben, dessen Westseite durch das Schelf westlich der Antarktischen Halbinsel und dessen Ostseite durch den Greenwich-Meridian bzw. die Lazarewsee markiert ist. Ob sich dieses Vorkommen aus nur einem oder verschiedenen Beständen von Krill zusammensetzt und ob ein 7 ANT-XXIII/2 Austausch von Individuen mit anderen Vorkommen im Südlichen Ozean stattfindet, wird zur Zeit intensiv diskutiert. Besonders Studien an der bisher wenig untersuchten Ostseite des Vorkommens können hier sehr aufschlussreich sein. Die Lazarewsee wird dabei als mögliches Einfallstor für Krill ins Weddellmeer vermutet. Entlang des 0°-Meridians kommt Krill von 50°S bis zum antarktischen Kontinent bei 70°S vor. Dies ist die größte meridionale Krillverbreitung rund um Antarktika. Nördlich von 60°S ist Krill dem Einfluss des ostwärts fließenden Zirkumpolarstroms ausgesetzt. Krill auf 0° Länge befindet sich somit stromab der großen Bestände im Südantillenmeer und spiegelt somit den Laicherfolg dort wieder. Südlich von 60°S, im Einflussbereich des westwärts fließenden Südastes des östlichen Weddellwirbels, gibt es nur wenig Information über laichenden Krill und das Auftreten von Larven. Wenn jedoch der Weddellwirbel die Quelle der hohen Krill- Konzentrationen im Südantillenmeer ist, sollten mit den in der Lazarewsee sich westwärts bewegenden Wassermassen größere Mengen von Krill-Larven in das System eintragen, um die großen Bestände im nordwestlichen Ausstrom aus dem Weddellmeer aufrecht zu erhalten. Das LAKRIS-Verbundprojekt setzt sich aus 5 Teilprojekten mit folgenden Forschungsthemen zusammen: • Saisonale und zwischenjährliche Variabilität des demographischen Aufbaus von Krill-Beständen in den hohen Breiten der Lazarewsee • Horizontale und vertikale Verteilungen von Krill und Zooplankton • Einflüsse von Wassermassen- Zirkulation und Meereis auf das Vorkommen von Zooplankton und Krill • Saisonale Dynamik des physiologischen Zustandes von Krill mit besonderer Beachtung der Larven-Stadien • Saisonale Lipid-Dynamik und energetische Anpassungen von Euphausia superba, insbesondere der Jugend- und Erwachsenen-Stadien Die umfangreichen Untersuchungen von Krill wurden während ANT-XXIII/2 ergänzt durch weitere Projekte, die ihr Augenmerk auf andere Gattungen von Zooplankton wie pelagische Tunikate (Salpen), Chaetognathen (Pfeilwürmer) und Pteropoden (Flügelschnecken) richteten. Die zentrale Frage, der sich diese Projekte widmeten, war, welchen Fraßdruck diese Zooplankton-Grupppen ausübten und welchen Fluss von biogener Materie durch das Nahrungsnetz sie bewirkten. Eine weitere Studie befasste sich mit den benthischen Suspensionsfressern, welche zum Austausch zwischen Wassersäule und Meeresboden auf dem antarktischen Schelf beitragen. Verschiedene andere während der Forschungsfahrt durchgeführte Projekte hatten keinen speziellen regionalen Bezug zur Lazarewsee. Dazu gehörten: Die Aufzeichnung von Sichtungen von Walen und anderen Großtieren wie Robben, Pinguinen und Seevögeln, ergänzt von umfangreichen Meereisdaten, durch Beobachter der internationalen Walfangkommission IWC ( International Whaling Commission) Die Erprobung schiffs-basierter automatischer Überwachung von marinen Säugetieren mittels passiver Akustik und Infrarot-Optik 8 1. FAHRTVERLAUF UND ZUSAMMENFASSUNG Eine Studie des Auftretens und der Verteilung bathypelagischen Planktons, insbesondere pelagischer Arten der Mysiden und Polychaeten, als Beitrag zum Biodiversitäts-Zensus CeDAMar (Census of the BioDiversity of the Abyssal Marine Life) Eine Untersuchung der Adaptationsfähigkeiten und der Ökologie antarktischer Bodenfische Das Absetzen einer Unterwasser-Messstation (MABEL genannt) auf dem Meeresboden Fahrtverlauf Der Fahrtabschnitt begann mit dem Auslaufen von FS Polarstern von Kapstadt in Südafrika um 1 Uhr morgens am 20. November 2005. Um die Neumayer-Station und Expeditionen auf dem antarktischen Kontinent so früh wie möglich während der Südsommer-Saison zu versorgen, nahm FS Polarstern fast direkten Kurs auf Neumayer. Nur solche Forschungsarbeiten, die an Positionen entlang der ersten Strecke nach Süden lagen und wenig Zeit beanspruchten, wurden noch vor Erreichen der antarktischen Küste durchgeführt. Die marine Akustikgruppe brachte ihren Streamer zur Aufzeichnung von Unterwasserlauten von Meeressäugern bereits wenige Stunden nach dem Auslaufen von Kapstadt aus. Der Streamer umfasste fünfzehn Hydrophone, die, integriert in ein 600 m langes Kabel, hinter dem Schiff her geschleppt wurden. Das andere System zur Erfassung mariner Säugetiere war, basierend auf zwei Infrarot-Kameras, auf dem Krähennest des Schiffes montiert und ermöglichte, im näheren Umfeld des Schiffes die Wärmeausstrahlung von Walblas zu erfassen. Der Hydrophon-Streamer wurde beim Erreichen der nördlichsten Front des Antarktischen Zirkumpolarstroms (ACC) eingeholt, um stattdessen einen kontinuierlichen Plankton-Rekorder (Continuous
Recommended publications
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica
    15 NOVEMBER 2020 S T R A S S E T A L . 9863 Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica VOLKER H. STRASS,GERD ROHARDT,TORSTEN KANZOW,MARIO HOPPEMA, AND OLAF BOEBEL Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany (Manuscript received 16 April 2020, in final form 10 August 2020) ABSTRACT: The World Ocean is estimated to store more than 90% of the excess energy resulting from man-made greenhouse gas–driven radiative forcing as heat. Uncertainties of this estimate are related to undersampling of the subpolar and polar regions and of the depths below 2000 m. Here we present measurements from the Weddell Sea that cover the whole water column down to the sea floor, taken by the same accurate method at locations revisited every few years since 1989. Our results show widespread warming with similar long-term temperature trends below 700-m depth at all sampling sites. The mean heating rate below 2000 m exceeds that of the global ocean by a factor of about 5. Salinity tends to increase—in contrast to other Southern Ocean regions—at most sites and depths below 700 m, but nowhere strongly enough to fully compensate for the warming effect on seawater density, which hence shows a general decrease. In the top 700 m neither temperature nor salinity shows clear trends. A closer look at the vertical distribution of changes along an ap- proximately zonal and a meridional section across the Weddell Gyre reveals that the strongest vertically coherent warming is observed at the flanks of the gyre over the deep continental slopes and at its northern edge where the gyre connects to the Antarctic Circumpolar Current (ACC).
    [Show full text]
  • Arctic and Antarctic Research Institute” Russian Antarctic Expedition
    FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October - December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2014 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October – December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2014 Editor-in-Chief M.O. Krichak (Russian Antarctic Expedition – RAE) Authors and contributors Section 1 M.O. Krichak (RAE), Section 2 Ye.I. Aleksandrov (Department of Sea-Air Interaction) Section 3 G.Ye. Ryabkov (Department of Ice Regime and Forecasting) Section 4 A.I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye.Ye. Sibir (Department of Sea-Air Interaction) Section 6 I.V. Moskvin, Yu.G. Turbin (Department of Geophysics) Section 7 V.L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctica/ Quarterly Bulletin/ Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE 1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS 3 2. METEOROLOGICAL CONDITIONS IN OCTOBER-DECEMBER 2013 42 3.
    [Show full text]
  • Frozen Desert Alive the Role of Sea Ice for Pelagic Macrofauna and Its Predators: Implications for the Antarctic Pack-Ice Food Web
    Frozen Desert Alive The role of sea ice for pelagic macrofauna and its predators: implications for the Antarctic pack-ice food web Hauke Flores FrozenDesertAlive &#0-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 0',2#" 7-,1#,--'#, T4TQ""# "*#!20-,'!4#01'-,4'* *#2S &22.S 555T03%T,* ' *'-2&##) !2*-%' #12,"#, #*#).3 03% "'11#022'#1 ',"#6 %&'(S[YZV[RVXVXVVUU[VT 1%23&4(%5"1&%"%617(%(6"( FrozenDesertAlive &#0-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 17"8&9:1%8 2#04#0)0'(%',%4,&#2"-!2-02',"# <'1)3,"##,(23305#2#,1!&..#, ,"#1'()13,'4#01'2#'260-,',%#, -.%#8%4,"# 1#!2-0>%,'$'!31Q"0T8T?5021Q ',&#2-.#, 02#4#0"#"'%#,-. 40'("%S+#'TRR[ -+SUTSW330 "--0 HaukeFlores %# -0#,-.SZ1#.2#+ #0S[YV 2#'0#+#0&4#, 0-+-2-0 S0-$T"0T<T2T<-*$$ 9-.0-+-2-0 SB0T2TT4,80,#)#0 '#--0"#*',%1!-++'11'# S0-$T"0T'0T:T2T<T"#'0 S0-$T"0T4T5T'2&+,, S0-$T"0T8TT>T5-*!)#02 %,+#+-07-$+7%0,"+-2&#0 %,6#"#,)#,,+#',#60-!+322#0 6'1#*8*-0#1 TV&#.TS[TSVTX2,TTRRZ Contents ",%*'1&13++07 Z B32!&13++07 SS 6#0+,13++07 SV 9&.2#0S 6#,#0*%,20-"3!2'-, S[ 9&.2#0T B'#2-$25-'!#$'1&1.#!'#1$0-+2&#&-32&&&#2*," U[ %1*,"1,""*#.&,2%1*,"1QChampsocephalusgunnari ,"Chaenocephalusaceratus',TRRSTRRU PolarBiology27(2004)119R129 9&.2#0U ",#0%7!-,2#,2-$,20!2'!+#1-.#*%'!$'1&#1S XS '+.*'!2'-,1$-02&#+0',#$--"5# PolarBiology29(2006)10451051 9&.2#0V B'120' 32'-,Q 3,",!#,"#!-*-%'!*0#*#4,!#-$ YU .#*%'!$'1&#1',2&#80#4&#Q&-32&#0,7!#, MarineEcologyProgressSeries367(2008)271282 9&.2#0W
    [Show full text]
  • Microzooplankton Herbivory in the Ross Sea, Antarctica David A
    Deep-Sea Research II 47 (2000) 3249}3272 Microzooplankton herbivory in the Ross Sea, Antarctica David A. Caron! * , Mark R. Dennett!, Darcy J. Lonsdale", Dawn M. Moran!, Ludmilla Shalapyonok! !Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA "Marine Sciences Research Center, State University of New York, Stony Brook, NY 11794-5000, USA Received 1 June 1999; received in revised form 15 September 1999; accepted 1 October 1999 Abstract Microplankton abundances and phytoplankton mortality rates were determined at six stations during four cruises spanning three seasons in the Ross Sea polynya, Antarctica (early spring, Oct.}Nov. 1996; mid-late summer, Jan.}Feb. 1997; fall, Apr. 1997; mid-late spring, Nov.}Dec. 1997). Rates of microzooplankton herbivory were measured using a modi"ed dilution technique, as well as by examining the rate of disappearance of phytoplankton (chlorophyll) in samples incubated in the dark (i.e. grazing in the absence of phytoplankton growth). Strong seasonal cycles of phytoplankton and microzooplankton abundance were observed during the study. Microzooplankton abundance varied by more than three orders of magnitude during the four cruises, and was positively correlated with phytoplankton biomass over the entire data set. Nevertheless, microzooplankton grazing was insu$cient to impact signi"cantly phytoplankton standing stocks during most of the experiments performed in this perenially cold environment. Only thirteen out of a total of 51 experiments yielded phytoplank- ton mortality rates that were signi"cantly di!erent from zero. The highest mortality rate observed in this study (0.26 d\) was modest compared with maximal rates that have been observed in temperate and tropical ecosystems.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • Marine Ecosystems and Global Change
    IInternationalnternational GGeosphere-Biosphereeosphere-Biosphere PProgrammerogramme IGBP Science No. 5 MMarinearine EEcosystemscosystems aandnd GGloballobal CChangehange Global Ocean Ecosystem Dynamics Why GLOBEC? The Global Ocean Ecosystem Dynamics Project (GLOBEC) was adopted in 1995 by the International Geosphere-Biosphere Pro- gramme as a new Project, with co-sponsorship from the Scientifi c Committee on Oceanic Research (SCOR) and the Intergovernme- ntal Oceanographic Commission of UNESCO (IOC). Its goal is to “advance our understanding of the structure and functioning of the global ocean ecosystem, and its response to physical forcing, so that a capability can be developed to forecast the responses of the marine ecosystem to global change.” GLOBEC considers global change in the broad sense, encompass- ing the gradual processes of climate change and its impacts on marine systems, as well as those shorter-term changes resulting from anthropogenic pressures, such as population growth in coastal areas, increased pollution, overfi shing, changing fi shing practices and changing human use of the seas. GLOBEC has four detailed scientifi c objectives: 1. To better understand how multi-scale physical environmental processes force large-scale changes in marine ecosystems. 2. To determine the relationship between structure and dyna- mics in a variety of oceanic systems which typify signifi cant components of the global ocean ecosystem, with emphasis on individuals and populations of key species and trophodynamic pathways. 3. To determine the impacts of global change on stock dynamics using coupled physical, biological and chemical models linked to appropriate observation systems, and to develop the capa- bility to predict future impacts. 4. To determine how changing marine ecosystems will affect the Earth System by identifying and quantifying feedback mecha- nisms.
    [Show full text]
  • Recent Reoccurrence of Large Open-Ocean Polynya on the Maud
    RESEARCH LETTER Recent Reoccurrence of Large Open‐Ocean Polynya 10.1029/2018GL081482 on the Maud Rise Seamount Key Points: B. Jena1 , M. Ravichandran1 , and J. Turner2 • The largest and most prolonged Maud Rise polynya since the1970s 1ESSO‐National Centre for Polar and Ocean Research, Ministry of Earth Science, Government of India, Vasco‐da‐Gama, appeared on 14 September 2017 with 2 an areal extent of ~9.3 × 103 km2 India, British Antarctic Survey, Natural Environment Research Council, Cambridge, UK • Record negative anomalies of sea‐ice concentration occurred and the polynya expanded up to Abstract Satellite observations have shown that the largest and most prolonged Maud Rise open‐ocean 3 2 ~298.1 × 10 km and existed for polynya since the 1970s appeared on 14 September 2017 (~9.3 × 103 km2) within the seasonal sea‐ice cover 79 days 3 2 • The polynya was associated with a which expanded maximum on 1 December 2017 (~298.1 × 10 km ) and existed for 79 days. Record large cyclonic ocean eddy, negative negative anomalies of sea‐ice concentration were observed in and around the polynya. The occurrence of the wind stress curl, and anomalous polynya was associated with a large cyclonic eddy and negative wind stress curl that facilitated melting of atmospheric circulation sea‐ice. Concurrently, a region of positive sea level pressure anomalies extended over the entire northern Supporting Information: Weddell Sea accompanied by record low negative anomalies (deep depressions) over the southwest Weddell • Supporting Information S1 Sea and the Maud Rise. The atmospheric circulation anomalies advected moist‐warm air from the midlatitudes, resulted a record atmospheric warming (~11.5 °C) in the Maud Rise that favored this rare event as one of the largest open‐ocean polynyas.
    [Show full text]
  • Circulation and Transport of Water Masses in the Lazarev Sea, Antarctica, During Summer and Winter 2006
    Deep-Sea Research I 58 (2011) 186–199 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Circulation and transport of water masses in the Lazarev Sea, Antarctica, during summer and winter 2006 Boris Cisewski a,b,n, Volker H. Strass a, Harry Leach c a Alfred-Wegener-Institut fur¨ Polar- und Meeresforschung, P.O. Box 120161, 27515 Bremerhaven, Germany b Institut fur¨ Umweltphysik, Abteilung Ozeanographie, Universitat¨ Bremen, P.O. Box 330440, 28334 Bremen, Germany c Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP, UK article info abstract Article history: The distribution and circulation of water masses in the region between 61W and 31E and between the Received 6 July 2010 Antarctic continental shelf and 601S are analyzed using hydrographic and shipboard acoustic Doppler Received in revised form current profiler (ADCP) data taken during austral summer 2005/2006 and austral winter 2006. In both 20 November 2010 seasons two gateways are apparent where Warm Deep Water (WDW) and other water masses enter Accepted 2 December 2010 the Weddell Gyre through the Lazarev Sea: (a) a probably topographically trapped westward, then Available online 5 December 2010 southwestward circulation around the northwestern edge of Maud Rise with maximum velocities of Keywords: about 20 cm sÀ1 and (b) the Antarctic Coastal Current (AntCC), which is confined to the Antarctic Weddell Gyre continental shelf slope and is associated with maximum velocities of about 25 cm sÀ1. Lazarev Sea Along two meridional sections that run close to the top of Maud Rise along 31E, geostrophic velocity Geostrophy shears were calculated from CTD measurements and referenced to velocity profiles recorded by an ADCP Circulation 7 À1 Transports in the upper 300 m.
    [Show full text]
  • Earth's Cryosphere: Past, Present and Future
    International Conference Earth's Cryosphere: Past, Present and Future Pushchino, Russia, June 4-8, 2017 ISBN 978-5-600-01788-7 УДК 551.34; 624.139; 624.131.1; 551.32; 612.821; 591.51; 550.47; 579 Pushchino Permafrost Conference «Earth's Cryosphere: Past, Present and Future» organized by: Federal Agency for Scientific Organizations, Russian Foundation for Basic Research, Institute of Physicochemical and Biological Problems in Soil Science RAS, OOO “Bioarsenal” Conference Organizing Committees Chair: Andrey Alekseev (Corresponding member of RAS, Director of IPCBPSS RAS) Chair of the Scientific Committee: Elizaveta Rivkina (Head of Soil Cryology Laboratory, IPCBPSS RAS) Chair of the local Organizing Committee: Andrey Abramov (Soil Cryology Laboratory, IPCBPSS RAS) Local Committee: Svetlana Chudinova, Elena Spirina, Dmitry Fedorov- Davydov, Alexey Lupachev, Victor Sorokovikov Technical group: A.Veremeeva, A.Shatilovich, O.Zanina, L.Pasnitskaya, L.Gulyaeva, L.Kondakova, E.Sokolova, S.Malavin, A.Komolova Sponsors OOO “Northern survey” (Moscow) Beta Analytics Inc. (USA) PYRN-Russia 2 TABLE OF CONTENTS Conference program 5 Abstracts Session 1: Past, Present and Future state of cryosphere 19 Session 2: Infrastructure management: engineering and processes 59 Session 3: Life in permafrost 77 Session 4: Physico-chemical problems of frozen ground 85 Session 5: Fate of water in subzero areas 92 Poster session 100 Session 6: “Makeev readings” - Permafrost affected soils: formation and function 144 Author index 166 3 PROGRAM of the International Conference
    [Show full text]
  • Salp/Krill Interactions in the Southern Ocean:Spatial Segregation and Implications for the Carbon flux
    Deep-Sea Research II 49 (2002) 1881–1907 Salp/krill interactions in the Southern Ocean:spatial segregation and implications for the carbon flux E.A. Pakhomova,*, P.W. Fronemanb, R. Perissinottoc a Department of Zoology, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa b Southern Ocean Group, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa c School of Life and Environmental Sciences, University of Natal, Durban 4041, South Africa Abstract Available data on the spatial distribution and feeding ecophysiology of Antarctic krill, Euphausia superba, and the tunicate, Salpa thompsoni, in the Southern Ocean are summarized in this study. Antarctic krill and salps generally display pronounced spatial segregation at all spatial scales. This appears to be the result of a clear biotopical separation of these key species in the Antarctic pelagic food web. Krill and salps are found in different water masses or water mass modifications, which are separated by primary or secondary frontal features. On the small-scale (o100 km), Antarctic krill and salps are usually restricted to the specific water parcels, or are well segregated vertically. Krill and salp grazing rates estimated using the in situ gut fluorescence technique are among the highest recorded in the Antarctic pelagic food web. Although krill and salps at times may remove the entire daily primary production, generally their grazing impact is moderate (p50% of primary production). The regional ecological consequences of years of high salp densities may be dramatic. If the warming trend, which is observed around the Antarctic Peninsula and in the Southern Ocean, continues, salps may become a more prominent player in the trophic structure of the Antarctic marine ecosystem.
    [Show full text]