Assessment of the BIOENERGY PROVISIONS in the 2008 Farm Bill

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of the BIOENERGY PROVISIONS in the 2008 Farm Bill Assessment of the BIOENERGY PROVISIONS in the 2008 Farm Bill www.fishwildlife.org IOMASS PRODUCTION ASSESSMENT OF THE BIOENERGY PROVISIONS IS A POTENTIAL IN THE 2008 FARM BILL GAME‐CHANGER A Report Prepared for the Association of Fish and Wildlife Agencies Bfor U.S. landscapes and ecosystems. Contractor: Bill D. McGuire Communication, collaboration, and 4 EXECUTIVE SUMMARY cooperation are extremely important 10 INTRODUCTION if bioenergy and fish, wildlife, and 12 Background biodiversity are to be integrated in ways 16 THE CHALLENGES that are truly sustainable. Legislators 18 Land Conversion 19 Use of Aggressive Plants that Invade and Degrade Native Plant Communities and other policymakers have choices. 20 Reduced Diversity Through Monoculture Plantings 21 Management that Diminishes Habitat 22 Water Quantity/Quality 24 BIOENERGY PROVISIONS IN THE 2008 FARM BILL 25 Title I – Commodity Programs 26 Title II – Conservation 27 Title VI - Rural Development 29 Title VII – Research and Related Matters 30 Title VIII – Forestry 31 Title IX - Energy 36 Title XI – Livestock 36 Title XV – Trade and Tax Provisions 37 Opportunities 40 Discussion and Take Home Messages 46 APPENDIX A – Guidelines for Integrating Fish and Wildlife Conservation with Biomass Production 48 FOOTNOTE CITATIONS This project is made possible by way of a grant administered by the Association of Fish and Wildlife Agencies with funding from the Sport Fish and Wildlife Restoration Programs of the USFWS, pursuant to the Stevens Amendment to P.L. 100‐463. © 2012 Association of Fish and Wildlife Agencies t makes sense to first use EXECUTIVE SUMMARY biomass produced in ways CONCERN about the cost of energy, U.S. dependence on foreign oil, and increasing global energy demand is generating attention to bioenergy. Congress created a Biomass Caucus and the White House issued the 2011 that do not compete with Blueprint for a Secure Energy Future to further engage federal agencies (U.S. Departments of Agriculture, Defense, Energy, Transportation, and the Environmental Protection Agency), industry, agriculture producers, private I other societal needs. organizations, and citizens in the discussion of a bioenergy future. Many aspects of federal bioenergy policy pertaining 1974 promoted ethanol as an additive to gasoline. to agriculture have roots in the Farm Security and The Energy Policy Act of 2005 mandated the use of Rural Investment Act of 2002 (2002 Farm Bill), as well ethanol through the Renewable Fuel Standard (RFS). as the Food, Conservation, and Energy Act of 2008 The Energy Independence and Security Act of 2007 (2008 Farm Bill), which contained over $1 billion in raised the RFS target to 36 billion gallons of ethanol mandatory funding for energy efficiency and renewable by 20224. These legislative actions are game-changers energy. The production of biomass is a game‐changer because they mandate ethanol use. Interest in bioenergy regarding land‐use because of the profit potential feedstock includes terrestrial native and non‐native on lands not historically suited to farming. It will be plants as well as aquatics such as cyanobacteria, lemna important to proceed with thought and attention to (duckweed), and plankton. One of the most unusual conserving the nation’s irreplaceable natural resources, possibilities is described in a 2007 article as “synthetic including fish, wildlife, and their native habitats. life,” a concept in which the U.S. Department of Energy Sustainability of species is at stake as is the viability of (DOE) is reported as committing $125 million to tailor the $730 billion/year outdoor industry that supports 6.5 an organism by using genetics from several organisms.5 million jobs (1 out of 20 of all U.S. jobs)1. Pelletized biomass to generate energy is the most active This study provides an overview of the bioenergy current market, but there is much interest in liquid movement and policy rooted in the 2008 Farm Bill. biofuels from cellulosic sources as well. ‘First‐generation The risks and opportunities of bioenergy production biofuels’ are produced from corn‐kernel starch or related to fish, wildlife, and their native habitats include: soybeans (biodiesel) and ‘advanced biofuels’ comes land conversion; use of aggressive plants that invade from about anything else.6 Because first generation and degrade native plant communities; monoculture biofuels use crops also grown for food (40% of the plantings that reduce diversity; management that 2011 corn crop grown on about 92 million acres were diminishes habitat; and, decline in water quantity/ reportedly to be used for ethanol production), many quality. In addition to review of the 2008 Farm have voiced concern about the diversion of food Bill, the report addresses the use of aggressive and crops to fuel purposes. Other concerns are that the genetically modified (GM) plant materials; guidelines intensive cultivation needed for first‐generation biofuel for integrating fish and wildlife needs with bioenergy; production may lead to increased soil erosion, decreased environmental services in the context of bioenergy and water quantity/quality, and conversion/deterioration fish and wildlife resources; and examples of bioenergy of already diminished wildlife habitat while yielding production that integrate fish and wildlife needs. only modest greenhouse gas savings. The commonly‐ communicated advantage of using cellulosic biomass is Bioenergy is not new; wood has been burned since the that it can be derived as a co‐product of crops grown for early days of mankind. Wood, grasses and other organic first generation biofuels or grown as dedicated energy materials remain an important part of the modern crops on land too poor for food production.7 Residue biomass stream, particularly with increasing demand from ecologically site‐appropriate and sustainably for pelletized wood from North America (European managed native forest, grasslands, etc. have considerable and Asian markets in particular)2 and growing export potential to generate biomass in ways that contribute to interest in areas with access to deep water ports. Liquid our energy independence while conserving irreplaceable biofuels also have a long history. Camelina, an oil seed natural resources and aspects of the U.S. economy that crop pursued as a feedstock for jet fuel, provided lamp depend on them. oil in the Bronze Age.3 Ethanol was the fuel for an engine developed in 1826 by Samuel Morley and the A report sponsored by the DOE titled the U.S. Billion‐ Model T was introduced as a flexible fuel vehicle in Ton Update8 indicates that biomass production by 2030 1908. But World War I drove up ethanol demand and could be increased from the current 473 million dry by the 1920s gasoline dominated. In 1974, following tons per year to as much as 1.6 billion dry tons per a time of food and fuel concern, the Solar Energy year (more than enough to offset 30% of current U.S. Research, Development, and Demonstration Act of petroleum consumption). 4 5 bioenergy report www.fishwildlife.org The report indicates that this could be done with reliance bioenergy in ways that enhance the environment. These contains forestry bond authorities – the $1.01 per gallon the private landowner/government agency whose lands summaryexecutive on advances in plant breeding, genetic modification, and entities are designed to represent many perspectives, tax credit for cellulosic ethanol production – and directs are invaded, or the general public through taxation? production technology along with crop residues from including natural resources. Title VII – Research and a study (National Academies suggested) concerning In the case of genetically modified and patented plant agricultural production (corn stover) and dedicated Related Matters, is an important driver of bioenergy biofuels production, capacity, the environment, and other materials, is it the company that holds patent rights or energy crops like short‐rotation willow, eucalyptus, giant because of the advisory groups created to set priorities for issues. someone else? These questions are beyond the scope of this miscanthus, hybrid switchgrass, and others with biomass bioenergy research as well as grants and other funding report, but need answers. potentials of 17.1 to 24.3 dry tons/acre/year. By contrast, provided through the Agriculture and Food Research Developing bioenergy markets offers opportunities to annual yields for corn are reported at about 250 gallons/ Initiative (NIFA), and the Sun Centers, which provide optimize many societal needs while stimulating diverse In addition to bioenergy needs in the U.S., international acre and sugar cane at about 450 gallons/acre.9 Even a regional focus regarding renewable energy. State fish industries and sustaining natural resources that include demand is in play with rapidly increasing export with dedicated energy crops, an area the size of Iowa and and wildlife agencies, the U.S. Fish and Wildlife Service fish, wildlife, and their native habitats. Native plants, of pelletized and chipped wood as well as ethanol. executive summaryexecutive Missouri (79 million acres) reportedly would be needed. (USFWS), and the outdoor recreation industry appear in particular, offer potential because they are disease/ An unknown is whether international demand for Can this be done without conversion of remaining native absent or not often engaged in activities under both Titles insect resistant and adapted to the soils and climate. And, biomass will create land‐conversion pressures in the ecosystems that
Recommended publications
  • Free Download
    The Revolution Transforming Agriculture & Environment Biochar: Ancient Origins, Modern Solution A Biochar Timeline Author Paul Taylor PhD This complete book is available at www.TheBiocharRevolution.com Biochar: Ancient Origins, Modern Solution A Biochar Timeline Author Paul Taylor PhD This complete book is available at www.TheBiocharRevolution.com FIRST EDITION 2010 Copyright 2010 NuLife Publishing All rights reserved. No part of this publication may be reproduced, stored in a retrieval system in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher. National Library of Australia Cataloguing–in–Publishing entry: Taylor, Paul, 1945– The Biochar Revolution: Transforming Agriculture & Environment. 1st ed. ISBN: 978 1 921630 41 5 (pbk.) 1. Ashes as fertilizer. 2. Carbon sequestration. 3. Charcoal. 4. Soil amendments 631.4 Published by NuLife Publishing PO Box 9284 GCMC Qld 9726 Australia Email: [email protected] For further information about orders: Email: [email protected] Website: www.thebiocharrevolution.com ACKNOWLEDGEMENTS I am grateful for the interest, support, patience, and effort expressed consistently— yet in unique ways—by each and every author, as we went though many revisions together. They are listed in the front of the book, with their bios in the back, under contributing authors. I owe special thanks to Hugh McLaughlin and Paul Anderson for their belief, interest, advice and support in the book as a whole. Both read, and offered valuable editing suggestions on, diverse chapters. Hugh reviewed most of the final manuscript. Gary Levi played a crucial role as chief editor and editorial advisor. He edited every chapter numerous times, and stayed with the project as it extended from 5 weeks to 5 months, working generously and meticulously to shape and organize the book.
    [Show full text]
  • Proceedings IUFRO: Evaluation and Planning of Forestry Research
    united States oepartment of Agriculture Proceedings Forest Service Northeastern IUFRO Station NE-GTR-111 Evaluation and Planning 1986 of Forestry Research S6.06 - S6.06.01 Colorado State University Fort Collins, Colorado 80523 July 25-26, 1985 IUFRO PROCEEDINGS EVALUATION AND PLANNING OF FORESTRY RESEARCH S6.06 - S6.06.01 Compiled by Denver P. Burns Colorado State University Fort Collins, Colorado 80523 USA July 25-26, 1985 Sponsored by INTERNATIONAL UNION OF FORESTRY RESEARCH ORGANIZATIONS and NORTHEASTERN FOREST EXPERIMENT STATION, USDA FOREST SERVICE Papers are published in this proceedings in camera-ready form as submitted by the authors. The authors are responsible for the content of their papers. PROGRAM July 25, 1985 Introduction: Denver P. Burns, Director, Northeastern Forest Experiment Station, USDA Forest Service, Broanall, PA SESSION I - RESB.Alial FRONTIERS Moderator: Dr. Eldon Ross Resear·ch Frontiers. W. Franklin Harr·is, Deputy Division Director, Biotic Systems and Resources, National Science Foundation, Washington, D.C. SESSION II - RESBARQI FROIITIBRS FOR FORESTRY Applying Frontier Biotechnologies to Tree Improvement: Opportunities and Limitations. F. Thomas Ledig, Project Leader, Institute of Forest Genetics, Pacific Southwest Forest and Range Experiment Station, USDA For·est Service, Berkeley, CA Biotechnologies - The Potential Role of Somaclonal Variation in Forestry. Darroll D. Skilling and Michael E. Ostry, Principal Plant Pathologists, Nor·th Central Forest Experiment Station, USDA Forest Service, St. Paul, MN Frontiers in Wood Utilization Research in the United States. John R. Erickson, Director·, Forest Products Laboratory, USDA For·est Service, �.adison, WI Fr·ontiers in Handling Wood. C. R. Silversides, Forestry Consultant, Prescott, Ontar·io SESSION III - IDBIITIFIING RBSBARal NEEDS Moderator: Dr.
    [Show full text]
  • Perennial Polyculture Farming: Seeds of Another Agricultural Revolution?
    THE ARTS This PDF document was made available from www.rand.org as a public CHILD POLICY service of the RAND Corporation. CIVIL JUSTICE EDUCATION Jump down to document ENERGY AND ENVIRONMENT 6 HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS The RAND Corporation is a nonprofit research NATIONAL SECURITY POPULATION AND AGING organization providing objective analysis and effective PUBLIC SAFETY solutions that address the challenges facing the public SCIENCE AND TECHNOLOGY and private sectors around the world. SUBSTANCE ABUSE TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE Support RAND WORKFORCE AND WORKPLACE Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Pardee Center View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. This product is part of the RAND Corporation occasional paper series. RAND occasional papers may include an informed perspective on a timely policy issue, a discussion of new research methodologies, essays, a paper presented at a conference, a conference summary, or a summary of work in progress. All RAND occasional papers undergo rigorous peer review to ensure that they meet high standards for research quality and objectivity. Perennial Polyculture Farming Seeds of Another Agricultural Revolution? James A. Dewar This research was undertaken as a piece of speculation in the RAND Frederick S.
    [Show full text]
  • Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-By-Case Decision-Making
    sustainability Review Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making Paul Vincelli Department of Plant Pathology, 207 Plant Science Building, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; [email protected] Academic Editor: Sean Clark Received: 22 March 2016; Accepted: 13 May 2016; Published: 20 May 2016 Abstract: Genetic engineering (GE) offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals. Keywords: biotechnology; GMO (genetically modified organism) 1. Introduction and Background Disease management practices can contribute to sustainability by protecting crop yields, maintaining and improving profitability for crop producers, reducing losses along the distribution chain, and reducing the negative environmental impacts of diseases and their management.
    [Show full text]
  • Energy Forestry Exemplar Trials Establishment
    Energy Forestry Exemplar Trials Establishment Guidelines Energy Forestry Exemplar Trials Energy Forestry Exemplar Trials Contents Page INTRODUCTION… ....................................................................................2 2. AIMS..................................................................................................2 3. THE TRIAL SITES .................................................................................2 4. GENERAL SITE MANAGEMENT................................................................3 5. SRC and SRF.......................................................................................4 6. RESEARCH, DEVELOPMENT AND MONITORING.........................................4 6.1. Environmental Research..............................................................5 6.2. Silviculture - Short Rotation Forestry (SRF) ...................................7 6.3. Silviculture - Short Rotation Coppice (SRC).................................. 10 6.4. Carbon balance........................................................................ 11 6.5. Regeneration or reinstatement................................................... 11 7. CONCLUSION .................................................................................... 11 BIBLIOGRAPHY ..................................................................................... 12 APPENDICES: Appendix 1: Experiment plans and protocols ............................... 15 - 52 a. Soil sampling and analysis ........................................................... 15
    [Show full text]
  • Frontiers in Alley Cropping: Transformative Solutions for Temperate Agriculture
    Received: 12 July 2017 | Revised: 24 October 2017 | Accepted: 7 November 2017 DOI: 10.1111/gcb.13986 OPINION Frontiers in alley cropping: Transformative solutions for temperate agriculture Kevin J. Wolz1,2,3 | Sarah T. Lovell2,4 | Bruce E. Branham4 | William C. Eddy2,5 | Keefe Keeley3,6 | Ronald S. Revord2,3,4 | Michelle M. Wander7 | Wendy H. Yang2,5,8 | Evan H. DeLucia2,5 1Program in Ecology, Evolution and Conservation Biology, University of Illinois Abstract Urbana-Champaign, Urbana, IL, USA Annual row crops dominate agriculture around the world and have considerable 2Institute for Sustainability, Energy, and negative environmental impacts, including significant greenhouse gas emissions. Environment, University of Illinois Urbana- Champaign, Urbana, IL, USA Transformative land-use solutions are necessary to mitigate climate change and 3Savanna Institute, Madison, WI, USA restore critical ecosystem services. Alley cropping (AC)—the integration of trees 4 Department of Crop Sciences, University with crops—is an agroforestry practice that has been studied as a transformative, of Illinois Urbana-Champaign, Urbana, IL, USA multifunctional land-use solution. In the temperate zone, AC has strong potential for 5Department of Plant Biology, University of climate change mitigation through direct emissions reductions and increases in land- Illinois Urbana-Champaign, Urbana, IL, USA use efficiency via overyielding compared to trees and crops grown separately. In 6Gaylord Nelson Institute for Environmental Studies, University of Wisconsin-Madison, addition, AC provides climate change adaptation potential and ecological benefits by Madison, WI, USA buffering alley crops to weather extremes, diversifying income to hedge financial 7Department of Natural Resources and risk, increasing biodiversity, reducing soil erosion, and improving nutrient- and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA water-use efficiency.
    [Show full text]
  • Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada
    Chapter 17 Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada Werther Guidi, Frédéric E. Pitre and Michel Labrecque Additional information is available at the end of the chapter http://dx.doi.org/10.5772/51111 1. Introduction The production of energy by burning biomass (i.e. bioenergy), either directly or through transformation, is one of the most promising alternative sources of sustainable energy. Contrary to fossil fuels, bioenergy does not necessarily result in a net long-term increase in atmospheric greenhouse gases, particularly when production methods take this concern into account. Converting forests, peatlands, or grasslands to production of food-crop based biofuels may release up to 400 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. On the other hand, biofuels from biomass grown on degraded and abandoned agricultural lands planted with perennials do not have a negative effect on carbon emissions [1]. In addition, when properly managed, bioenergy can enhance both agricultural and rural development by increasing agricultural productivity, creating new opportunities for revenue and employment, and improving access to modern energy services in rural areas, both in developed and developing countries [2]. Biofuels constitute a very broad category of materials that can be derived from sources including municipal by-products, food crops (e.g. maize, sugar cane etc.), agricultural and forestry by-products (straws, stalks, sawdust, etc.) or from specifically-conceived fuel crops. Our analysis focuses on agricultural biofuel crops that can be grown in temperate regions. These crops can be divided into four main categories (Table 1).
    [Show full text]
  • Positive Water Linkages of Producing Short Rotation Poplars and Willows for Bioenergy and Phytotechnologies
    Received: 6 November 2018 Revised: 2 February 2019 Accepted: 10 March 2019 DOI: 10.1002/wene.345 ADVANCED REVIEW Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies Ronald S. Zalesny Jr1 | Göran Berndes2 | Ioannis Dimitriou3 | Uwe Fritsche4 | Constance Miller5 | Mark Eisenbies6 | Solomon Ghezehei7 | Dennis Hazel7 | William L. Headlee8,9 | Blas Mola-Yudego10 | M. Cristina Negri11 | Elizabeth Guthrie Nichols7 | John Quinn11 | Shawn Dayson Shifflett7 | Obste Therasme6 | Timothy A. Volk6 | Colleen R. Zumpf11 1USDA Forest Service, Northern Research Station, Rhinelander, Wisconsin The production of short rotation woody crops (SRWCs) such as poplars and wil- 2Chalmers University of Technology, lows is a promising component of global bioenergy and phytotechnology portfo- Physical Resource Theory, Göteborg, lios. In addition to the provision of biomass feedstocks and pollution remediation, Sweden these trees and shrubs have been sustainably grown to conserve or utilize water in 3Department of Crop Production Ecology, Swedish University of Agricultural Sciences a variety of applications. Growing these woody plants for multiple uses supports (SLU), Uppsala, Sweden many of the United Nation's Sustainable Development Goals (SDGs), especially 4International Institute for Sustainability Clean Water and Sanitation (SDG6) and Affordable and Clean Energy (SDG7). Analysis and Strategy, Darmstadt, Germany As a result, focusing on ecosystem services such as freshwater and biomass has 5Food and Agriculture Organization of the United Nations (FAO), Global Bioenergy become an important aspect of deploying these production systems across variable Partnership (GBEP), Rome, Italy landscapes. The current review consists of an introduction of ecosystem services 6Department of Forest and Natural and the SDGs, as well as SRWCs and their applications.
    [Show full text]
  • Sustainability Assurance for Energy from Forestry
    Sustainability Assurance for Energy from Forestry Final Report prepared for WWF International by Uwe R. Fritsche & Leire Iriarte (IINAS), Joanne Fitzgerald (EFI), Neil Bird (JR) IINAS - International Institute for Sustainability Analysis and Strategy EFI - European Forest Institute JR - Joanneum Research Darmstadt, Madrid, Joensuu, Graz June 2014 IINAS/EFI/JR ii Sustainability of Woody Bioenergy Content List of Figures .......................................................................................................... iv List of Tables ............................................................................................................ v Acronyms ................................................................................................................ vi Acknowledgments ..................................................................................................viii 1 Introduction and Overview ................................................................................ 1 2 Long-term Bioenergy Vision in the Global Context ............................................. 2 2.1 WWF Global Scenarios ....................................................................................... 2 2.2 IEA and IPCC Scenarios ....................................................................................... 4 2.3 Summary: Long-term Bioenergy Vision in the Global Context in a Nutshell ..... 7 3 Woody Biomass for Energy ................................................................................ 8 3.1 Woody Biomass Sources
    [Show full text]
  • Liquid Biofuels for Transportation Chinese Potential and Implications for Sustainable Agriculture and Energy in the 21 Century
    Liquid Biofuels for Transportation Chinese Potential and Implications for Sustainable Agriculture and Energy in the 21st Century Assessment Study Beijing, P.R. China February 2006 Funded by German Ministry for Food, Agriculture, and Consumer Protection (BMELV) through German Agency for Renewable Resources (FNR) China: Liquid biofuels for transportation Team leader Prof. Wang Gehua, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing Author team: Mrs. Prof. Dr. Zhao Lixin, Chinese Academy of Agricultural Engineering (CAAE), Beijing Mrs. Zhang Yanli, Chinese Academy of Agricultural Engineering (CAAE), Beijing Mrs. Dr. Fu Yujie, Northeast Forestry University, Harbin Mrs. Elisabeth-Maria Huba (M.A.), Consultant, Beijing Mr. Liu Dongsheng, Chinese Academy of Agricultural Engineering (CAAE), Beijing Prof. Li Shizhong, Center of Bio-energy, China Agricultural University, Beijing Prof. Liu Dehua, Department of Chemical Engineering, Tsinghua University, Beijing Mr. Heinz-Peter Mang, Institute for Energy and Environmental Protection (IEEP), Beijing Support team: Mrs. Dr. Du Wei, Department of Chemical Engineering, Tsinghua University, Beijing Mrs. Dr. Zhou Yujie, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing Mrs. Xu Zhe, Institute for Energy and Environmental Protection (IEEP), Beijing Ms. Tian Yalin, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing Ms. Li Guo, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing Ms. Ina Patricia Jurga, Institute
    [Show full text]
  • Forestry Criteria Background Paper
    Forestry* Criteria Development of Eligibility Criteria under the Climate Bonds Standard & Certification Scheme November 2018 Prepared by Dr. Christine Negra (Versant Vision LLC), Tanja Havemann (Clarmondial), Katie House (Climate Bonds Initiative), Ujala Qadir (Climate Bonds Initiative) and Chris Moore (Climate Bonds Initiative) * These Criteria also cover the conservation and restoration of non-forested land Supported by: Climate Bonds Initiative Forestry Background Document Definitions Climate Bonds Initiative (CBI): An investor-focused not-for-profit organisation, promoting large-scale investments that will deliver a global low carbon and climate resilient economy. The Initiative seeks to develop mechanisms to better align the interests of investors, industry and government so as to catalyse investments at a speed and scale sufficient to avoid dangerous climate change. Climate Bond: A climate bond is a bond used to finance – or re-finance - projects needed to address climate change. They range from wind farms and solar and hydropower plants, to rail transport and building sea walls in cities threatened by rising sea levels. Only a small portion of these bonds have been labelled as green or climate bonds by their issuers. Certified Climate Bond: A Climate Bond that is certified by the Climate Bonds Standard Board as meeting the requirements of the Climate Bonds Standard, as attested through independent verification. Climate Bonds Standard (CBS): A screening tool for investors and governments that allows them to identify green bonds where they can be confident that the funds are being used to deliver climate change solutions. This may be through climate mitigation impact and/ or climate adaptation or resilience. The CBS is made up of two parts: the parent standard (Climate Bonds Standard v2.1) and a suite of sector specific eligibility Criteria.
    [Show full text]
  • Polyculture of Fishes in Aquaponics and Recirculating Aquaculture
    Issue # 48 Aquaponics Journal www.aquaponicsjournal.com 1st Quarter, 2008 Polyculture of Fishes in Aquaponics and Recirculating Aquaculture By: Eron Martan Abstract Polyculture of fishes (and invertebrates) in aquapon‐ base produced the most relevant results. When ics and recirculating aquaculture is a promising way the key words polyculture and aquaponics were we can return advanced modern agriculture to sus‐ used, there were no articles found. Using the for‐ tainable agriculture using biological controls. Poly‐ mer set of key words, there were about 40 articles culture would enhance aquaponics by producing a related to polyculture, almost all of which were variety of seafood products for local consumption. referring to polycultures carried out in earthen There has been very little published research on ponds. Other databases were tried also, but pro‐ polycultures in aquaponics so much of this work is duced fewer and less relevant results. Searches based on the experience of expert scientists. Be‐ using the key word aquaponics came up with zero cause of the lack of previous studies, there is very results in all but the Blackwell Synergy database little statistical data to present. However, it has which contained one relevant article. been confirmed that redclaw lobsters are being polycultured with tilapia; they are cultured in the Due to a lack of information alternative sources hydroponics raceways where the plants are grown were sought out. A subscription to the Aquaponics on floating rafts. The information from the inter‐ Journal was ordered. Use of a World Aquaculture views indicates that using physical separation is nec‐ Society (WAS) membership which includes access essary to prevent negative species interactions.
    [Show full text]