The Implications of Growing Short-Rotation Tree Species for Carbon Sequestration in Canada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Free Download
The Revolution Transforming Agriculture & Environment Biochar: Ancient Origins, Modern Solution A Biochar Timeline Author Paul Taylor PhD This complete book is available at www.TheBiocharRevolution.com Biochar: Ancient Origins, Modern Solution A Biochar Timeline Author Paul Taylor PhD This complete book is available at www.TheBiocharRevolution.com FIRST EDITION 2010 Copyright 2010 NuLife Publishing All rights reserved. No part of this publication may be reproduced, stored in a retrieval system in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher. National Library of Australia Cataloguing–in–Publishing entry: Taylor, Paul, 1945– The Biochar Revolution: Transforming Agriculture & Environment. 1st ed. ISBN: 978 1 921630 41 5 (pbk.) 1. Ashes as fertilizer. 2. Carbon sequestration. 3. Charcoal. 4. Soil amendments 631.4 Published by NuLife Publishing PO Box 9284 GCMC Qld 9726 Australia Email: [email protected] For further information about orders: Email: [email protected] Website: www.thebiocharrevolution.com ACKNOWLEDGEMENTS I am grateful for the interest, support, patience, and effort expressed consistently— yet in unique ways—by each and every author, as we went though many revisions together. They are listed in the front of the book, with their bios in the back, under contributing authors. I owe special thanks to Hugh McLaughlin and Paul Anderson for their belief, interest, advice and support in the book as a whole. Both read, and offered valuable editing suggestions on, diverse chapters. Hugh reviewed most of the final manuscript. Gary Levi played a crucial role as chief editor and editorial advisor. He edited every chapter numerous times, and stayed with the project as it extended from 5 weeks to 5 months, working generously and meticulously to shape and organize the book. -
Proceedings IUFRO: Evaluation and Planning of Forestry Research
united States oepartment of Agriculture Proceedings Forest Service Northeastern IUFRO Station NE-GTR-111 Evaluation and Planning 1986 of Forestry Research S6.06 - S6.06.01 Colorado State University Fort Collins, Colorado 80523 July 25-26, 1985 IUFRO PROCEEDINGS EVALUATION AND PLANNING OF FORESTRY RESEARCH S6.06 - S6.06.01 Compiled by Denver P. Burns Colorado State University Fort Collins, Colorado 80523 USA July 25-26, 1985 Sponsored by INTERNATIONAL UNION OF FORESTRY RESEARCH ORGANIZATIONS and NORTHEASTERN FOREST EXPERIMENT STATION, USDA FOREST SERVICE Papers are published in this proceedings in camera-ready form as submitted by the authors. The authors are responsible for the content of their papers. PROGRAM July 25, 1985 Introduction: Denver P. Burns, Director, Northeastern Forest Experiment Station, USDA Forest Service, Broanall, PA SESSION I - RESB.Alial FRONTIERS Moderator: Dr. Eldon Ross Resear·ch Frontiers. W. Franklin Harr·is, Deputy Division Director, Biotic Systems and Resources, National Science Foundation, Washington, D.C. SESSION II - RESBARQI FROIITIBRS FOR FORESTRY Applying Frontier Biotechnologies to Tree Improvement: Opportunities and Limitations. F. Thomas Ledig, Project Leader, Institute of Forest Genetics, Pacific Southwest Forest and Range Experiment Station, USDA For·est Service, Berkeley, CA Biotechnologies - The Potential Role of Somaclonal Variation in Forestry. Darroll D. Skilling and Michael E. Ostry, Principal Plant Pathologists, Nor·th Central Forest Experiment Station, USDA Forest Service, St. Paul, MN Frontiers in Wood Utilization Research in the United States. John R. Erickson, Director·, Forest Products Laboratory, USDA For·est Service, �.adison, WI Fr·ontiers in Handling Wood. C. R. Silversides, Forestry Consultant, Prescott, Ontar·io SESSION III - IDBIITIFIING RBSBARal NEEDS Moderator: Dr. -
Energy Forestry Exemplar Trials Establishment
Energy Forestry Exemplar Trials Establishment Guidelines Energy Forestry Exemplar Trials Energy Forestry Exemplar Trials Contents Page INTRODUCTION… ....................................................................................2 2. AIMS..................................................................................................2 3. THE TRIAL SITES .................................................................................2 4. GENERAL SITE MANAGEMENT................................................................3 5. SRC and SRF.......................................................................................4 6. RESEARCH, DEVELOPMENT AND MONITORING.........................................4 6.1. Environmental Research..............................................................5 6.2. Silviculture - Short Rotation Forestry (SRF) ...................................7 6.3. Silviculture - Short Rotation Coppice (SRC).................................. 10 6.4. Carbon balance........................................................................ 11 6.5. Regeneration or reinstatement................................................... 11 7. CONCLUSION .................................................................................... 11 BIBLIOGRAPHY ..................................................................................... 12 APPENDICES: Appendix 1: Experiment plans and protocols ............................... 15 - 52 a. Soil sampling and analysis ........................................................... 15 -
Short Rotation Forestry, Short Rotation Coppice and Perennial Grasses in the European Union: Agro-Environmental Aspects, Present Use and Perspectives"
"Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J. F. Dallemand , J.E. Petersen, A. Karp EUR 23569 EN - 2008 The Institute for Energy provides scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. Special emphasis is given to the security of energy supply and to sustainable and safe energy production. European Commission Joint Research Centre Institute for Energy Contact information Address: Joint Research Centre Institute for Energy Renewable Energy Unit TP 450 I-21020 Ispra (Va) Italy E-mail: [email protected] Tel.: 39 0332 789937 Fax: 39 0332 789992 http://ie.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 47547 EUR 23569 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Proceedings of the Expert Consultation: "Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J. -
Storage of Short Rotation Coppice Willow Fuel
Harvesting / Transport No. 30 © COFORD 2012 • Willow short rotation coppice is difficult to store in large amounts, Storage of short rotation coppice because dry matter losses due to fungi will be high willow fuel Willow short rotation coppice whole • 1 shoots can be stored with success Pieter D. Kofman over a summer and will lose much water, making it a good fuel for small scale installations Background • If the willow is harvested as chips, The area of short rotation coppice (SRC) willow in Ireland is slowly increasing it should be delivered straight to the to meet local renewable energy demands, with some additional use in cofiring large scale consumer of peat for electricity generation. Increased demand for willow biomass poses a • Fungi and bacteria can cause huge problem: it can only be harvested when it is leaf-free, over the period from end of losses in dry matter, especially November-April, whereas cofiring and other applications generally need a year- in small chips, up to 30 % over 9 round fuel supply. Potentially, cofiring and CHP will require very large volumes months storage of wood fuel from forests and short rotation coppice, meaning that large volumes of fuel may have to be stored for prolonged periods of time, in some cases up to 8 months. Also, for small scale use, fuel has to be stored and probably also dried. Willow has a moisture content of 50-55% at harvest, but most small-scale boilers are only designed to combust fuel at maximum moisture content (MC) of 30%. Another factor to consider is that the bark:wood ratio of willow SRC is much higher than forest-derived wood chips. -
Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada
Chapter 17 Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada Werther Guidi, Frédéric E. Pitre and Michel Labrecque Additional information is available at the end of the chapter http://dx.doi.org/10.5772/51111 1. Introduction The production of energy by burning biomass (i.e. bioenergy), either directly or through transformation, is one of the most promising alternative sources of sustainable energy. Contrary to fossil fuels, bioenergy does not necessarily result in a net long-term increase in atmospheric greenhouse gases, particularly when production methods take this concern into account. Converting forests, peatlands, or grasslands to production of food-crop based biofuels may release up to 400 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. On the other hand, biofuels from biomass grown on degraded and abandoned agricultural lands planted with perennials do not have a negative effect on carbon emissions [1]. In addition, when properly managed, bioenergy can enhance both agricultural and rural development by increasing agricultural productivity, creating new opportunities for revenue and employment, and improving access to modern energy services in rural areas, both in developed and developing countries [2]. Biofuels constitute a very broad category of materials that can be derived from sources including municipal by-products, food crops (e.g. maize, sugar cane etc.), agricultural and forestry by-products (straws, stalks, sawdust, etc.) or from specifically-conceived fuel crops. Our analysis focuses on agricultural biofuel crops that can be grown in temperate regions. These crops can be divided into four main categories (Table 1). -
Positive Water Linkages of Producing Short Rotation Poplars and Willows for Bioenergy and Phytotechnologies
Received: 6 November 2018 Revised: 2 February 2019 Accepted: 10 March 2019 DOI: 10.1002/wene.345 ADVANCED REVIEW Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies Ronald S. Zalesny Jr1 | Göran Berndes2 | Ioannis Dimitriou3 | Uwe Fritsche4 | Constance Miller5 | Mark Eisenbies6 | Solomon Ghezehei7 | Dennis Hazel7 | William L. Headlee8,9 | Blas Mola-Yudego10 | M. Cristina Negri11 | Elizabeth Guthrie Nichols7 | John Quinn11 | Shawn Dayson Shifflett7 | Obste Therasme6 | Timothy A. Volk6 | Colleen R. Zumpf11 1USDA Forest Service, Northern Research Station, Rhinelander, Wisconsin The production of short rotation woody crops (SRWCs) such as poplars and wil- 2Chalmers University of Technology, lows is a promising component of global bioenergy and phytotechnology portfo- Physical Resource Theory, Göteborg, lios. In addition to the provision of biomass feedstocks and pollution remediation, Sweden these trees and shrubs have been sustainably grown to conserve or utilize water in 3Department of Crop Production Ecology, Swedish University of Agricultural Sciences a variety of applications. Growing these woody plants for multiple uses supports (SLU), Uppsala, Sweden many of the United Nation's Sustainable Development Goals (SDGs), especially 4International Institute for Sustainability Clean Water and Sanitation (SDG6) and Affordable and Clean Energy (SDG7). Analysis and Strategy, Darmstadt, Germany As a result, focusing on ecosystem services such as freshwater and biomass has 5Food and Agriculture Organization of the United Nations (FAO), Global Bioenergy become an important aspect of deploying these production systems across variable Partnership (GBEP), Rome, Italy landscapes. The current review consists of an introduction of ecosystem services 6Department of Forest and Natural and the SDGs, as well as SRWCs and their applications. -
Sustainability Assurance for Energy from Forestry
Sustainability Assurance for Energy from Forestry Final Report prepared for WWF International by Uwe R. Fritsche & Leire Iriarte (IINAS), Joanne Fitzgerald (EFI), Neil Bird (JR) IINAS - International Institute for Sustainability Analysis and Strategy EFI - European Forest Institute JR - Joanneum Research Darmstadt, Madrid, Joensuu, Graz June 2014 IINAS/EFI/JR ii Sustainability of Woody Bioenergy Content List of Figures .......................................................................................................... iv List of Tables ............................................................................................................ v Acronyms ................................................................................................................ vi Acknowledgments ..................................................................................................viii 1 Introduction and Overview ................................................................................ 1 2 Long-term Bioenergy Vision in the Global Context ............................................. 2 2.1 WWF Global Scenarios ....................................................................................... 2 2.2 IEA and IPCC Scenarios ....................................................................................... 4 2.3 Summary: Long-term Bioenergy Vision in the Global Context in a Nutshell ..... 7 3 Woody Biomass for Energy ................................................................................ 8 3.1 Woody Biomass Sources -
Liquid Biofuels for Transportation Chinese Potential and Implications for Sustainable Agriculture and Energy in the 21 Century
Liquid Biofuels for Transportation Chinese Potential and Implications for Sustainable Agriculture and Energy in the 21st Century Assessment Study Beijing, P.R. China February 2006 Funded by German Ministry for Food, Agriculture, and Consumer Protection (BMELV) through German Agency for Renewable Resources (FNR) China: Liquid biofuels for transportation Team leader Prof. Wang Gehua, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing Author team: Mrs. Prof. Dr. Zhao Lixin, Chinese Academy of Agricultural Engineering (CAAE), Beijing Mrs. Zhang Yanli, Chinese Academy of Agricultural Engineering (CAAE), Beijing Mrs. Dr. Fu Yujie, Northeast Forestry University, Harbin Mrs. Elisabeth-Maria Huba (M.A.), Consultant, Beijing Mr. Liu Dongsheng, Chinese Academy of Agricultural Engineering (CAAE), Beijing Prof. Li Shizhong, Center of Bio-energy, China Agricultural University, Beijing Prof. Liu Dehua, Department of Chemical Engineering, Tsinghua University, Beijing Mr. Heinz-Peter Mang, Institute for Energy and Environmental Protection (IEEP), Beijing Support team: Mrs. Dr. Du Wei, Department of Chemical Engineering, Tsinghua University, Beijing Mrs. Dr. Zhou Yujie, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing Mrs. Xu Zhe, Institute for Energy and Environmental Protection (IEEP), Beijing Ms. Tian Yalin, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing Ms. Li Guo, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing Ms. Ina Patricia Jurga, Institute -
Mechanization in Short Rotation, Intensive Culture Forestry"; 1994 March 1-3; Mobile, AL
Proceedings of the IEA/BA Task IX, Activity 1 International Conference Mobile, Alabama USA March 1-3, 1994 Edited by Bryce J. Stokes and Timothy P. McDonald U.S.D.A. Forest Service DeVall Drive Auburn University, Alabama 36849 Hosted by Scott Paper Company Sponsored by IEA/BA Task IX, Activity 1 Electric Power Research Institute Oak Ridge National Laboratory U.S. Department of Energy Southern Forest Engineering Center Auburn University Southern Forest Experiment Station U.S.D.A. Forest Service Southeastern Regional Biomass Energy Program Demonstration Sponsored by Morbark Industries Table Of Contents Foreward Session I (Moderator - Jim Decosmo) Industrial short rotation intensive culture operations,Thomas H. Morgan, Jr Harvesting costs and utilization of hardwood plantations, Timothy P. McDonald and Bryce J. Stokes Short rotation forestry in loblolly pine, Alan P. Bruce Utilization of cottonwood plantations, C. Jeffrey Portwood Stand Establishment and Culture of Hybrid Poplars, Charles E. Kaiser, Donald E. Rice, and Kirk R. Wallace Development of a flail harvester for small diameter brush and coppiced trees to produce energy/chemical feedstock, Robert A. McLauchlan, Andrew Conkey, Greg Scherer, Peter Felker, and Stan Brown Mechanization of short rotation intensive-culture wood crops, William B. Stuart Growing Eucalyptus for Pulp and Energy, James A. Rydelius Session II (Moderator - Sam Foster) Management of irrigated hybrid poplar plantations in the Pacific Northwest, Charles A. Wierman Mechanization potential for industrial-scale fiber and energy plantations, Bruce Hartsough and Randall Richter Establishing and tending poplar plantations in the North-Central U.S., Dan Netzer and Ed Ward Hansen Silvicultural techniques for short rotation Eucalyptus plantations in Brazil, Ken McNabb The effects of whole tree harvesting on fuel quality and coppicing ability of SRIC willow crops, Juha Nurmi and Jyrki Hytönen Utilization of short rotation forestry from an effluent disposal scheme, Hamish T. -
Forestry Criteria Background Paper
Forestry* Criteria Development of Eligibility Criteria under the Climate Bonds Standard & Certification Scheme November 2018 Prepared by Dr. Christine Negra (Versant Vision LLC), Tanja Havemann (Clarmondial), Katie House (Climate Bonds Initiative), Ujala Qadir (Climate Bonds Initiative) and Chris Moore (Climate Bonds Initiative) * These Criteria also cover the conservation and restoration of non-forested land Supported by: Climate Bonds Initiative Forestry Background Document Definitions Climate Bonds Initiative (CBI): An investor-focused not-for-profit organisation, promoting large-scale investments that will deliver a global low carbon and climate resilient economy. The Initiative seeks to develop mechanisms to better align the interests of investors, industry and government so as to catalyse investments at a speed and scale sufficient to avoid dangerous climate change. Climate Bond: A climate bond is a bond used to finance – or re-finance - projects needed to address climate change. They range from wind farms and solar and hydropower plants, to rail transport and building sea walls in cities threatened by rising sea levels. Only a small portion of these bonds have been labelled as green or climate bonds by their issuers. Certified Climate Bond: A Climate Bond that is certified by the Climate Bonds Standard Board as meeting the requirements of the Climate Bonds Standard, as attested through independent verification. Climate Bonds Standard (CBS): A screening tool for investors and governments that allows them to identify green bonds where they can be confident that the funds are being used to deliver climate change solutions. This may be through climate mitigation impact and/ or climate adaptation or resilience. The CBS is made up of two parts: the parent standard (Climate Bonds Standard v2.1) and a suite of sector specific eligibility Criteria. -
Short Rotation Coppice for Energy
Short Rotation Coppice for Energy Production Good Practice Guidelines Photo: Forest Research Photo: British Biogen Photo: Forest Research Photo: Wright Steve Photo: The development of an economically and environmentally sustainable industry Photo: B9 Energy Photo: These guidelines were designed in partnership with the following organisations: B RITISH B IOG EN Trade Association to the UK Bio-energy Industry CYNGOR CEFN GWLAD CYMRU COUNTRYSIDE COUNCIL FOR WALES SILSOE RESEARCH INSTITUTE The guidelines were produced using a consensus building process which was designed and guided by a steering group made up of British Biogen, Friends of the Earth, ETSU and Environmental Resolve (an undertaking of the Environment Council). The process brought together the industry, environmentalists, planners and government agencies in order to address potential stakeholder concerns and support the development of the industry in a sensitive manner. Full details of the process and participants are given in Appendix 1. Funded by the Department of Trade and Industry through British Biogen First published November 1996, reprinted May 1999 Short Rotation Coppice for Energy Production Photo: B9 Energy Photo: Good Practice Guidelines The development of an economically and environmentally sustainable industry Contents Introduction 4 Harvesting and transport 22 What is SRC energy production? 4 Harvesting 23 Benefits of SRC development 4 Timing 23 Scale of SRC schemes 6 Noise 24 Using these guidelines 6 Mechanised harvesting 24 Storage 24 Consultation 8 Safety 25