Development and Validation of Chromatography Methods for Targeted Applications
Total Page:16
File Type:pdf, Size:1020Kb
https://doi.org/10.15388/vu.thesis.125 https://orcid.org/0000-0002-6091-650X VILNIUS UNIVERSITY CENTER FOR PHYSICAL SCIENCES AND TECHNOLOGY Audrius ZOLUMSKIS Development and validation of chromatography methods for targeted applications DOCTORAL DISSERTATION Natural sciences, Chemistry (N 003) VILNIUS 2020 1 This dissertation was written between 2012 and 2016 at The Faculty of chemistry of Vilnius University. The dissertation is defended on an external basis. Academic consultants: Prof. dr. Simas Šakirzanovas (Vilnius University, Natural Sciences, Chemistry – N 003). Assoc. Prof. dr. Evaldas Naujalis (Centre of Physical Sciences and Technology, Natural Sciences, Chemistry – N 003). This doctoral dissertation will be defended in a public/closed meeting of the Dissertation Defence Panel: Chairman – Prof. fabil. dr. Audrius Padarauskas (Vilnius University, Natural Sciences, Chemistry – N 003). Members: Assoc. Prof. dr. Eglė Fataraitė-Urbonienė (Kaunas University of Technology, Technological Sciences, Materials Engineering – T 008). Prof. dr. habil. Aivaras Kareiva (Vilnius University, Natural Sciences, Chemistry – N 003). Assoc. Prof. dr. Germanas Peleckis (Wolongong University, Natural Sciences, Chemistry – N 003). Dr. Živilė Stankevičiūtė (Vilnius University, Natural Sciences, Chemistry – N 003). The dissertation shall be defended at a public/closed meeting of the Dissertation Defence Panel at 14 h on on 18 December 2020 in Inorganic Chemistry auditorium 141 of the Institute of Chemistry, Faculty of Chemistry and Geoscience, Vilnius University. Address: Naugarduko g. 24, LT-03225 Vilnius, Lithuania. Tel.: +370 5 2193108. Fax: +370 5 2330987. The text of this dissertation can be accessed at the libraries of (name of the institutions granted the right to conduct doctoral studies in alphabetical order), as well as on the website of Vilnius University: www.vu.lt/lt/naujienos/ivykiu-kalendorius 2 https://doi.org/10.15388/vu.thesis.125 https://orcid.org/0000-0002-6091-650X VILNIAUS UNIVERSITETAS FIZINIŲ IR TECHNOLOGIJOS MOKLSŲ CENTRAS Audrius ZOLUMSKIS Chromatografinių metodų skirtų tikslinėms reikmėms vystymas ir validacija DAKTARO DISAERTACIJA Gamtos mokslai, Chemija (N 003) VILNIUS 2020 3 Disertacija rengta 2012-2016 metais studijuojant doktorantūroje Vilniaus universiteto chemijos fakultete. Disertacija ginama eksternu. Moksliniai konsultantai: Prof. dr. Simas Šakirzanovas (Vilniaus universitetas, gamtos mokslai, chemija – N 003); Doc. dr. Evaldas Naujalis (Fizinių ir technologijos mokslų centras, gamtos mokslai, chemija – N 003). Gynimo taryba: Pirmininkas: prof. habil. dr. Audrius Padarauskas (Vilniaus universitetas, gamtos mokslai, chemija – N 003). Nariai: Doc. dr. Eglė Fataraitė-Urbonienė (Kauno technologijos universitetas, technologijos mokslai, medžiagų inžinerija – T 008). Prof. habil. dr. Aivaras Kareiva (Vilniaus universitetas, gamtos mokslai, chemija – N 003). Doc. dr. Germanas Peleckis (Volongongo universitetas, gamtos mokslai, chemija – N 003). Dr. Živilė Stankevičiūtė (Vilniaus universitetas, gamtos mokslai, chemija – N 003). Disertacija bus ginama viešame Chemijos mokslo krypties gynimo tarybos posėdyje 2020 m. gruodžio 18 d. 14 val. Vilniaus universiteto Chemijos ir geomokslų fakulteto Chemijos instituto Neorganinės chemijos auditorijoje. Adresas: Naugarduko g. 24, LT-03225 Vilnius, Lietuva. Tel.: 2193108. Faksas: 2330987. Disertaciją galima peržiūrėti Vilniaus universiteto, Fizinių ir technologijos mokslų centro bibliotekose ir VU interneto svetainėje adresu: https://www.vu.lt/naujienos/ivykiu-kalendorius 4 Table of Contents LIST OF ABBREVIATIONS 7 1. INTRODUCTION 9 2. OBSERVATION OF LITERATURE 12 2.1. Gas chromatography (GC) 12 2.1.1. Historical overview and brief fundamentals 12 2.1.2. Modern applications 21 2.2. High performance liquid chromatography (HPLC) 26 2.2.1. Fundamentals 26 2.2.2. Modern applications 37 2.3. Types of columns used in gas chromatography 41 2.3.1. Packed GC columns 42 2.3.2. Capillary GC columns 43 2.4. Dyes and markers for use in fuel systems 45 2.4.1. Structure and properties of dyes and markers 47 2.4.2 Overview of detection methods 49 3. EXPERIMENTAL PART 52 3.1. Reagents and solutions 52 3.2. Fabrication methods 53 3.2.1. Stainless steel capillary column preparation 53 3.2.2 Standard solutions for analysis of fuel dyes and their 55 preparation 3.2.3. Sample preparation for dyed fuel 57 3.3. Techniques 57 3.3.1. Gas chromatographic condition 57 3.3.2. Parameters of HPLC analysis 57 5 4. RESULTS AND DISCUSSIONS 59 4.1. Development and assessment of the in-house made stainless 59 steel capillary GC column 4.1.1. Optimisation of mobile phase flow rate 59 4.1.2. Test probe selection 60 4.1.3. Column inertness evaluation 61 4.1.4. Column longevity evaluation 65 4.1.5. Column application 67 4.2. Determination of dyes and marker in diesel using high 68 performance liquid chromatography 4.2.1. Selection of detection wavelengths 68 4.2.2. Optimization of separation conditions 69 4.2.3. Determination of method parameters 71 4.2.4. Limit of detection (LOD) and limit of quantification 72 (LOQ) 4.2.5. Analysis of diesel samples 73 CONCLUSIONS 74 REFERENCES 75 ATTACHMENTS 81 CURRICULUM VITAE 82 SUMMARY 83 ACKNOWLEDGEMENT 106 LIST OF PUBLICATIONS 107 6 LIST OF ABBREVIATIONS APCI – atmospheric pressure chemical ionization API – atmospheric pressure ionisation APPI – atmospheric pressure photo ionization CNT – carbon nanotubes DSS – dioctyl sulfosuccinate sodium ECD – electron capture detector ESI – electrospray ioanisation GC – gas chromatography GFC – gel filtration chromatography GPC – gel permeation chromatography GCMS – gas chromatography mass spectrometry HPLC – high performance liquid chromatography HIC – hydrophobic interaction chromatography HS – head space HILIC – hydrophilic interaction liquid chromatography IPC – hydrophobic interaction chromatography ID – inner diameter ICS – tris[3-(trimethoxysilyl)propyl]isocyanurate LOD – limit of detection LOQ – limit of quantification LSV – linear-scan voltammetry OD – outer diameter NARP – nonaqueous reversed-phase chromatography NPC – normal-phase chromatography MALDI – matrix-assisted laser desorption MRM – multiple reaction monitoring MS-MS – quadrupole – quadrupole mass spectrometry MSPD – matrix solid-phase dispersion MTBE – methyl tert-butyl ether PDMS – polydimethylsiloxane PEG – polyethylene glycol PLOT – porous layer open tubular PPG – polypropylene glycol PTFE – polytetrafluoroethylene PTI – proton transfer ionization Q-TOF – quadrupole – time of light mass spectrometry RP – reverse phase 7 SB 35 – fuel dye solvent blue 35 SCOT – support coated open tubular SDME – single drop micro extraction SEM – scaning electron microscopy SIFTI – selected-ion flow-tube ionization SIM – selected ion monitoring SPCE – flat printed carbon electrode SPME – solid phase micro extraction SR 19 – fuel dye solvent red 19 SWV – square-wave voltammetry SY 124 – fuel dye solvent yellow 124 TOF-TOF – time of light – time of light mass spectrometry UHPLC – ultra high performance liquid chromatography UV – ultra violet UV-VIS – Ultraviolet and visible light WCOT – wall coated open tubular 8 1. INTRODUCTION Because of its simplicity, sensitivity, and effectiveness in separating components of mixtures, gas chromatography is one of the most important tools in analytical chemistry [1]. It is widely used for quantitative and qualitative analysis of mixtures and for the purification of compounds. Gas chromatography is also used to monitor industrial processes automatically [2, 3]. Many routine analyses are performed rapidly in medical and other fields. Gas chromatography is also useful in the analysis of air pollutants, alcohol in blood, essential oils, and food products [4-8]. To assess the performance of capillary columns for gas chromatography, quality control test probes are used. These probes ensure that the columns have been properly deactivated, contain the correct amount of the stationary phase, and have the same relative retention as the last column purchased [9– 11]. For column assessment a test mixture composed of various classes of organic components including hydrocarbons, fatty acid methyl esters, acids, bases and alcohols has been proposed [12]. This procedure with subsequent refinements became the benchmark for column testing [13–15]. In the tests, inert probes serve to calculate chromatographic efficiency and as indicators of the efficacy of the injection process. Any tailing or lost response of the acidic probe indicates that the column is basic in nature. Poor peak behaviour of the base indicates that the column is acidic. The alcohol will give an indication if there is any oxygen damage or if there are any exposed silanols. If the peak shapes for all of these compounds are symmetrical, then the column is considered to be inert towards them [9]. The choice of the test probes can either highlight or mask the deficiencies of the column. Ultimately, in order to reveal the drawbacks of the columns, in test mixtures more demanding compounds are often used. As a rule, the compounds have less sterically hindered active groups, have lower boiling points and thus are eluted at lower temperatures [9]. The majority of gas chromatographic research are performed using a temperature gradient of the oven in which the analytical column is placed. The rate and accuracy of the temperature gradient change is an essential factor how the movement of analytes through the column can be controlled. Since the development of gas chromatography as a method, an analytical