Section 7 Procedures 605257 7.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ABCDE Approach
The ABCDE and SAMPLE History Approach Basic Emergency Care Course Objectives • List the hazards that must be considered when approaching an ill or injured person • List the elements to approaching an ill or injured person safely • List the components of the systematic ABCDE approach to emergency patients • Assess an airway • Explain when to use airway devices • Explain when advanced airway management is needed • Assess breathing • Explain when to assist breathing • Assess fluid status (circulation) • Provide appropriate fluid resuscitation • Describe the critical ABCDE actions • List the elements of a SAMPLE history • Perform a relevant SAMPLE history. Essential skills • Assessing ABCDE • Needle-decompression for tension • Cervical spine immobilization pneumothorax • • Full spine immobilization Three-sided dressing for chest wound • • Head-tilt and chin-life/jaw thrust Intravenous (IV) line placement • • Airway suctioning IV fluid resuscitation • • Management of choking Direct pressure/ deep wound packing for haemorrhage control • Recovery position • Tourniquet for haemorrhage control • Nasopharyngeal (NPA) and oropharyngeal • airway (OPA) placement Pelvic binding • • Bag-valve-mask ventilation Wound management • • Skin pinch test Fracture immobilization • • AVPU (alert, voice, pain, unresponsive) Snake bite management assessment • Glucose administration Why the ABCDE approach? • Approach every patient in a systematic way • Recognize life-threatening conditions early • DO most critical interventions first - fix problems before moving on -
Airway – Oropharyngeal: Insertion; Maintenance; Suction; Removal
Policies & Procedures Title: AIRWAY – OROPHARYNGEAL: INSERTION; MAINTENANCE; SUCTION; REMOVAL I.D. Number: 1159 Authorization Source: Nursing Date Revised: September 2014 [X] SHR Nursing Practice Committee Date Effective: October 2002 Date Reaffirmed: January 2016 Scope: SHR Acute, Parkridge Centre Any PRINTED version of this document is only accurate up to the date of printing 30-May-16. Saskatoon Health Region (SHR) cannot guarantee the currency or accuracy of any printed policy. Always refer to the Policies and Procedures site for the most current versions of documents in effect. SHR accepts no responsibility for use of this material by any person or organization not associated with SHR. No part of this document may be reproduced in any form for publication without permission of SHR. 1. PURPOSE 1.1 To safely and effectively use Oropharyngeal Airway (OPA). 2. POLICY 2.1 The Registered Nurse (RN), Registered Psychiatric Nurse (RPN), Licensed Practical Nurse (LPN), Graduate Nurse (GN), Graduate Psychiatric Nurse (GPN), Graduate Licensed Practical Nurse (GLPN) will insert, maintain, suction and remove an oropharyngeal airway (OPA). 2.2 The OPA may be inserted to establish and assist in maintaining a patent airway. 2.3 An OPA should only be used in patients with decreased level of consciousness or decreased gag reflex. 2.4 Patients with OPAs that have been inserted for airway protection should not be left unattended due to risk of aspiration if gag reflex returns unexpectedly. Page 1 of 4 Policies and Procedures: Airway – Oropharyngeal: Insertion; Maintenance; I.D. # 1159 Suction; Removal 3. PROCEDURE 3.1 Equipment: • Oropharyngeal airway of appropriate size • Tongue blade (optional) • Clean gloves • Optional: suction equipment, bag-valve-mask device 3.2 Estimate the appropriate size of airway by aligning the tube on the side of the patient’s face parallel to the teeth and choosing an airway that extends from the ear lobe to the corner of the mouth. -
ABBREVIATION LIST ALOC Altered Level of Consciousness ABC's Airway, Breathing, Circulation ACLS Advanced Cardiac Life Suppo
ABBREVIATION LIST ALOC Altered Level of Consciousness ABC’s Airway, Breathing, Circulation ACLS Advanced Cardiac Life Support AED Automatic External Defibrillator AICD Automatic Implantable Cardiac Defibrillator ALS Advanced Life Support AMI Acute Myocardial Infarction AMS Altered Mental Status AMR American Medical Response ASA Aspirin AV Atrial Ventricular BHPC Base Hospital Physician Contact BLS Basic Life Support BP Blood Pressure bpm Beats Per Minute BSI Body Substance Isolation BVM Bag Valve Mask CaCl Calcium Chloride CC Chief Complaint C-spine Cervical Spine CHF Congestive Heart Failure COPD Chronic Obstructive Pulmonary Edema CPR Cardiopulmonary Resuscitation CVA Cerebral Vascular Accident D12.5%W Dextrose 12.5% in water D50%W Dextrose 50% in water DKA Diabetic Ketoacidosis DM Diabetes Mellitus DNR Do Not Resuscitate ED Emergency Department EKG Electrocardiogram EMS Emergency Medical Services Epi Epinephrine ET Endotracheal Tube ETT Endotracheal Tube gm Gram GCS Glasgow Coma Scale HazMat Hazardous Materials HEENT Head, Eyes, Ears, Nose, Throat HTN Hypertension IO Interosseous IM Intramuscular ITLS International Trauma Life Support IV Intravenous IVP Intravenous Push (IV push prefed) kg Kilogram San Mateo County EMS Agency Introduction Abbreviation List 2008 Page 1 of 3 J Joule LOC Loss of Consciousness Max Maximum mcg Microgram meds Medication mEq Milliequivalent min Minute mg Milligram MI Myocardial Infarction mL Milliliter MVC Motor Vehicle Collision NPA Nasopharyngeal Airway NPO Nothing Per Mouth NS Normal Saline NT Nasal Tube NTG Nitroglycerine NS Normal Saline O2 Oxygen OB Obstetrical OD Overdose OPA Oropharyngeal Airway OPQRST Onset, Provoked, Quality, Region and Radiation, Severity, Time OTC Over the Counter PAC Premature Atrial Contraction PALS Pediatric Advanced Life Support PEA Pulseless Electrical Activity PHTLS Prehospital Trauma Life Support PID Pelvic Inflammatory Disease PO By Mouth Pt. -
Best Airway and Ventilation Strategy During CPR and After Resuscitation
Best airway and ventilation strategy during CPR and after resuscitation After cardiac arrest a combination of basic and advanced airway and ventilation techniques are used during cardiopulmonary resuscitation (CPR) and after a return of spontaneous circulation (ROSC). Current guidelines are based predominantly on evidence from observational studies and expert consensus; thus, the optimal combination of airway techniques and oxygen and ventilation targets during CPR and after ROSC is uncertain, according to a review article in the journal Critical Care. Current evidence supports a stepwise approach to airway management based on patient factors, rescuer skills and the stage of resuscitation. Observational data suggest that early lay-bystander compression-only CPR can improve survival after sudden cardiac arrest. Chest compressions are easy to learn and do for most rescuers and do not require special equipment. Studies show that lay rescuer compression-only CPR is better than no CPR. During CPR, airway interventions range from compression-only CPR with or without airway opening, mouth-to-mouth ventilation, mouth-to-mask ventilation, bag-mask ventilation (with or without an oropharyngeal airway) or advanced airways (supraglottic airways [SGAs] and tracheal intubation using direct or video laryngoscopy). On arrival of trained rescuers, bag-mask ventilation with supplemental oxygen is the most common initial approach and can be aided with an oropharyngeal or nasopharyngeal airway. During CPR, the bag-mask is used to give two breaths after every 30 compressions. A pre-specified per-protocol analysis reported a significantly higher survival to discharge among those who actually received conventional CPR (30:2) compared with those who received continuous compressions. -
The Golden Hour > How Time Shapes Airway Management > by Charlie Eisele,BS,NREMT-P
September 2008 The A supplement to JEMS (the Journal of Emergency Medical Services) Conscience of EMS JOURNAL OF EMERGENCY MEDICAL SERVICES Sponsored by Verathon Inc. ELSEVIER PUBLIC SAFETY The Perfect View How Video Laryngoscopy Is Changing the Face of Prehospital Airway Management A supplement to September 2008 JEMS, sponsored by Verathon Inc. 4 Foreword > To See or Not to See, That Is the Question > By A.J.Heightman,MPA,EMT-P 5 5 The Golden Hour > How Time Shapes Airway Management > By Charlie Eisele,BS,NREMT-P 9 The Video Laryngoscopy Movement > Can-Do Technology at Work > By John Allen Pacey,MD,FRCSc 11 ‘Grounded’ Care > Use of Video Laryngoscopy in a Ground 11 EMS System: Better for You, Better for Your Patients > By Marvin Wayne,MD,FACEP,FAAEM 14 Up in the Air > Video Laryngoscopy Holds Promise for In-Flight Intubation > By Lars P.Bjoernsen,MD,& M.Bruce Lindsay,MD 16 16 The Military Experience > The GlideScope Ranger Improves Visualization in the Combat Setting > By Michael R.Hawkins,MS,CRNA 19 Using Is Believing > Highlights from 72 Cases Involving Video Laryngoscopy at Martin County (Fla.) Fire Rescue > By David Zarker,EMT-P 21 Teaching the Airway > Designing Educational Programs for 21 Emergency Airway Management > By Michael F.Murphy,MD; Ron M.Walls,MD; & Robert C.Luten,MD COVER PHOTO KEVIN LINK Disclosure of Author Relationships: Authors have been asked to disclose any relationships they may have with commercial supporters of this supplement or with companies that may have relevance to the content of the supplement. Such disclosure at the end of each article is intended to provide readers with sufficient information to evaluate whether any material in the supplement has been influenced by the writer’s relationship(s) or financial interests with said companies. -
Mapping the Use of Simulation in Prehospital Care – a Literature Review Anna Abelsson1*, Ingrid Rystedt1, Björn-Ove Suserud2 and Lillemor Lindwall1
Abelsson et al. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2014, 22:22 http://www.sjtrem.com/content/22/1/22 REVIEW Open Access Mapping the use of simulation in prehospital care – a literature review Anna Abelsson1*, Ingrid Rystedt1, Björn-Ove Suserud2 and Lillemor Lindwall1 Abstract Background: High energy trauma is rare and, as a result, training of prehospital care providers often takes place during the real situation, with the patient as the object for the learning process. Such training could instead be carried out in the context of simulation, out of danger for both patients and personnel. The aim of this study was to provide an overview of the development and foci of research on simulation in prehospital care practice. Methods: An integrative literature review were used. Articles based on quantitative as well as qualitative research methods were included, resulting in a comprehensive overview of existing published research. For published articles to be included in the review, the focus of the article had to be prehospital care providers, in prehospital settings. Furthermore, included articles must target interventions that were carried out in a simulation context. Results: The volume of published research is distributed between 1984- 2012 and across the regions North America, Europe, Oceania, Asia and Middle East. The simulation methods used were manikins, films, images or paper, live actors, animals and virtual reality. The staff categories focused upon were paramedics, emergency medical technicians (EMTs), medical doctors (MDs), nurse and fire fighters. The main topics of published research on simulation with prehospital care providers included: Intubation, Trauma care, Cardiac Pulmonary Resuscitation (CPR), Ventilation and Triage. -
Resuscitation and Defibrillation
AARC GUIDELINE: RESUSCITATION AND DEFIBRILLATION AARC Clinical Practice Guideline Resuscitation and Defibrillation in the Health Care Setting— 2004 Revision & Update RAD 1.0 PROCEDURE: signs, level of consciousness, and blood gas val- Recognition of signs suggesting the possibility ues—included in those conditions are or the presence of cardiopulmonary arrest, initia- 4.1 Airway obstruction—partial or complete tion of resuscitation, and therapeutic use of de- 4.2 Acute myocardial infarction with cardio- fibrillation in adults. dynamic instability 4.3 Life-threatening dysrhythmias RAD 2.0 DESCRIPTION/DEFINITION: 4.4 Hypovolemic shock Resuscitation in the health care setting for the 4.5 Severe infections purpose of this guideline encompasses all care 4.6 Spinal cord or head injury necessary to deal with sudden and often life- 4.7 Drug overdose threatening events affecting the cardiopul- 4.8 Pulmonary edema monary system, and involves the identification, 4.9 Anaphylaxis assessment, and treatment of patients in danger 4.10 Pulmonary embolus of or in frank arrest, including the high-risk de- 4.11 Smoke inhalation livery patient. This includes (1) alerting the re- 4.12 Defibrillation is indicated when cardiac suscitation team and the managing physician; (2) arrest results in or is due to ventricular fibril- using adjunctive equipment and special tech- lation.1-5 niques for establishing, maintaining, and moni- 4.13 Pulseless ventricular tachycardia toring effective ventilation and circulation; (3) monitoring the electrocardiograph and recogniz- -
Success Rate of Resuscitation After Out-Of-Hospital Cardiac Arrest
Commentary Success rate of resuscitation after out-of-hospital cardiac arrest Anthony MH Ho1, FRCPC, FCCP, Glenio B Mizubuti1 *, MSc, MD, Adrienne K Ho2, MB, BS, Song Wan3, MD, FRCS, Devin Sydor1, MD, FRCPC, David C Chung4, MD, FRCPC 1Department of Anesthesiology and Perioperative Medicine, Queen’s University, Canada 2Department of Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom 3Division of Cardiac Surgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong 4Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong * Corresponding author: [email protected] Hong Kong Med J 2019;25:254–6 https://doi.org/10.12809/hkmj187596 A recent study in Hong Kong documented the low lack of which is linked to poor outcomes.5 However, success rate of resuscitation after adult out-of-hospital because 60% of adult and 38% of paediatric OHCAs cardiac arrest (OHCA). Survival to hospital discharge in Hong Kong are unwitnessed,1,4 these first few with good neurological outcome was 1.5%.1 A median minutes of sufficient oxygen in the blood (for sudden delay of 12 minutes for defibrillation was one factor arrest of cardiac origin) may have already elapsed. that contributed to poor outcomes.1 In ventricular This raises the question of whether a one-size-fits- fibrillation or pulseless ventricular tachycardia, every all bystander CPR with no breathing component minute without defibrillation drastically reduces is advisable. It is not surprising that the rates of the chance of successful resuscitation.2 To partially survival with good neurological outcomes are mitigate the delayed arrival of trained personnel to low. -
ECG, 12-Lead - Procedures P Paramedic Procedure
EMT A A-EMT ECG, 12-Lead - Procedures P Paramedic Procedure: q 1. Prepare ECG monitor and connect patient cable to electrodes q 2. Expose chest and prep as necessary. Modesty of the patient should be respected. q 3. Apply chest leads and extremity leads using the following landmarks: (Distal to shoulder and distal to hip joint for most accurate ECG) § RA: Right Arm § LA: Left Arm § RL: Right Leg § LL: Left Leg § V1: 4th intercostal space at right sternal border § V2: 4th intercostal space at left sternal border § V3: Directly between V2 and V4 § V4: 5th intercostal space at midclavicular line § V5: Level with V4 at left anterior axillary line § V6: Level with V5 at left midaxillary line q 4. Instruct patient to remain still, minimize artifact as able (examples include stopping motion of ambulance and instructing patient to remain still) q 5. Press the brand specific button to acquire the 12-Lead ECG (complete age and gender questions correctly) q 6. Provide 12 Lead to hospital staff, transmit when appropriate q 7. Document the procedure, time, and results on/with the PCR Procedures 146 EMT A A-EMT ECG, Right-Sided - Procedures P Paramedic To detect right ventricular STEMI associated with occlusion of the Right Coronary Artery, obtain a Right Sided ECG. Indications of a Right Ventricle Wall infarct may include: q ST elevation in the inferior leads, II, III and aVF § ST elevation that is greatest in lead III is especially significant q ST elevation in V1 (the only precordial lead that faces the RV on standard 12-lead ECG) q Right Bundle Branch Block, 2nd and 3rd Degree AV Blocks, ST elevation in V2 50% greater than the ST depression in aVF Procedure: q 1. -
Airway Administration Luke Koester AT, ATC, EMT
Airway Administration Luke Koester AT, ATC, EMT The primary function of an airway adjunct is to prevent obstruction of the upper airway by the tongue and allow the passage of air and oxygen to the lungs Nasopharyngeal Airways (NPA) -used in an unresponsive patient or a patient with an altered level of consciousness who has an intact gag reflex and is not able to maintain their airway spontaneously -patients with AMS or who have just had a seizure may also benefit from a NPA Indications Contraindications 1. semiconscious or unconscious patients with an 1. Severe head injury with blood draining from the nose intact gag reflex 2. History of fractured nasal bone 2. patients who otherwise will not tolerate an OPA *If the NPA is accidentally pushed through a hole caused by a fracture of the base of the skull (cribiform plate), it may penetrate into the brain -Inserting a Nasopharyngeal Airway 1. Size the airway by measuring from the tip of the nose to the patient’s earlobe 2. Coat the tip with a water-soluble lubricant 3. Insert the NPA into the right nare with the bevel facing the septum a. If there is trauma to the right nare, invert the NPA so the bevel is facing the septum and insert into the left nare 4. Advance the airway until the flange rests against the nostril a. If using the left nare, advance the NPA until resistance is met, then rotate the NPA 180 degrees into position until the flange rests against the nostril Oropharyngeal Airways (OPA) -used to keep the tongue from blocking the upper airway -makes it easier to suction the oropharynx if necessary Indications Contraindications 1. -
07/01/2021 Airway Management Policy #7000 I. Purpose
Imperial County Public Health Department Emergency Medical Services Agency Policy/Procedure/Protocol Manual Medical Procedure Date: 07/01/2021 Airway Management Policy #7000 I. Purpose: A. To establish indications, guidelines, and the standard procedure for airway management in the pre-hospital setting. II. Authority: A. Health and Safety Code, Section 1797.220, 1798. Title 22, Section 100170. III. Policy: A. The use of airway interventions is limited by certification skill level, and requires annual maintenance and testing completion. B. This policy is to be used when identifying need for airway, breathing or ventilation support, with a current or impending issue. C. Endotracheal intubation is the preferred method of airway management in adults who are suffering from respiratory arrest or failure. In pediatric patients Bag Valve Mask (BVM) ventilation is the preferred method of airway management. 1. Pediatric patients for the purposes of airway management are able to be measured by pediatric length-based tape (or equivalent). If the patient is greater than the length of the pediatric length-based tape, which corresponds to approximately 40 kg, the patient can generally fall under adult airway management, as clinically determined to be appropriate by the managing provider. D. BLS personnel may use OPAs/NPAs (oropharyngeal airways and nasopharyngeal airways) but the use endotracheal or esophageal/tracheal double lumen airway devices (ETDLA) is reserved for ALS personnel, or those with specialized certification. E. Any patient undergoing an airway procedure should have the maximum level of monitoring present including: 1. Pulse oximetry and frequent blood pressure measurements 2. ECG tracing and continuous capnography if ALS present F. -
OPITO Medical Emergency Response and Planning Requirements (Implementation Date 8Th November 2019)
OPITO Medical Emergency Response and Planning Requirements (Implementation date 8th November 2019) OPITO Medical Emergency Response and Planning Requirements © OPITO The content of this document was developed and reviewed in 2015 by OPITO to improve Emergency Response Arrangements based on accepted industry best practices. It was updated in 2019 to reflect a more risk-based approach towards requirements for each type of Training Centre. Guidance on this document is available by contacting OPITO. © OPITO All rights reserved. No part of this publication may be reproduced, stored in a retrieval or information storage system, or transmitted, in any form or by any means, mechanical, photocopying, recording or otherwise, without the prior permission in writing of the publishers. AMENDMENTS AMENDMENT & DATE PAGES CHANGES CHECKED BY APPROVED MADE BY BY Revision 0 released January Global Technical Industry and Global 2016 Coordinator OPITO Approvals Technical Department Director Rev 1 released August 2019 Approvals Approvals Director, All QA Department Standards Director Any amendments made to this document by OPITO will be recorded above. Revision 1 (August 2019) Page 2 of 29 OPITO Medical Emergency Response and Planning Requirements © OPITO CONTENTS INTRODUCTION ........................................................................................................................ 4 SECTION 1 - RISK BASED PLANNING ..................................................................................... 7 1.1 MEDICAL EMERGENCY RESPONSE AND PLANNING