Université De La Méditerranée, France

Total Page:16

File Type:pdf, Size:1020Kb

Université De La Méditerranée, France UNIVERSITÉ DE LA MÉDITERRANÉE, FRANCE Centre d'Océanologie de Marseille Unité Mixte de Recherche CNRS 6540 - DIMAR Diversité, Évolution et Écologie Fonctionnelle Marine UNIVERSITÉ DE GDANSK, POLOGNE Institute of Oceanography Department of Marine Ecosystems Functioning THÈSE DE DOCTORAT Spécialité Biosciences de l'Environnement présentée par Katarzyna TARNOWSKA Genetic structure and physiological variation of a widespread European lagoon specialist Cerastoderma glaucum (Bivalvia) living in extreme environmental conditions Soutenue le 25 mars 2010 Jury : Anne Chenuil, Chargée de recherche, CNRS, Marseille (Directrice de thèse) Jean-Pierre Féral, Directeur de recherche, CNRS, Marseille (Directeur de thèse) Maciej Wo łowicz, Professeur, Université de Gda Lsk, Gda Lsk, Pologne (Directeur de thèse) Sophie Arnaud-Haond, Chargée de recherche, IFREMER, Brest (Rapporteur) Herman Hummel, Professeur, Netherlands Institute of Ecology, Yerseke, Pays-Bas (Rapporteur) Philippe Borsa, Chargé de recherche, IRD, Montpellier (Examinateur) Didier Forcioli, Maitre de conférence, Université de Nice Sophia Antipolis , Nice (Examinateur) Jerzy Sell, Professeur, Université de Gda Lsk, Pologne (Président, Examinateur) TO MY PARENTS 1 ACKNOWLEDGEMENTS First of all, I would like to thank the Director of the Department of Marine Ecosystems Functioning at the University of Gda Lsk, Prof. Maciej Wołowicz and the Director of DIMAR (“Diversité, évolution et écologie fonctionnelle marine”) laboratory at the Université de la Méditerranée Dr Jean-Pierre Féral for accepting me as a PhD student in Your research teams and enabling me to work on this PhD project. I would like to thank my supervisors: Dr Anne Chenuil and Dr Jean-Pierre Féral and Prof. Maciej Wołowicz for sharing Your valuable experience and all the support and encouragement You gave me. I appreciate Your contagious excitement for my work and the criticism at the moments, when it was needed. Special thanks to Dr Anne Chenuil for a lot of patience and help while showing me the fascinating world of molecular biology. I would like to thank: • Dr A. Rogers from the Zoological Society of London for sharing microsatellite primers sequences, which enabled me to enrich my work a lot, • all the people who contributed to samples collection: E. Egea, J.-P. Féral, H. Hummel, J. Jansen, B. Kelemen , T. Kevrekidis, A. Kiewro, M. Krakau, S. Krupi Lski, R. Lasota, M. Machado, C. Marschal, A. E. Mogias , G. Sara, R. Sussarellu, J. Zaouali, H. Zibrowius, • J. Jansen, H. Hummel, O. Van Hoesel from The Netherlands Institute of Ecology (NIOO-KNAW) in Yerseke for helping me when I was investigating physiological parameters of C. glaucum from the North Sea, • all the people who helped me somehow at the different stages of my work, especially: R. Nikula, A. Green, J. Drzazgowski, K. Jaworski, K. Bradtke and the staff of the research vessel "Oceanograf II", • all the colleagues from the laboratories both in Poland and in France, especially: Kenza, Emilie, Didier, Karolina, Magda, Jean-Baptiste, Justyna, Michał, Pierre-Alexandre, Iwona, Adam, Defne, Karin, Rafał. You gave me a lot of help and advice and You also brought some light and smile to my long days at work, • R. Lasota, D. Rush, A. Putteeraj, J. Zieli Lski and J. Dunder for editorial and language corrections and suggestions. 2 I would like to acknowledge the provisions of the French government studentship, which enabled me to work on this Polish-French PhD project and the financial support from: the Ministry of Science and Higher Education in Poland (project number: N304 047 32/2162) and the University of Gda Lsk in Poland (project number: BW/13A0-5-0089-6). This research was performed in the frame of MarBEF (Marine Biodiversity and Ecosystem Functioning EU Network of Excellence) GBIRM (Genetic Biodiversity Responsive Mode) Project. MarBEF is funded by the European Union within the “Sustainable development, global change and ecosystems” RTD Programme (Contract no. GOCE-CT-2003-505446 2004-2009). I am very grateful for the possibility to participate in this project and for all the fruitful meetings. I would also like to thank: • my Mum and Dad. You always let me follow my own path in life. Thank you for your endless love, patience and support. You taught me to work hard and not to be afraid to reach far, • my friends, You went with me through all ups and downs. If it hadn’t been for your support, I wouldn’t have made it, • Fabien, for giving me a lot of support and motivation in the last, the most difficult part of this PhD, • many others who are not mentioned here, but helped me a lot. 3 CONTENTS 1 Introduction ..................................................................................................................... 8 1.1 Goals of the study .................................................................................................... 8 1.2 Outline of the thesis ................................................................................................. 9 2 Lagoons ........................................................................................................................... 9 2.1 Lagoon habitats ....................................................................................................... 9 2.2 Colonization and gene flow in lagoon habitats ..................................................... 10 3 Basic information on Cerastoderma glaucum .............................................................. 13 3.1 Distribution and ecological preferences ................................................................ 13 3.2 Life history ............................................................................................................. 14 3.3 Diet ......................................................................................................................... 15 3.4 On taxonomy, divergence and fossil record of C. glaucum ................................... 15 3.5 Distinguishing between C. glaucum and C. edule ................................................. 18 Chapter I: Studies on morphometry and physiology of Cerastoderma glaucum ................ 22 4 Interest in studying physiological responses of C. glaucum ......................................... 22 5 Materials and methods .................................................................................................. 24 5.1 Sampling and hydrological conditions of sampling sites ...................................... 24 5.1.1 Hydrological conditions in the Gulf of Gda Lsk .............................................. 26 5.1.2 Hydrological conditions in the Lake Veere .................................................... 27 5.1.3 Hydrological conditions in the Berre Lagoon ................................................ 29 5.2 Morphometric and physiological analysis ............................................................. 31 6 Results ........................................................................................................................... 33 7 Discussion ..................................................................................................................... 38 7.1 Environmental conditions ...................................................................................... 38 7.2 Morphometric parameters and condition index .................................................... 39 7.3 Reproduction .......................................................................................................... 40 7.4 Gross biochemical composition ............................................................................. 41 7.5 Respiration ............................................................................................................. 43 8 Conclusions ................................................................................................................... 44 Chapter II: Phylogeography of Cerastoderma glaucum ...................................................... 45 9 Theoretical background ................................................................................................ 45 9.1 Factors influencing genetic structures in marine species ..................................... 45 9.1.1 Role of glaciations in genetic structures of marine species ............................ 45 9.1.2 Dispersal modes and barriers in marine species; the case of C. glaucum ..... 46 9.2 Different properties of genetic markers applied .................................................... 49 9.3 Theoretical context of methods applied to analyze genetic data ........................... 53 9.3.1 Genetic diversity within populations .............................................................. 53 9.3.2 F-statistics ....................................................................................................... 53 9.3.3 AMOVA ........................................................................................................... 56 9.3.4 Multidimensional scaling (MDS) .................................................................... 57 9.3.5 Mantel test ....................................................................................................... 57 9.3.6 Detecting inbreeding ....................................................................................... 58 9.3.7 Neutrality tests ................................................................................................ 59 9.3.8 Selection detection- F ST -outlier method ........................................................
Recommended publications
  • Age Structure, Growth and Shell Form of Cerastoderma Glaucum (Bivalvia
    Age structure, growth and shell form of Cerastoderma glaucum (Bivalvia: Cardiidae) from El Mellah lagoon, Algeria Lamia Bensaâd-Bendjedid, Saber Belhaoues, Asma Kerdoussi, Naouel Djebbari, Mardja Tahri, Mourad Bensouilah Laboratory of Ecobiology for Marine Environment and Coastlines, Faculty of Science, Badji Mokhtar University, Annaba 23000, Algeria. Corresponding author: L. Bensaâd-Benjedid, [email protected] Abstract. Cerastoderma glaucum (Poiret, 1789) the lagoon specialist cockle, represents one of the most abundant molluscs in El Mellah coastal lagoon (northeastern Algeria); several morphological and biological characteristics of this species were investigated over a period of 18 months (January 2014 to June 2015). Analysis of allometry and different morphometric indices indicate that this population tends to assume a globular shell shape which becomes elongated as the cockle grows. From length-frequency data examination using software FiSAT II and VONBIT for Excel, age was ranged from the first to the third year old, asymptotic length (L∞) was estimated to 48.061 mm and growth coefficient (K) was 0.71 -1 yr . The growth performance index (Φ′) and theoretical life span (tmax) were 3.21 and 4.23 yr respectively, total mortality rate (Z) obtained was 1.94 yr-1. Monthly variations in condition index were noticed, two sharp falls due spawning events were observed, the first spawning occurred between March and June and, the second one took place from August to October. The findings of the current study can be utilized to guide future research in various fields as pathology, biomonitoring and environmental management of this species. Key Words: Cerastoderma glaucum, shell shape, growth, Condition index, Algeria.
    [Show full text]
  • What Can We Learn from Confusing Olivella Columellaris and O
    Biota Neotrop., vol. 12, no. 2 What can we learn from confusing Olivella columellaris and O. semistriata (Olivellidae, Gastropoda), two key species in panamic sandy beach ecosystems? Alison I. Troost1, Samantha D. Rupert1, Ariel Z. Cyrus1,. Frank V Paladino1,2, Benjamin F. Dattilo3 & Winfried S. Peters1,2,4 1Department of Biology, Indiana/Purdue University Fort Wayne, 2101 East Coliseum Boulevard, Fort Wayne, IN 46805‑1499, USA 2Goldring Marine Biology Station, Playa Grande, Santa Cruz, Guanacaste, Costa Rica 3Department of Geosciences, Indiana/Purdue University Fort Wayne, 2101 East Coliseum Boulevard, Fort Wayne, IN 46805‑1499, USA 4Corresponding author: Winfried S. Peters, e‑mail: [email protected] TROOST, A.I., RUPERT, S.D., CYRUS, A.Z., PALADINO, F.V., DATTILO, B.F. & PETERS, W.S. What can we learn from confusing Olivella columellaris and O. semistriata (Olivellidae, Gastropoda), two key species in panamic sandy beach ecosystems? Biota Neotrop. 12(2): http://www.biotaneotropica.org.br/v12n2/ en/abstract?article+bn02112022012 Abstract: Olivella columellaris (Sowerby 1825) and O. semistriata (Gray 1839) are suspension‑feeding, swash‑surfing snails on tropical sandy beaches of the east Pacific. While they often are the numerically dominant macrofaunal element in their habitats, their biology is poorly understood; the two species actually have been confused in all of the few publications that address their ecology. Frequent misidentifications in publications and collections contributed also to an overestimation of the geographic overlap of the two species. To provide a sound taxonomic basis for further functional, ecological, and evolutionary investigations, we evaluated the validity of diagnostic traits in wild populations and museum collections, and defined workable identification criteria.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Lagoon cockle (Cerastoderma glaucum) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2002-07-15 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1315]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2002. Cerastoderma glaucum Lagoon cockle. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1315.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2002-07-15 Lagoon cockle (Cerastoderma glaucum) - Marine Life Information Network See online review for distribution map Three Cerastoderma glaucum with siphons extended. Distribution data supplied by the Ocean Photographer: Dennis R.
    [Show full text]
  • Zoology Honours 2009: Research Projects
    Zoology Honours 2009: Research Projects Below are a number of research projects suggested by Animal Biology staff members. This is not the definitive list, and students are encouraged to approach appropriate academic staff within the School of Animal Biology if they have ideas for a research project, or if they want to discuss the possibility of a project within a particular subject area. Staff interests and contact links can be found on the web site [http://www.animals.uwa.edu.au/home/research]. Interested students should contact the Zoology Hons Coordinator [[email protected]] for more details. Conservation genetics: measuring genetic mixing in a translocated population of marine snail Jason Kennington & Mike Johnson [contact [email protected]] Translocation is a management tool that is often used to combat the loss of genetic diversity within small and fragmented populations of rare species (Allendorf & Luikart 2006; Frankham et al. 2002). It involves the movement of individuals between populations with the aim of increasing genetic variation within populations by artificially enhancing gene flow (Storfer 1999; Frankham et al. 2002). In support of this concept, several studies have shown that genetic diversity within small and inbred populations can be restored by natural migration and intentional translocation programs (see Frankham 2005). However, relatively few studies have undertaken post-release monitoring of translocated populations to see if the variation introduced by translocation is maintained over many generations. The aim of this project is to examine the extent of genetic mixing in artificial hybrid populations of the intertidal snail Bembicium vittatum, established in 1993 (Parsons 1997).
    [Show full text]
  • HETA ROUSI: Zoobenthos As Indicators of Marine Habitats in the Northern Baltic
    Heta Rousi Zoobenthos as indicators of marine Heta Rousi | habitats in the northern Baltic Sea of marine as indicators habitats in the northernZoobenthos Baltic Sea Heta Rousi This thesis describes how physical and chemical environmental variables impact zoobenthic species distribution in the northern Baltic Sea and how dis- Zoobenthos as indicators of marine tinct zoobenthic species indicate different marine benthic habitats. The thesis inspects the effects of habitats in the northern Baltic Sea depth, sediment type, temperature, salinity, oxy- gen, nutrients as well as topographical and geo- logical factors on zoobenthos on small and large temporal and spatial scales. | 2020 ISBN 978-952-12-3944-1 Heta Rousi Född 1979 Studier och examina Magister vid Helsingfors Universitet 2006 Licentiat vid Åbo Akademi 2013 Doktorsexamen vid Åbo Akademi 2020 Institutionen för miljö- och marinbiologi, Åbo Akademi ZOOBENTHOS AS INDICATORS OF MARINE HABITATS IN THE NORTHERN BALTIC SEA HETA ROUSI Environmental and Marine Biology Faculty of Science and Engineering Åbo Akademi University Finland, 2020 SUPERVISED BY PRE-EXAMINED BY Professor Erik Bonsdorff Research Professor (Supervisor & Examiner) Markku Viitasalo Åbo Akademi University Finnish Environment Institute Faculty of Science and Engineering Sustainable Use of the Marine Areas Environmental and Marine Biology Latokartanonkaari 11 Artillerigatan 6 00790 Helsinki 20520 Åbo Finland Finland Professor Emeritus Ilppo Vuorinen CO-SUPERVISOR University of Turku Adjunct Professor Faculty of Science and Engineering Samuli Korpinen Itäinen Pitkäkatu 4 Finnish Environment Institute 20520 Turku Marine Management Finland Latokartanonkaari 11 00790 Helsinki FACULTY OPPONENT Finland Associate Professor Urszula Janas SUPERVISING AT THE University of Gdansk LICENCIATE PHASE Institute of Oceanography Assistant Professor Al.
    [Show full text]
  • Digenean Fauna of Cerastoderma Glaucum (Veneroidae, Cardidae) from Tunisian Coasts
    Bull. Eur. Ass. Fish Pathol., 31(1) 2011, 4 Digenean fauna of Cerastoderma glaucum (Veneroidae, Cardidae) from Tunisian coasts L. Gargouri Ben Abdallah1*, R. Antar1, K. Hosni2, N. Trigui El Menif2 and F. Maamouri1 1 Reasearch Unit Animal Bio-Ecology and Systematic Evolutionary, Faculty of Sciences, Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia; 2 Laboratory of Environment Bio-monitoring (LBE), Faculty of Sciences, Bizerte, University 7th November Carthage, 7021 Zarzouna, Bizerte,Tunisia Abstract The study conducted on the cockle Cerastoderma glaucum from Tunisian coasts (Bizerte lagoon and Gulf of Gabes) showed the presence of two digenean species (sporocyst and cercaria of Bucephalus minimus and metacercaria of Meiogymnophallus strigatus). A description of these larvae and the behaviour of the naturally emerging cercaria are reported. The examination of the frequency of B. minimus and M. strigatus reveals some seasonal variation. This variation becomes more significant by comparing the sites. B. minimus has the highest frequency in the Bizerte lagoon, by contrast to that of M. strigatus which is the highest in the Gulf of Gabes. This variation is statistically significant. These results indicate that B. minimus and M. strigatus can be considered as biological indicators making it possible to predict the capture area of the cockle. Introduction The cockle, Cerastoderma glaucum, which has process of regulating of the natural popula- a significant economic value, is commonly tions of marine organisms, is a theme which exploited in several European countries. In was the subject of little attention because of the Tunisia, in spite of its abundance in several durability of the relation parasite-host (Combes, sites, in lagoons as well as in the sea, this species 1995).
    [Show full text]
  • Behind Anemone Lines: Determining the Environmental Drivers Influencing Lagoonal Benthic Communities, with Special Reference to the Anemone Nematostella Vectensis
    Behind Anemone Lines: Determining the environmental drivers influencing lagoonal benthic communities, with special reference to the anemone Nematostella vectensis. by Jessica R. Bone Bournemouth University December 2018 Copyright Statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i Behind Anemone Lines: Determining the environmental drivers influencing lagoonal benthic communities, with special reference to the anemone Nematostella vectensis. Jess R. Bone Abstract Climate change induced sea level rise and increase in associated storms is impacting the coastal zone worldwide. Lagoons are a transitional ecosystem on the coast that are threatened with habitat loss due to ingress of seawater, though conversely this also represents an opportunity for lagoon habitat creation. It is important to quantify the spatio-temporal trends of macrozoobenthic communities and abiotic factors to determine the ecological health of lagoon sites. Such information will ensure optimal and adaptive management of these rare and protected ecosystems. This thesis examines the spatial distribution of macrozoobenthic assemblages and the abiotic and biotic factors that may determine their abundance, richness and distribution at tidally restricted urban lagoon at Poole Park on the south coast of England. The macrozoobenthic assemblages were sampled using a suction corer during a spatially comprehensive survey in November 2017, in addition to aquatic and sediment variables such as salinity, temperature, organic matter content and silt content. Species richness and density were significantly lower in areas of high organic matter and silt content, indicative of hostile conditions.
    [Show full text]
  • Marine Genomics Meets Ecology: Diversity and Divergence in South
    Marine genomics meets ecology: Diversity and divergence in South African sea stars of the genus Parvulastra Katherine Dunbar Thesis submitted for the degree of Doctor of Philosophy Biodiversity and Ecological Processes Research Group School of Biosciences Cardiff University December 2006 UMI Number: U584961 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584961 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been substance for any degree and is not being concurrently submitted in c y degree. Signed ................................(candidate) Date.... 3 l . ™ MW. ... ..... STATEMENT 1 This thesis is the result of my own M ent work/investigation, except where otherwise stated. Other source* edged by footnotes giving explicit references. Signed (candidate) S.**: Q tife : ...... STATEMENT 2 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the tJfJSJa^^prrmqary to be made available to outside organisations Signed ................................................................... (candidate) Date............................. Abstract The coast of South Africa is situated between the warm Indian and the cold Atlantic Oceans, resulting in an extreme intertidal temperature gradient and potentially strong opposing selection pressures between the east and west coasts.
    [Show full text]
  • Ruditapes Philippinarum (Adams and Reeve, 1850) and Trophic Niche Overlap with Native Species
    Aquatic Invasions (2019) Volume 14, Issue 4: 638–655 CORRECTED PROOF Research Article Food sources of the non-indigenous bivalve Ruditapes philippinarum (Adams and Reeve, 1850) and trophic niche overlap with native species Ester Dias1,*, Paula Chainho2, Cristina Barrocas-Dias3,4 and Helena Adão5 1CIMAR/CIIMAR –Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal 2MARE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 3HERCULES Laboratory, University of Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal 4Chemistry Department, School of Sciences and Technology, Rua Romão Ramalho 59, Évora, Portugal 5MARE- University of Évora, School of Sciences and Technology, Apartado 94, 7005-554 Évora, Portugal Author e-mails: [email protected] (ED), [email protected] (PC), [email protected] (CBD), [email protected] (HA) *Corresponding author Citation: Dias E, Chainho P, Barrocas- Dias C, Adão H (2019) Food sources of the Abstract non-indigenous bivalve Ruditapes philippinarum (Adams and Reeve, 1850) The Manila clam, Ruditapes philippinarum (Adams and Reeve, 1850), was introduced and trophic niche overlap with native in many estuaries along the Atlantic and Mediterranean coasts for fisheries and species. Aquatic Invasions 14(4): 638–655, aquaculture, being one of the top five most commercially valuable bivalve species https://doi.org/10.3391/ai.2019.14.4.05 worldwide. In Portugal, the colonization of the Tagus estuary by this species Received: 8 February 2019 coincided with a significant decrease in abundance of the native R.
    [Show full text]
  • Macrobenthic Assemblage Structure and Distribution at the Boojagh Marine National Park, Southern Caspian Sea, Iran
    Iranian Journal of Fisheries Sciences 19(2) 748-767 2020 DOI: 10.22092/ijfs.2020.120829 Macrobenthic assemblage structure and distribution at the Boojagh Marine National Park, Southern Caspian Sea, Iran. Bahrebar S.¹; Negarestan H.²*; Maghsoudlo A.³; Danehkar A.4 Received: December 2016 Accepted: Febtuary 2017 Abstract Although macrobenthic assemblages are considered as major players in many ecosystems around the world, the ecology of Caspian Sea macrobenthos is currently understudied. This study describes the species composition and quantitative distribution of macrobenthos in the southern Caspian Sea and relates the distribution to seasonal changes at three depths (1, 5 and 10 meters) on the Boojagh Marine National Park (BMNP) coast in the southern Caspian Sea between the summers of 2015 and 2016. To investigate the distribution of macrobenthos in BMNP, the data of 450 samples were analyzed. In this study sixteen species were identified: Cerastoderma glaucum, Mytilaster lineatus, Pyrgula grimmi, Anisus kolesnikovi, Stenogammarus carausui, Paraniphargoides motasi, Onisimus caspius, Pterocuma pectinatum, Pterocuma sowinskyi, Pseudocuma (Stenocuma) gracile, Nais sp., Hypania invalida, Manayunkia caspica, Streblospio gynobranchiata, Hediste diversicolor, Amphibalanus improvisus. Among them, the non-indigenous C. glaucum was the dominant species, accounting for 27% of the total abundance and in descending order P. grimmi with 14.4%, A. improvisus with 8.7%, M. lineatus with 7.9%, Nais sp. with 7.5%, N. carausui with 5.2%, P. motasi with 5%, S. gynobranchiata with 4.5%, H. invalida with 5%, M. Caspica with 3.1%, P. sowinskyi with 2.5%, O. caspius with 2.4%, A. kolesnikovi and H. diversicolor with 1.8%, S.
    [Show full text]
  • Common Standards Monitoring Guidance for Lagoons Contents
    Common Standards Monitoring Guidance for Lagoons Version August 2004 Updated from (February 2004) ISSN 1743-8160 (online) UK guidance for Lagoons Issue date: August 2004 Common Standards Monitoring guidance for Lagoons Contents 1 Definition of Lagoons ...................................................................................................................... 2 2 Background, targets and monitoring techniques for individual attributes ....................................... 3 2.1 Extent........................................................................................................................................ 3 2.2 Isolating barrier – presence, nature and integrity..................................................................... 6 2.3 Salinity regime.......................................................................................................................... 7 2.4 Biotope composition............................................................................................................... 10 2.5 Extent of sub-feature or representative/notable biotopes........................................................ 12 2.6 Extent of water........................................................................................................................ 13 2.7 Distribution of biotopes .......................................................................................................... 15 2.8 Species composition of representative or notable biotopes ...................................................
    [Show full text]
  • Mitochondrial DNA Hyperdiversity and Population Genetics in the Periwinkle Melarhaphe Neritoides (Mollusca: Gastropoda)
    Mitochondrial DNA hyperdiversity and population genetics in the periwinkle Melarhaphe neritoides (Mollusca: Gastropoda) Séverine Fourdrilis Université Libre de Bruxelles | Faculty of Sciences Royal Belgian Institute of Natural Sciences | Directorate Taxonomy & Phylogeny Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Sciences, Biology Date of the public viva: 28 June 2017 © 2017 Fourdrilis S. ISBN: The research presented in this thesis was conducted at the Directorate Taxonomy and Phylogeny of the Royal Belgian Institute of Natural Sciences (RBINS), and in the Evolutionary Ecology Group of the Free University of Brussels (ULB), Brussels, Belgium. This research was funded by the Belgian federal Science Policy Office (BELSPO Action 1 MO/36/027). It was conducted in the context of the Research Foundation – Flanders (FWO) research community ‘‘Belgian Network for DNA barcoding’’ (W0.009.11N) and the Joint Experimental Molecular Unit at the RBINS. Please refer to this work as: Fourdrilis S (2017) Mitochondrial DNA hyperdiversity and population genetics in the periwinkle Melarhaphe neritoides (Linnaeus, 1758) (Mollusca: Gastropoda). PhD thesis, Free University of Brussels. ii PROMOTERS Prof. Dr. Thierry Backeljau (90 %, RBINS and University of Antwerp) Prof. Dr. Patrick Mardulyn (10 %, Free University of Brussels) EXAMINATION COMMITTEE Prof. Dr. Thierry Backeljau (RBINS and University of Antwerp) Prof. Dr. Sofie Derycke (RBINS and Ghent University) Prof. Dr. Jean-François Flot (Free University of Brussels) Prof. Dr. Marc Kochzius (Vrije Universiteit Brussel) Prof. Dr. Patrick Mardulyn (Free University of Brussels) Prof. Dr. Nausicaa Noret (Free University of Brussels) iii Acknowledgements Let’s be sincere. PhD is like heaven! You savour each morning this taste of paradise, going at work to work on your passion, science.
    [Show full text]