Comparative Osteology and Phylogenetic Relationships Of

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Osteology and Phylogenetic Relationships Of bs_bs_banner Zoological Journal of the Linnean Society, 2012, 166, 876–911. With 22 figures Comparative osteology and phylogenetic relationships of Miocaperea pulchra, the first fossil pygmy right whale genus and species (Cetacea, Downloaded from https://academic.oup.com/zoolinnean/article-abstract/166/4/876/2627067 by guest on 12 September 2019 Mysticeti, Neobalaenidae) MICHELANGELO BISCONTI* Museo di Storia Naturale del Mediterraneo, Via Roma 234, 57125, Livorno, Italy Received 18 August 2011; revised 6 July 2012; accepted for publication 26 July 2012 A fossil pygmy right whale (Cetacea, Mysticeti, Neobalaenidae) with exquisitely preserved baleen is described for the first time in the history of cetacean palaeontology, providing a wealth of information about the evolu- tionary history and palaeobiogeography of Neobalaenidae. This exquisitely preserved specimen is assigned to a new genus and species, Miocaperea pulchra gen. et sp. nov., and differs from Caperea marginata Gray, 1846, the only living taxon currently assigned to Neobalaenidae, in details of the temporal fossa and basicranium. A thorough comparative analysis of the skeleton of M. pulchra gen. et sp. nov. and C. marginata is also provided, and forms the basis of an extensive osteology-based phylogenetic analysis, confirming the placement of M. pulchra gen. et sp. nov. within Neobalaenidae as well as the monophyly of Neobalaenidae and Balaenidae; the phylogenetic results support the validity of the superfamily Balaenoidea. No relation- ship with Balaenopteroidea was found by the present study, and thus the balaenopterid-like morphological features observed in C. marginata must have resulted from parallel evolution. The presence of M. pulchra gen. et sp. nov. around 2000 km north from the northernmost sightings of C. marginata suggests that dif- ferent ecological conditions were able to support pygmy right whale populations in what is now Peru, and that subsequent environmental change caused a southern shift in the distribution of the living neobalaenid whales. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166, 876–911. doi: 10.1111/j.1096-3642.2012.00862.x ADDITIONAL KEYWORDS: Balaenoidea – Caperea marginata – Miocene – Peru – phylogeny. INTRODUCTION Neobalaenidae (Baker, 1985). In fact, most mor- phological analyses support a close relationship of In the last few decades the evolutionary history of Neobalaenidae and Balaenidae (right and bowhead baleen whales (Mammalia, Cetacea, Mysticeti) has whales; Bisconti, 2005; Deméré, Berta & McGowen, been investigated by morphological and molecular 2005), but the molecular and few morphological analyses, but only a limited consensus has emerged studies performed have almost invariably indica- from this effort. One of the major points of disagree- ted a close relationship of Neobalaenidae and the ment concerns the phylogenetic relationships of the Eschrichtiidae–Balaenopteridae clade (gray, rorqual, pygmy right whale Caperea marginata Gray, 1846, and humpback whales; Sasaki et al., 2005; Nikaido the only species currently assigned to the family et al., 2006; Deméré et al., 2008). Neobalaenids are characterized by balaenid-like features, such as: arched rostrum; high number of *E-mail: [email protected] long baleen plates; fused cervical vertebrae; low and 876 © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166, 876–911 FIRST FOSSIL NEOBALAENID WHALE 877 wide tympanic bulla, with low tympanic cavity; anteriorly thrusted supraoccipital that is superim- posed on the parietal, preventing the parietal from appearing at the skull vertex; and alimentary behaviour based on continuous ram feeding to exploit calanoid copepods (Beddard, 1901; Baker, 1985). Balaenopterid- and eschrichtiid-like features include: presence of ventral throat grooves in some individu- als; squamosal cleft; a dorsal fin, radius, and ulna Downloaded from https://academic.oup.com/zoolinnean/article-abstract/166/4/876/2627067 by guest on 12 September 2019 longer than humerus; and flat supraorbital process of the frontal (Baker, 1985; Marx, 2010). Given that C. marginata possesses a mix of balaenid and bal- aenopterid characters, it is difficult to understand which features are the result of convergence and which are those representing the proof of true phylo- genetic relationships. Up to present times, the fossil record could not help reconstruct the ancestral mor- phological conditions of Neobalaenidae because it was considered to be non-existent (Fordyce & De Muizon, 2001; Fordyce, 2009). A recent find from New Zealand suggested that neobalaenid whales were existent in the southern hemisphere around 6.2–5.4 Mya (Fitzgerald, 2012), but the find consisted of a single posterior process of a periotic that is not diagnostic enough to provide information about taxonomy and phylogenetic relationships. In this article, the anatomy of an exquisitely preserved neobalaenid skull is reported and its phylogenetic impli- cations are discussed. The new specimen is the holotype of Miocaperea pulchra gen. et sp. nov., found from the upper Miocene Pisco Formation at Aguada de Loma, Peru (Fig. 1), and is now permanently housed in the Staatliches Museum für Naturkunde, Stuttgart, Germany, as specimen no. 46978 of the palaeonto- logical collection. The specimen was excavated by Jakob Siber in 1985, and was legally exported by the Siber+Siber Aathal/Zürich company (E.P.J. Heizmann, pers. comm.). Mr Siber confirmed the legal status of the specimen before the Society of Friends of the Natural History Museum Stuttgart bought it (E.P.J. Heizmann, pers. comm.). The legal documenta- tion can be provided by Siber+Siber Aathal/Zürich. The specimen came to the Stuttgart collection as a present from the Society of Friends of the State Museum of Natural History (SMNS), together with further Peru- vian material (e.g. the skeleton of Balaenoptera siberi Pilleri, 1989, which is exhibited in the Schloss Rosen- stein building of the SMNS). Detailed comparisons with the living pygmy right whale C. marginata are provided to form a solid Figure 1. Locality of the discovery of Miocaperea basis for a new and comprehensive cladistic analysis pulchra gen. et sp. nov. A, South America; B, Peruvian of Mysticeti, directed at discovering the phylogenetic territory with Aguada de Lomas indicated by a line; C, relationships of Neobalaenidae. An in-depth analy- close-up view of Aguada de Lomas in Peru. sis of the basicranium, earbones, and postcranial skeleton of the extant C. marginata are included to supplement the section dealing with the compara- © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166, 876–911 878 M. BISCONTI tive anatomy of M. pulchra gen. et sp. nov., so as to foramen; ofh, humerus facet for olecranon process of provide the first detailed morphological descriptions ulna; oft, open foramen transversarium; opu, olecra- of some anatomical parts of the neobalaenid skel- non process of ulna; oul, outer lip; ow, oval window; eton, and to provide data about individual variation p, parietal; patb, posterior site for attach with peri- and the growth trajectory of C. marginata. otic; pch, pars cochlearis of periotic; pe, posterior In this article, the anatomical terminology is taken end of the pelvis; per, proximal epiphysis of radius; from Mead and Fordyce (2010) and, for limited parts, pg, promontorial groove; pgp, postglenoid process of from Nickel et al. (1999), Schaller (1999), and Struth- squamosal; plc, posterolateral corner; plf, perilym- ers (1895). phatic duct; pmc, posteromedial corner; pmx, pre- Downloaded from https://academic.oup.com/zoolinnean/article-abstract/166/4/876/2627067 by guest on 12 September 2019 Anatomical abbreviations: aar, area of acetabulum maxilla; pop, postorbital process of supraorbital in the pelvis; ab-pch, anterior border of pars cochle- process of the frontal; ppp, posterior process of peri- aris; ae, anterior end of pelvis; afa, atlas articular otic; pppb-br, broken base of posterior process of facet for occipital condyle; afi, (incus) articular facet periotic; p-sq, parietal–squamosal suture; pt, ptery- for malleus; alc, anterolateral corner; amc, antero- goid; ptg, groove for insertion of pterygoid muscle; medial corner; ang, angular process of dentary; ap, ptf, pterygoid fossa; rfh, radial facet of humerus; rw, acromion process of scapula; aplf, area of posterior round window; sc, sagittal crest; sip, sigmoid ligament of femur in the pelvis; app, anterior process; smf, stylomastoid fossa; soc, supraoccipital; process of periotic; b, baleen; bC5 and bC6, body sop, supraorbital process of frontal; spf, supras- of cervical vertebrae 5 and 6; bdp, basioccipital pinous fossa of scapula; sq, squamosal; ss, scapular descending process; bg, groove for vasculature spine; ssf, subscapular fossa; st, stapes; stfo, stape- of the baleen-bearing epithelium; boc, basioccipi- dial foramen (stapes); ST(T1), scala tympani, first tal; bst, base of stapes; c, coana; C2–C7, cervical cochlear turn; SV(T1), scala vestibuli, first cochlear vertebrae 2–7; cb, crus breve (incus); cdp, caudal turn; T, thoracic vertebra; tc, temporal crest; T2, process of periotic; cop, conical process; cp, coracoid second cochlear turn; td, trapezoid; tf, temporal process of scapula; cs, cranial surface of periotic; cu, fossa; tyc, tympanic cavity; typ, tympanic plate; ufh, cuneiform; dc, dorsal crest of periotic; eam external ulnar facet of humerus; um, umbo (stapes); un,
Recommended publications
  • Download Full Article in PDF Format
    A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases.
    [Show full text]
  • How Whales Used to Filter: Exceptionally Preserved Baleen in A
    Journal of Anatomy J. Anat. (2017) 231, pp212--220 doi: 10.1111/joa.12622 How whales used to filter: exceptionally preserved baleen in a Miocene cetotheriid Felix G. Marx,1,2,3 Alberto Collareta,4,5 Anna Gioncada,4 Klaas Post,6 Olivier Lambert,3 Elena Bonaccorsi,4 Mario Urbina7 and Giovanni Bianucci4 1School of Biological Sciences, Monash University, Clayton, Vic., Australia 2Geosciences, Museum Victoria, Melbourne, Vic., Australia 3D.O. Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium 4Dipartimento di Scienze della Terra, Universita di Pisa, Pisa, Italy 5Dottorato Regionale in Scienze della Terra Pegaso, Pisa, Italy 6Natuurhistorisch Museum Rotterdam, Rotterdam, The Netherlands 7Departamento de Paleontologıa de Vertebrados, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima, Peru Abstract Baleen is a comb-like structure that enables mysticete whales to bulk feed on vast quantities of small prey, and ultimately allowed them to become the largest animals on Earth. Because baleen rarely fossilises, extremely little is known about its evolution, structure and function outside the living families. Here we describe, for the first time, the exceptionally preserved baleen apparatus of an entirely extinct mysticete morphotype: the Late Miocene cetotheriid, Piscobalaena nana, from the Pisco Formation of Peru. The baleen plates of P. nana are closely spaced and built around relatively dense, fine tubules, as in the enigmatic pygmy right whale, Caperea marginata. Phosphatisation of the intertubular horn, but not the tubules themselves, suggests in vivo intertubular calcification. The size of the rack matches the distribution of nutrient foramina on the palate, and implies the presence of an unusually large subrostral gap.
    [Show full text]
  • PDF of Manuscript and Figures
    The triple origin of whales DAVID PETERS Independent Researcher 311 Collinsville Avenue, Collinsville, IL 62234, USA [email protected] 314-323-7776 July 13, 2018 RH: PETERS—TRIPLE ORIGIN OF WHALES Keywords: Cetacea, Mysticeti, Odontoceti, Phylogenetic analyis ABSTRACT—Workers presume the traditional whale clade, Cetacea, is monophyletic when they support a hypothesis of relationships for baleen whales (Mysticeti) rooted on stem members of the toothed whale clade (Odontoceti). Here a wider gamut phylogenetic analysis recovers Archaeoceti + Odontoceti far apart from Mysticeti and right whales apart from other mysticetes. The three whale clades had semi-aquatic ancestors with four limbs. The clade Odontoceti arises from a lineage that includes archaeocetids, pakicetids, tenrecs, elephant shrews and anagalids: all predators. The clade Mysticeti arises from a lineage that includes desmostylians, anthracobunids, cambaytheres, hippos and mesonychids: none predators. Right whales are derived from a sister to Desmostylus. Other mysticetes arise from a sister to the RBCM specimen attributed to Behemotops. Basal mysticetes include Caperea (for right whales) and Miocaperea (for all other mysticetes). Cetotheres are not related to aetiocetids. Whales and hippos are not related to artiodactyls. Rather the artiodactyl-type ankle found in basal archaeocetes is also found in the tenrec/odontocete clade. Former mesonychids, Sinonyx and Andrewsarchus, nest close to tenrecs. These are novel observations and hypotheses of mammal interrelationships based on morphology and a wide gamut taxon list that includes relevant taxa that prior studies ignored. Here some taxa are tested together for the first time, so they nest together for the first time. INTRODUCTION Marx and Fordyce (2015) reported the genesis of the baleen whale clade (Mysticeti) extended back to Zygorhiza, Physeter and other toothed whales (Archaeoceti + Odontoceti).
    [Show full text]
  • Northern Pygmy Right Whales Highlight Quaternary Marine Mammal
    Current Biology Magazine B Extant Correspondence A -120 -90 -60 -30 0 30 60 Caperea 0 USNM 358972 Northern pygmy 1 MSNC 4451 USNM MSNC 4451 Northern right whales 2 hemisphere 358972 Pleistocene highlight Quaternary 3 Northern Miocaperea hemisphere marine mammal pulchra 4 glaciation Pliocene interchange Extant Caperea marginata 5 MPEF-PV2572 NMV NMV P161709 6 P161709 Cheng-Hsiu Tsai1,2,15, Alberto 3,4,15 5,6 C 7 Miocaperea Collareta , Erich M.G. Fitzgerald , 30 mm v pulchra 5,7,8, 1,9 a Felix G. Marx *, Naoki Kohno , 8 8,10 11 Mark Bosselaers , Gianni Insacco , Miocene Delicate attachment Agatino Reitano11, Rita Catanzariti12, 9 of anterior process Southern hemisphere 13,14 Masayuki Oishi , Enlarged compound 10 MPEF-PV2572 3 posterior process and Giovanni Bianucci D The pygmy right whale, Caperea 30 mm marginata, is the most enigmatic living whale. Little is known about its ecology and behaviour, but unusual specialisations of visual pigments Prominent [1], mitochondrial tRNAs [2], and Squared anterior 20 mm E border of bulla anteromedial postcranial anatomy [3] suggest a corner lifestyle different from that of other extant whales. Geographically, Caperea Flattened dorsal profile of involucrum represents the only major baleen F L-shaped whale lineage entirely restricted to involucrum the Southern Ocean. Caperea-like fossils, the oldest of which date to the Late Miocene, are exceedingly rare and likewise limited to the Southern Hemisphere [4], despite a more substantial history of fossil Convex medial sampling north of the equator. Two a margin of bulla a new Pleistocene fossils now provide m v unexpected evidence of a brief and relatively recent period in geological Figure 1.
    [Show full text]
  • Looking for the Key to Preservation of Fossil Marine Vertebrates in the Pisco Formation of Peru: New Insights from a Small Dolphin Skeleton
    Andean Geology 45 (3): 379-398. September, 2018 Andean Geology doi: 10.5027/andgeoV45n3-3122 www.andeangeology.cl Looking for the key to preservation of fossil marine vertebrates in the Pisco Formation of Peru: new insights from a small dolphin skeleton *Anna Gioncada1, Karen Gariboldi1, Alberto Collareta1,2, Claudio Di Celma3, Giulia Bosio4, Elisa Malinverno4, Olivier Lambert5, Jennifer Pike6, Mario Urbina7, Giovanni Bianucci1 1 Dipartimento di Scienze della Terra, Università di Pisa, via Santa Maria 53, 56126 Pisa, Italy. [email protected]; [email protected]; [email protected] 2 Dottorato Regionale in Scienze della Terra Pegaso, via Santa Maria 53, 56126 Pisa, Italy. [email protected] 3 Scuola di Scienze e Tecnologie, Università di Camerino, via Gentile III da Varano, 62032 Camerino, Italy. [email protected] 4 Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, Piazza della Scienza 4, Milan, Italy. [email protected]; [email protected] 5 Institut Royal des Sciences Naturelles de Belgique, D.O. Terre et Histoire de la Vie, rue Vautier, 29, B-1000 Brussels, Belgium. [email protected] 6 School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3YE, UK. [email protected] 7 Departamento de Paleontologia de Vertebrados, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avda. Arenales 1256, Lima 14, Perú. [email protected] * Corresponding author: [email protected] ABSTRACT. The upper Neogene Pisco Formation of Peru is known worldwide as one of the most significant Cenozoic marine vertebrate Konservatt-Lagerstätten, even featuring cetacean specimens that retain remains of soft tissues or stomach contents.
    [Show full text]
  • The Taxonomic and Evolutionary History of Fossil and Modern Balaenopteroid Mysticetes
    Journal of Mammalian Evolution, Vol. 12, Nos. 1/2, June 2005 (C 2005) DOI: 10.1007/s10914-005-6944-3 The Taxonomic and Evolutionary History of Fossil and Modern Balaenopteroid Mysticetes Thomas A. Demer´ e,´ 1,4 Annalisa Berta,2 and Michael R. McGowen2,3 Balaenopteroids (Balaenopteridae + Eschrichtiidae) are a diverse lineage of living mysticetes, with seven to ten species divided between three genera (Megaptera, Balaenoptera and Eschrichtius). Extant members of the Balaenopteridae (Balaenoptera and Megaptera) are characterized by their engulfment feeding behavior, which is associated with a number of unique cranial, mandibular, and soft anatomical characters. The Eschrichtiidae employ suction feeding, which is associated with arched rostra and short, coarse baleen. The recognition of these and other characters in fossil balaenopteroids, when viewed in a phylogenetic framework, provides a means for assessing the evolutionary history of this clade, including its origin and diversification. The earliest fossil balaenopterids include incomplete crania from the early late Miocene (7–10 Ma) of the North Pacific Ocean Basin. Our preliminary phylogenetic results indicate that the basal taxon, “Megaptera” miocaena should be reassigned to a new genus based on its possession of primitive and derived characters. The late late Miocene (5–7 Ma) balaenopterid record, except for Parabalaenoptera baulinensis and Balaenoptera siberi, is largely undescribed and consists of fossil specimens from the North and South Pacific and North Atlantic Ocean basins. The Pliocene record (2–5 Ma) is very diverse and consists of numerous named, but problematic, taxa from Italy and Belgium, as well as unnamed taxa from the North and South Pacific and eastern North Atlantic Ocean basins.
    [Show full text]
  • The Biology of Marine Mammals
    Romero, A. 2009. The Biology of Marine Mammals. The Biology of Marine Mammals Aldemaro Romero, Ph.D. Arkansas State University Jonesboro, AR 2009 2 INTRODUCTION Dear students, 3 Chapter 1 Introduction to Marine Mammals 1.1. Overture Humans have always been fascinated with marine mammals. These creatures have been the basis of mythical tales since Antiquity. For centuries naturalists classified them as fish. Today they are symbols of the environmental movement as well as the source of heated controversies: whether we are dealing with the clubbing pub seals in the Arctic or whaling by industrialized nations, marine mammals continue to be a hot issue in science, politics, economics, and ethics. But if we want to better understand these issues, we need to learn more about marine mammal biology. The problem is that, despite increased research efforts, only in the last two decades we have made significant progress in learning about these creatures. And yet, that knowledge is largely limited to a handful of species because they are either relatively easy to observe in nature or because they can be studied in captivity. Still, because of television documentaries, ‘coffee-table’ books, displays in many aquaria around the world, and a growing whale and dolphin watching industry, people believe that they have a certain familiarity with many species of marine mammals (for more on the relationship between humans and marine mammals such as whales, see Ellis 1991, Forestell 2002). As late as 2002, a new species of beaked whale was being reported (Delbout et al. 2002), in 2003 a new species of baleen whale was described (Wada et al.
    [Show full text]
  • Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California
    Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California 2 cm 2 cm Scientific Investigations Report 2019–5021 U.S. Department of the Interior U.S. Geological Survey COVER. Photographs of fragments of a walrus (Gomphotaria pugnax Barnes and Raschke, 1991) mandible from the basal Wilson Grove Formation exposed in Bloomfield Quarry, just north of the town of Bloomfield in Sonoma County, California (see plate 8 for more details). The walrus fauna at Bloomfield Quarry is the most diverse assemblage of walrus yet reported worldwide from a single locality. cm, centimeter. (Photographs by Robert Boessenecker, College of Charleston.) Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California By Charles L. Powell II, Robert W. Boessenecker, N. Adam Smith, Robert J. Fleck, Sandra J. Carlson, James R. Allen, Douglas J. Long, Andrei M. Sarna-Wojcicki, and Raj B. Guruswami-Naidu Scientific Investigations Report 2019–5021 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • This Is a Postprint That Has Been Peer Reviewed and Published in Naturwissenschaften. the Final, Published Version of This Artic
    This is a postprint that has been peer reviewed and published in Naturwissenschaften. The final, published version of this article is available online. Please check the final publication record for the latest revisions to this article. Boessenecker, R.W. 2013. Pleistocene survival of an archaic dwarf baleen whale (Mysticeti: Cetotheriidae). Naturwissenschaften 100:4:365-371. Pleistocene survival of an archaic dwarf baleen whale (Mysticeti: Cetotheriidae) Robert W. Boessenecker1,2 1Department of Geology, University of Otago, 360 Leith Walk, Dunedin, New Zealand 2 University of California Museum of Paleontology, University of California, Berkeley, California, U.S.A. *[email protected] Abstract Pliocene baleen whale assemblages are characterized by a mix of early records of extant mysticetes, extinct genera within modern families, and late surviving members of the extinct family Cetotheriidae. Although Pleistocene baleen whales are poorly known, thus far they include only fossils of extant genera, indicating late Pliocene extinctions of numerous mysticetes alongside other marine mammals. Here, a new fossil of the late Neogene cetotheriid mysticete Herpetocetus is reported from the Lower to Middle Pleistocene Falor Formation of Northern California. This find demonstrates that at least one archaic mysticete survived well into the Quaternary Period, indicating a recent loss of a unique niche and a more complex pattern of Plio-Pleistocene faunal overturn for marine mammals than has been previously acknowledged. This discovery also lends indirect support to the hypothesis that the pygmy right whale (Caperea marginata) is an extant cetotheriid, as it documents another cetotheriid nearly surviving to modern times. Keywords Cetacea; Mysticeti; Cetotheriidae; Pleistocene; California Introduction The four modern baleen whale (Cetacea: Mysticeti) families include fifteen gigantic filter-feeding species.
    [Show full text]
  • Jahresbericht 2012
    Staatliches Museum für Naturkunde Stuttgart Jahresbericht Sammeln Bewahren Forschen Vermitteln 12 Impressum Herausgeber Prof. Dr. Johanna Eder Direktorin Staatliches Museum für Naturkunde Stuttgart Rosenstein 1 70191 Stuttgart Redaktion M.Sc. Lena Kempener Staatliches Museum für Naturkunde Stuttgart Jahresbericht/Dokumentarische Ausgabe ISSN 2191-7817 Berichtsjahr 2012, erschienen 2013 Copyright Diese Zeitschrift ist urheberrechtlich geschützt. Eine Verwertung ist nur mit schriftlicher Genehmigung des Herausgebers gestattet. Inhaltsverzeichnis 2 INHALTSVERZEICHNIS EDITORIAL 4 1 FORSCHUNG 6 1.1 Forschungsprojekte 6 1.1.1 Drittmittel-finanziert 6 1.1.2 Nicht Drittmittel-finanziert 7 1.2 Umfangreiche Freilandarbeiten, Grabungen 13 1.3 Studienaufenthalte 14 1.4 Tagungsbeiträge 14 1.4.1 International 14 1.4.2 National 16 1.5 Sonstige wissenschaftliche Vorträge 17 1.6 Organisation von Tagungen und Workshops 18 1.7 Organisierte wissenschaftliche Exkursionen 19 1.8 Gastforscher 19 1.8.1 National 19 1.8.2 International 21 2 SAMMLUNG UND BIBLIOTHEK 24 2.1 Bedeutende Sammlungsarbeiten 24 2.1.1 Wissenschaftliche Arbeiten 24 2.1.2 Präparatorische und konservatorische Arbeiten 26 2.1.3 Elektronische Sammlungserfassung 28 2.2 Bedeutende Sammlungszugänge 28 2.3 Führungen hinter die Kulissen 30 2.4 Bibliothek und Archiv 32 3 BILDUNG UND ÖFFENTLICHKEITSARBEIT 32 3.1 Führungen und Projekte 32 3.1.1 Dauerausstellung 32 3.1.2 Sonderausstellung 33 3.1.3 Neues Begleitmaterial 33 3.2 Vorträge 33 3.2.1 Populärwissenschaftliche Vorträge 33 3.2.2 Vorträge an anderen
    [Show full text]
  • Fragilicetus Velponi: a New Mysticete Genus and Species and Its Implications for the Origin of Balaenopteridae (Mammalia, Cetacea, Mysticeti)
    Zoological Journal of the Linnean Society, 2016, 177, 450–474. With 14 figures Fragilicetus velponi: a new mysticete genus and species and its implications for the origin of Balaenopteridae (Mammalia, Cetacea, Mysticeti) MICHELANGELO BISCONTI1* and MARK BOSSELAERS2 1San Diego Natural History Museum, 1788 El Prado, California 92101, USA 2Royal Belgian Institute of Natural Sciences, 29 Vautierstraat, 1000, Brussels, Belgium Received 15 February 2015 revised 2 October 2015 accepted for publication 21 October 2015 A new extinct genus, Fragilicetus gen. nov., is described here based on a partial skull of a baleen-bearing whale from the Early Pliocene of the North Sea. Its type species is Fragilicetus velponi sp. nov. This new whale shows a mix of morphological characters that is intermediate between those of Eschrichtiidae and those of Balaenopteridae. A phylogenetic analysis supported this view and provided insights into some of the morphological transforma- tions that occurred in the process leading to the origin of Balaenopteridae. Balaenopterid whales show special- ized feeding behaviour that allows them to catch enormous amounts of prey. This behaviour is possible because of the presence of specialized anatomical features in the supraorbital process of the frontal, temporal fossa, glenoid fossa of the squamosal, and dentary. Fragilicetus velponi gen. et sp. nov. shares the shape of the supraorbital process of the frontal and significant details of the temporal fossa with Balaenopteridae but maintains an eschrichtiid- and cetotheriid-like squamosal bulge and posteriorly protruded exoccipital. The character combination exhibited by this cetacean provides important information about the assembly of the specialized morphological features re- sponsible for the highly efficient prey capture mechanics of Balaenopteridae.
    [Show full text]
  • Pliocene Marine Mammals from the Whalers Bluff Formation of Portland, Victoria, Australia
    Memoirs of Museum Victoria 62(1): 67–89 (2005) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs/index.asp Pliocene marine mammals from the Whalers Bluff Formation of Portland, Victoria, Australia ERICH M.G. FITZGERALD School of Geosciences, Monash University, Vic. 3800, Australia and Museum Victoria, G.P.O. Box 666, Melbourne, Vic. 3001, Australia ([email protected]) Abstract Fitzgerald, E.M.G. Pliocene marine mammals from the Whalers Bluff Formation of Portland, Victoria, Australia. Memoirs of Museum Victoria 62(1): 67–89. The most diverse and locally abundant Australian fossil marine mammal assemblages are those from late Neogene (Late Miocene through Late Pliocene) sediments in Victoria and Flinders Island, Tasmania. However, none of these assemblages have hitherto been described. The Pliocene (>2.5–4.8 Ma) Whalers Bluff Formation, exposed in beach cliff sections and offshore reefs, at Portland, western Victoria (38°19'S, 141°38'E) has yielded a small but moderately diverse assemblage of marine mammals represented by fragmentary material. Taxa present include: right whales (Balaenidae); rorqual whales (Balaenopteridae); a physeterid similar to the extant sperm whale (cf. Physeter sp.); the first Australian fossil record of pygmy sperm whales (Kogiidae); at least three genera of dolphins (Delphinidae: cf. Tursiops sp., Delphinus sp. or Stenella sp., and an undetermined genus and species); and probable earless or true seals (Phocidae). This small assemblage represents the first Australian fossil marine mammal assemblage to be described in detail. The taxonomic composition of this Pliocene marine mammal assemblage is generally similar to the present day marine mammal assemblage in north-west Bass Strait.
    [Show full text]