Quick viewing(Text Mode)

Homework 1 Problem 1

Homework 1 Problem 1

PHYS606: Electrodynamics Feb. 01, 2011 Homework 1 Instructor: Dr. Paulo Bedaque Submitted by: Vivek Saxena

Problem 1

µ Under a Lorentz transformation L ν, a rank-2 covariant transforms as

α β A A￿ = L L A (1) µν −→ µν µ ν αβ

By definition, Aµν = Aνµ,so

α β Aν￿ µ = Lν Lµ Aαβ α β = Lν Lµ Aβα β α = Lµ Lν Aβα = Aµν (2)

So, symmetry is preserved under Lorentz transformations.

Antisymmetric Tensor By definition, A = A ,so µν − νµ α β Aν￿ µ = Lν Lµ Aαβ = L αL βA − ν µ βα = L βL αA − µ ν βα = A￿ (3) − µν So, antisymmetry is also preserved under Lorentz transformations.

Contraction of a symmetric and antisymmetric tensor

A Sµν =( A )(Sνµ) (4) µν − νµ = (A Sνµ) − νµ = (A Sµν)(µ and ν are dummy indices) (5) − µν ∵ µν Hence, AµνS =0.

1 -1 of grad, and div of curl

f =(eˆ ∂ ) (eˆ ∂ f) ∇ × ∇ i i × j j = ￿ijk∂i∂jfeˆk = ￿ijk∂j∂ifeˆk (∵ f is well-behaved) = ￿ ∂ ∂ feˆ − jik j i k = f (6) −∇ × ∇ So, f =0 (7) ∇ × ∇ Also,

( a)=(eˆ ∂ ) [(eˆ ∂ ) (eˆ a )] ∇ · ∇ × i i · j j × k k = δil￿jkl∂i∂jak

= ￿ijk∂i∂jak = ￿ijk∂j∂iak (∵ f is well-behaved) = ￿ ∂ ∂ a − jik j i k = ( a) (8) −∇ · ∇ × So, ( a)=0 (9) ∇ · ∇ × Problem 2

(a) The LHS is antisymmetric in (j, k) and (l, m), so it suffices to consider the case j = k and l = m (as ￿ ￿ otherwise, the LHS is zero).

Substituting j =2,k =3(= i = 1) the LHS equals ￿123￿1lm. So, either l =2,m =3so ⇒ that the LHS = +1 or l =3,m = 2 so that the LHS = 1. For i =1,j =2,k = 3, the RHS − = δ2lδ3m δ2mδ3l which equals +1 if l =2,m= 3 and equals 1ifl =3,m= 2. So the LHS = RHS − − for this permutation of indices. Similarly, we can show that the LHS = RHS for every permutation of the indices [1, 2, 3]. This establishes the identity,

￿ijk￿ilm = δjlδkm δjmδkl (10) − Equivalently, if we use ￿ijk￿ijk = 3! = 6 as the starting point, the general form has to be

￿ijk￿ilm = C(δjlδkm δjmδkl) −

1 -2 where C is an appropriate normalization factor. Contracting indices (j, l) and (k, m) on both sides, we get

￿ijk￿ijk = C(δjjδkk δjkδkj) − = 6=6C ⇒ = C =1 ⇒ which establishes Eqn. (10).

(b) Using Eqn. (11) with l = j (with a sum on j), we get

￿ijk￿ijm = δjjδkm δjmδkj − =3δkm δkm =2δkm − So, ￿ijk￿ilm =2δkm (11)

(c) To Prove: A (B C)=B (C A)=C (A B) · × · × · ×

A (B C)=(a eˆ ) (eˆ ￿ b c ) (12) · × i i · l ljk j k = ￿ijkaibjck (13)

B (C A)=￿ b c a (14) · × ijk i j k = ￿ b c a (15) − kji k j i = ￿jkibjckai (16) = A (B C) (17) · ×

C (A B)=￿ c a b (18) · × ijk i j k = ￿ c a b (19) − jik j i k = ￿kijckaibj (20) = A (B C) (21) · × Hence, A (B C)=B (C A)=C (A B) (22) · × · × · ×

1 -3 To Prove: (A B)=A ( B)+B ( A)+(A )B +(B )A ∇ · × ∇ × × ∇ × · ∇ · ∇ The LHS is (A B)=eˆ ∂ (a b ) ∇ · i i j j = eˆi [(∂iaj)bj + aj(∂ibj)] (23) and the four terms of the RHS are A ( B)=eˆ ￿ ￿ a ∂ b × ∇ × i ijk klm j l m = eˆ (δ δ δ δ )a ∂ b (24) i il jm − im jl j l m B ( A)=eˆ (δ δ δ δ )b ∂ a (25) × ∇ × i il jm − im jl j l m (A )B = eˆ a ∂ b (26) · ∇ i j j i (B )A = eˆ b ∂ a (27) · ∇ i j j i So, the RHS is the sum of the four terms, given by

eˆi [(∂iaj)bj + aj(∂ibj)] (28) which identically equals the LHS. Therefore,

(A B)=A ( B)+B ( A)+(A )B +(B )A (29) ∇ · × ∇ × × ∇ × · ∇ · ∇ To Prove: (A B)=B ( A) A ( B) ∇ · × · ∇ × − · ∇ × (A B)=(eˆ ∂ ) (eˆ ￿ a b ) (30) ∇ · × i i · k klm l m = ￿ilm∂i(albm) = b ￿ ∂ a a ￿ ∂ b m mil i l − l lim i m = b ( A) a ( B) m ∇ × m − l ∇ × l = B ( A) A ( B) (31) · ∇ × − · ∇ × So, (A B)=B ( A) A ( B) (32) ∇ · × · ∇ × − · ∇ ×

To Prove: ( A)= ( A) 2A ∇ × ∇ × ∇ ∇ · − ∇ ( A)=(eˆ ∂ ) (eˆ ￿ ∂ a ) (33) ∇ × ∇ × i i × j jlm l m = eˆk￿kij￿jim∂i∂lam

= eˆk￿jki￿jlm∂i∂lam = eˆ (δ δ δ δ )∂ ∂ a k kl im − km il i l m = eˆ ∂ ∂ a eˆ ∂ ∂ a k i k i − k i i k = ( A) 2A (34) ∇ ∇ · − ∇ So, ( A)= ( A) 2A (35) ∇ × ∇ × ∇ ∇ · − ∇

1 -4 Problem 3

Suppose the boosts are performed along the x-axis, and the (transformed) x￿-axis (which is parallel to the x-axis). Then, the first boost is given by

γ γ1v1 00 1 − c2 γ1v1 γ1 00 L1 =  −  (36) 0010  0001     v2 where γ =1/ 1 1 . Likewise, the second boost is given by 1 − c2 ￿ γ γ2v2 00 2 − c2 γ2v2 γ2 00 L2 =  −  (37) 0010  0001     The product of these boosts is

γ γ2v2 00 γ γ1v1 00 2 − c2 1 − c2 γ2v2 γ2 00 γ1v1 γ1 00 Lprod = L2L1 =  −   −  0010 0010  0001  0001      v1v2 γ1γ2   γ1γ2 1+ c2 c2 (v1 + v2)00 − v1v2 γ1γ2(v1 + v2) γ1γ2 1+ 2 00 =  − ￿ ￿ c  (38) 0010 ￿ ￿  0001     Therefore, the product of the boosts is also a boost along the x-direction with speed v3 given by

0 v3 (Lprod) 1 2 = 0 (39) c −(Lprod) 0 γ1γ2 2 (v1 + v2) = c (40) v1v2 γ1γ2 1+ c2 So, ￿ ￿ v1 + v2 v3 = v1v2 (41) 1+ c2 The boost parameter γ of the combined boost is

v v γ = γ γ 1+ 1 2 (42) 1 2 c2 ￿ ￿

1 -5 Problem 4

ν Let Tµ denote an orthogonal transformation, so that µ α µ Tα T ν = δν (43) Now, under such an orthogonal transformation, µ µ µ β α δ (δ )￿ = T T δ (44) ν −→ ν α ν β µ α = T αTν µ = δν (using (44)) (45) µ Hence, δν is an invariant tensor under an orthogonal transformation. Similarly, µν µν µ ν αβ g (g )￿ = T T g (46) −→ α β µ σ ων αβ = T αTω g gσβg

α δσ µ σ ων α = T αTω g δ￿σ ￿￿ ￿ µ α ων = T αTω g µ ων = δωg (using (44)) = gµν (47) Hence, gµν is an invariant tensor under an orthogonal transformation. Finally, under the orthogonal transformation, µνλρ µνλρ µ ν λ ρ αβωσ ￿ (￿ )￿ = T T T T ￿ (48) −→ α β ω σ =det(T )￿µνλρ (49) =+1 ￿µνλρ (if T is a proper orthogonal transformation.) (50) × Hence, ￿µνλρ is also an invariant tensor under a (proper) orthogonal transformation. If the orthogonal transformation has a determinant 1, then the components acquire a minus sign. This shows − that ￿µνλρ is a pseudotensor.

Problem 5

By definition, δF[ϕ(x)] F [ϕ(x)+￿δ(x y)] F [ϕ(x)] =lim − − (51) δϕ(y) ￿ 0 ￿ → Now, δF[x(s)] F [x(s)+￿δ(s s )] F [x(s)] =lim − ￿ − δx(s ) ￿ 0 ￿ ￿ → dF [x(s)] 2 F [x(s)] + ￿δ(s s￿) + O(￿ ) F [x(s)] =lim − dx − (Taylor expanding) ￿ 0 ￿ → dF = δ(s s￿) (52) − dx

1 -6 Also, taking F [x(s)] to be the identity functional, i.e. F [x(s)] = x(s) in (52), we have

δx(s) dx = δ(s s￿) δx(s￿) − dx = δ(s s￿) (53) − dx(s) Next, taking F [x(s)] = ds in (51), we have

d dx(s) δ dx(s) x(s)+￿δ(s s￿) =lim ds { − }− ds δx(s ) ds ￿ 0 ￿ ￿ → dx(s) d dx(s) + ￿ δ(s s￿) =lim ds ds − − ds ￿ 0 ￿ → dδ(s s ) = − ￿ (54) ds

δ dy sin([f(y)+￿δ(y x)]2) dy sin([f(y)]2) dy sin(f 2(y)) = lim − − δf(x) ￿ 0 ￿ ￿ → ￿ ￿ dy sin([f 2(y)+2￿δ(y x)f(y)]) dy sin([f(y)]2) =lim − − ￿ 0 ￿ → ￿ ￿ dy sin([f(y)]2)+ dy cos([f(y)]2)sin(2￿δ(y x)f(y)) dy sin([f(y)]2) =lim − − ￿ 0 ￿ → ￿ ￿ ￿ dy cos([f(y)]2)sin(2￿δ(y x)f(y)) =lim − (∵ cos(θ) 1 for small θ) ￿ 0 ￿ ≈ → ￿ dy cos([f(y)]2)[2￿δ(y x)f(y)] =lim − (∵ sin(θ) θ for small θ) ￿ 0 ￿ ≈ → ￿ =2f(x) cos([f(x)]2)

where we have used the trigonometric identity sin(A + B)=sin(A) cos(B) + cos(A)sin(B). So,

δ dy sin(f 2(y)) = 2f(x) cos([f(x)]2) (55) δf(x) ￿ Note that this result could have been obtained more directly by using (52) with F [f(y)] = dy sin([f(y)]2), so that ￿ δF[f(y)] d = dy δ(x y) sin([f(y)]2) δf(x) − df (x) ￿ d = dy δ(x y) sin([f(y)]2) − df (y) ￿ = dy δ(x y)2f(y) cos([f(y)]2) − ￿ =2f(x) cos([f(x)]2)

1 -7 Similarly,

δ dy sin(f ￿(y)+￿δ￿(y x)) dy sin(f ￿(y)) dy sin(f ￿(y)) = lim − − δf(x) ￿ 0 ￿ ￿ → ￿ ￿ dy sin(f (y)) cos(￿δ (y x)) + dy cos(f (y)) sin(￿δ (y x)) dy sin(f (y)) =lim ￿ ￿ − ￿ ￿ − − ￿ ￿ 0 ￿ → ￿ ￿ ￿ dy cos(f ￿(y)) sin(￿δ￿(y x)) =lim − (∵ cos(θ) 1 for small θ) ￿ 0 ￿ ≈ → ￿ dy cos(f ￿(y))[￿δ￿(y x)] =lim − (∵ sin(θ) θ for small θ) ￿ 0 ￿ ≈ → ￿ = dy cos[f ￿(y)]δ￿(y x) − ￿ d = dy δ(y x) cos[f ￿(y)] − − dy ￿ df ￿(y) = dy δ(y x)sin[f ￿(y)] − dy ￿ = f ￿￿(x)sin[f ￿(x)]

So, δ dy sin(f ￿(y)) = f ￿￿(x)sin[f ￿(x)] (56) δf(x) ￿

1 -8