On Electromagnetic Duality

Total Page:16

File Type:pdf, Size:1020Kb

On Electromagnetic Duality On Electromagnetic Duality Thomas B. Mieling Faculty of Physics, University of Vienna Boltzmanngasse 5, 1090 Vienna, Austria (Dated: November 14, 2018) CONTENTS III. DUAL TENSORS I. Introduction 1 This section introduces the notion of dual ten- sors, whose proper treatment requires some famil- II. Conventions 1 iarity with exterior algebra. Readers unfamiliar with this topic may skip section III A, since sec- III. Dual Tensors 1 tion III B suces for the calculations in the rest of A. The Hodge Dual 1 the paper, except parts of the appendix. B. The Complex Dual of Two-Forms 2 IV. The Free Maxwell-Field 2 A. The Hodge Dual V. General Duality Transformations 3 For an oriented vector space V of dimension VI. Coupled Maxwell-Fields 3 n with a metric tensor, the Hodge star opera- tor provides an isomorphism between the k-vectors VII. Applications 4 n − k-vectors. In this section, we discuss the gen- eral denition in Euclidean and Lorentzian vector VIII. Conclusion 5 spaces and give formulae for concrete calculations in (pseudo-)orthonormal frames. A. Notes on Exterior Algebra 6 The metric tensor g on V induces a metric tensor on ^kV (denoted by the same symbol) by bilinear B. Collection of Proofs 7 extension of the map References 8 g(v1 ^ · · · ^ vk; w1 ^ · · · ^ wk) = det(g(vi; wj)): If the metric on V is non-degenerate, so is g on I. INTRODUCTION ^kV . Let w be a k-vector. For every n − k-vector In abelian gauge theories whose action does not v the exterior product v ^ w is proportional to depend on the gauge elds themselves, but only the unit n-vector Ω, since ^nV is one-dimensional. on their eld strength tensors, duality transfor- We can thus write v ^ w = '(v; w)Ω, where ' mations are symmetry transformations mixing the is a bilinear function. As is shown in appendix eld tensors with certain dual tensors arising nat- A, there exists a unique element ∗w such that urally in symmetric formulations of the eld equa- g(v; ∗w) = s(g)'(v; w), which is called the Hodge tions. dual of w. These notes are intended to clarify what is meant Denition. For a k-vector w, the dual ∗w is the by dual tensors and to shed some light upon the unique n − k-vector such that for all n − k-vectors group of such duality transformations. v it holds that v ^ w = s(g) g(v; ∗w)Ω: (1) II. CONVENTIONS For a basis e it is convenient to introduce the This paper uses the Einstein summation conven- notation tion. The signature of the metric tensor in four eab::: = ea ^ eb ^ ::: dimensions is assumed to be (−; +; +; +). When g~ = g(ea; ea)g(eb; eb) ::: working with a general metric g, we denote by s(g) ab::: the sign of its determinant1. For the permutation Since the Hodge dual may be equally constructed symbol , we us the sign convention . 01::: = +1 on the dual space of an ordered vector space (where the volume form denes the preferred n-vector), we will make use of similar notation with indices raised. 1 Equivalently, one has s(g) = (−1)n, where n is the num- In [1] it is shown that the Hodge dual acts ber of negative signs in the signature of g. on an a right-handed orthonormal basis e in 2 the following way. For pairwise distinct indices Using the fact that ρσκλ κ λ λ κ , µνρσ = −2(δµδν − δµδν ) let be a completion such that i1; : : : ; ik j1; : : : ; jl it is readily veried that the operation F 7! F~ is (i1; : : : ; ik; j1; : : : ; jl) is a permutation of (1; : : : ; n). its own inverse: Denote by sgn(π) its sign. Then i F~ = − F~ρσ (2) µν µνρσ ∗ei :::i = sgn(π)~gi :::i ej :::j : 2 1 k 1 k 1 l 1 = − ρσκλF Example. In the three dimensional Euclidean 4 µνρσ κλ space we may choose a right-handed orthonor- E3 1 κ λ λ κ mal basis such that . We then = + (δµδν − δµδν )Fκλ = Fµν : e1; e2; e3 Ω = e123 2 have Every antisymmetric tensor F can be decom- posed into a self-dual and an self-anti-dual part ∗e12 = e3 1 1 and cyclic permutations thereof. The cross product F = F + + F − ≡ F + F~ + F − F~ : of two vectors a and b is given by 2 2 Note that self-dual two-forms exists only in a com- a × b = ∗(a ^ b): plex setting. Furthermore, F + and F − are com- plex conjugate to each other, if F is real. Let e denote a right-handed orthonormal frame We give some useful algebraic properties of this in a four-dimensional Lorentzian vector space with complex duality transformation. For two antisym- volume form 0123. It is readily seen that the Ω = e metric tensors A and B we have the identity Hodge dual acts on the basis vectors as µρ ~µρ ~ 1 µ ρσ (7) 1 A Bρν + B Aρν = − δν A Bρσ ; ∗eµ1...µk = µ1...µk eν1...νl : (3) 2 ν1...νl (n − k)! which shows that the contraction of two dual ten- Example. A two-form F in such a space has the sors can be expressed as contractions of the origi- decomposition nal tensors. A proof of this identity can be found in appendix B . Contracting the remaining pair of 1 indices, one nds F = F eµ ⊗ eν = F eµν : µν 2 µν ~µν ~ µν (8) A Bµν = A Bµν Using the fact that the Hodge star operator is lin- ear, we can compute the dual of F as From the previous equations it also follows that if both A and B are self-dual or anti-self dual 1 ρσ ρσ µν 1 2(∗F ) = Fρσ (∗e ) = Fρσ µν e ; A (µBν)ρ = − ηµν A Bρσ: 2 ρ 4 ρσ We thus have Furthermore, if one of them is self-dual and the other one anti-self-dual it holds that µν 1 µνρσ (4) ∗F = Fρσ : µν 2 A Bµν = 0; [µ ν]ρ Aρ B = 0: B. The Complex Dual of Two-Forms In general, the Hodge star operator is its own IV. THE FREE MAXWELL-FIELD inverse up to a sign, which depends (among other things) on the rank of the form acted upon. For Recall that the electromagnetic tensor F is de- two-forms, such as the electromagnetic eld tensor, rived from a covector potential A by means of it holds that F = dA, where d denotes the exterior derivative (in components ). Due to this Fµν = @µAν − @ν Aµ ∗ ∗ F = −F: fact, F satises a Bianchi identity In order to have a self-inverse operation, the au- @ν Fρσ + @ρ Fσν + @σ Fνρ = 0: thors of [2] introduce a complex operator Contracting with µνρσ, one obtains the equivalent equation F~ := −i(∗F ); (5) µν @ν F~ = 0: in components (with respect to a right-handed or- thonormal frame) In the absence of sources, the eld equations take the form i F~µν = − µνρσF : (6) µν 2 ρσ @ν F = 0; 3 for which we will write from now on div F = 0. Indeed, the variation of the action with respect to The pair of equations the potentials reads div F = 0 Z (9) δS = d4x δL div F~ = 0 i Z = d4x G~ µν δF a are clearly invariant under the substitution 2 a µν Z ~ 4 ~ µν a F 7! cos(α)F + i sin(α)F; = i d x (@ν Ga )δA µ; which transforms the electric and magnetic eld as so the eld equations for the potentials are equiv- E cos α − sin α E alent to 7! : B sin α cos α B ~ (13) div Ga = 0: Recall that the eld energy density W and the Poynting vector S are given by We dene duality transformations as symmetry transformations of the eld equations, which are 1 W = E2 + B2 ; linear transformations among the eld strengths 2 F and their associated tensors G (see [3]). S = E × B: Theorem 1. In four spacetime dimensions, a lin- Since both expressions are invariant, so is the ear transformation of the tensors F and G leaves energy-momentum tensor. the eld equations (including those of χ) invariant Remark. One might consider adding terms of the if, and only if, the transformation is symplectic. In form ~ ~µν or ~µν to the action of electrody- other words, the group of duality transformations Fµν F Fµν F namics. But due to equation (8), the rst option is Sp(2n; R). does not add anything new, and due to the fact A proof of this theorem can be found in [3]. Fol- that div F~ = 0 we have lowing [2], we do not give the general proof, but ~µν ~µν restrict our attention to a certain form of the La- Fµν F = (@µAν − @ν Aµ)F grangian, which is common in supersymmetry and ~µν = 2(@µAν )F supergravity. µν = 2@µ(Aν F~ ); so second option simply adds a divergence, which VI. COUPLED MAXWELL-FIELDS does not contribute to the eld equations. a. The Lagrangian of Coupled Maxwell Fields V. GENERAL DUALITY We consider a collection of n covector potentials TRANSFORMATIONS A1; :::; An and a complex, symmetric n×n matrix- valued function with components (which may f fab The symmetry between the eld equations and depend on other elds), providing a coupling be- the Bianchi identities is a general feature of the- tween the various covector potentials by virtue of ories whose action depends on covector potentials the Lagrangian only via their eld strength tensors.
Recommended publications
  • Topology and Physics 2019 - Lecture 2
    Topology and Physics 2019 - lecture 2 Marcel Vonk February 12, 2019 2.1 Maxwell theory in differential form notation Maxwell's theory of electrodynamics is a great example of the usefulness of differential forms. A nice reference on this topic, though somewhat outdated when it comes to notation, is [1]. For notational simplicity, we will work in units where the speed of light, the vacuum permittivity and the vacuum permeability are all equal to 1: c = 0 = µ0 = 1. 2.1.1 The dual field strength In three dimensional space, Maxwell's electrodynamics describes the physics of the electric and magnetic fields E~ and B~ . These are three-dimensional vector fields, but the beauty of the theory becomes much more obvious if we (a) use a four-dimensional relativistic formulation, and (b) write it in terms of differential forms. For example, let us look at Maxwells two source-free, homogeneous equations: r · B = 0;@tB + r × E = 0: (2.1) That these equations have a relativistic flavor becomes clear if we write them out in com- ponents and organize the terms somewhat suggestively: x y z 0 + @xB + @yB + @zB = 0 x z y −@tB + 0 − @yE + @zE = 0 (2.2) y z x −@tB + @xE + 0 − @zE = 0 z y x −@tB − @xE + @yE + 0 = 0 Note that we also multiplied the last three equations by −1 to clarify the structure. All in all, we see that we have four equations (one for each space-time coordinate) which each contain terms in which the four coordinate derivatives act. Therefore, we may be tempted to write our set of equations in more \relativistic" notation as ^µν @µF = 0 (2.3) 1 with F^µν the coordinates of an antisymmetric two-tensor (i.
    [Show full text]
  • Arxiv:0911.0334V2 [Gr-Qc] 4 Jul 2020
    Classical Physics: Spacetime and Fields Nikodem Poplawski Department of Mathematics and Physics, University of New Haven, CT, USA Preface We present a self-contained introduction to the classical theory of spacetime and fields. This expo- sition is based on the most general principles: the principle of general covariance (relativity) and the principle of least action. The order of the exposition is: 1. Spacetime (principle of general covariance and tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors); 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field, action for particles). In this order, a particle is a special case of a field existing in spacetime, and classical mechanics can be derived from field theory. I dedicate this book to my Parents: Bo_zennaPop lawska and Janusz Pop lawski. I am also grateful to Chris Cox for inspiring this book. The Laws of Physics are simple, beautiful, and universal. arXiv:0911.0334v2 [gr-qc] 4 Jul 2020 1 Contents 1 Spacetime 5 1.1 Principle of general covariance and tensors . 5 1.1.1 Vectors . 5 1.1.2 Tensors . 6 1.1.3 Densities . 7 1.1.4 Contraction . 7 1.1.5 Kronecker and Levi-Civita symbols . 8 1.1.6 Dual densities . 8 1.1.7 Covariant integrals . 9 1.1.8 Antisymmetric derivatives . 9 1.2 Affine connection . 10 1.2.1 Covariant differentiation of tensors . 10 1.2.2 Parallel transport . 11 1.2.3 Torsion tensor . 11 1.2.4 Covariant differentiation of densities .
    [Show full text]
  • Einstein and Friedmann Equations
    Outline ● Go over homework ● Einstein equations ● Friedmann equations Homework ● For next class: – A light ray is emitted from r = 0 at time t = 0. Find an expression for r(t) in a flat universe (k=0) and in a positively curved universe (k=1). Einstein Equations ● General relativity describes gravity in terms of curved spacetime. ● Mass/energy causes the curvature – Described by mass-energy tensor – Which, in general, is a function of position ● The metric describes the spacetime – Metric determines how particles will move ● To go from Newtonian gravity to General Relativity d2 GM 8 πG ⃗r = r^ → Gμ ν(gμ ν) = T μ ν dt2 r 2 c4 ● Where G is some function of the metric Curvature ● How to calculate curvature of spacetime from metric? – “readers unfamiliar with tensor calculus can skip down to Eq. 8.22” – There are no equations with tensors after 8.23 ● Curvature of spacetime is quantified using parallel transport ● Hold a vector and keep it parallel to your direction of motion as you move around on a curved surface. ● Locally, the vector stays parallel between points that are close together, but as you move finite distances the vector rotates – in a manner depending on the path. Curvature ● Mathematically, one uses “Christoffel symbols” to calculate the “affine connection” which is how to do parallel transport. ● Christoffel symbols involve derivatives of the metric. μ 1 μρ ∂ gσ ρ ∂ gνρ ∂ g Γ = g + + σ ν σ ν 2 ( ∂ x ν ∂ xσ ∂ xρ ) ● The Reimann tensor measures “the extent to which the metric tensor is not locally isometric to that of Euclidean space”.
    [Show full text]
  • Tensor Manipulation in GPL Maxima
    Tensor Manipulation in GPL Maxima Viktor Toth http://www.vttoth.com/ February 1, 2008 Abstract GPL Maxima is an open-source computer algebra system based on DOE-MACSYMA. GPL Maxima included two tensor manipulation packages from DOE-MACSYMA, but these were in various states of disrepair. One of the two packages, CTENSOR, implemented component-based tensor manipulation; the other, ITENSOR, treated tensor symbols as opaque, manipulating them based on their index properties. The present paper describes the state in which these packages were found, the steps that were needed to make the packages fully functional again, and the new functionality that was implemented to make them more versatile. A third package, ATENSOR, was also implemented; fully compatible with the identically named package in the commercial version of MACSYMA, ATENSOR implements abstract tensor algebras. 1 Introduction GPL Maxima (GPL stands for the GNU Public License, the most widely used open source license construct) is the descendant of one of the world’s first comprehensive computer algebra systems (CAS), DOE-MACSYMA, developed by the United States Department of Energy in the 1960s and the 1970s. It is currently maintained by 18 volunteer developers, and can be obtained in source or object code form from http://maxima.sourceforge.net/. Like other computer algebra systems, Maxima has tensor manipulation capability. This capability was developed in the late 1970s. Documentation is scarce regarding these packages’ origins, but a select collection of e-mail messages by various authors survives, dating back to 1979-1982, when these packages were actively maintained at M.I.T. When this author first came across GPL Maxima, the tensor packages were effectively non-functional.
    [Show full text]
  • On Manifolds of Tensors of Fixed Tt-Rank
    ON MANIFOLDS OF TENSORS OF FIXED TT-RANK SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a promising new format for the approximation of solutions of high dimensional problems. In this paper, we prove some new results for the TT representation of a tensor U ∈ Rn1×...×nd and for the manifold of tensors of TT-rank r. As a first result, we prove that the TT (or compression) ranks ri of a tensor U are unique and equal to the respective seperation ranks of U if the components of the TT decomposition are required to fulfil a certain maximal rank condition. We then show that d the set T of TT tensors of fixed rank r forms an embedded manifold in Rn , therefore preserving the essential theoretical properties of the Tucker format, but often showing an improved scaling behaviour. Extending a similar approach for matrices [7], we introduce certain gauge conditions to obtain a unique representation of the tangent space TU T of T and deduce a local parametrization of the TT manifold. The parametrisation of TU T is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems [33]. We conclude with remarks on those applications and present some numerical examples. 1. Introduction The treatment of high-dimensional problems, typically of problems involving quantities from Rd for larger dimensions d, is still a challenging task for numerical approxima- tion. This is owed to the principal problem that classical approaches for their treatment normally scale exponentially in the dimension d in both needed storage and computa- tional time and thus quickly become computationally infeasable for sensible discretiza- tions of problems of interest.
    [Show full text]
  • On the Covariant Representation of Integral Equations of the Electromagnetic Field
    On the covariant representation of integral equations of the electromagnetic field Sergey G. Fedosin PO box 614088, Sviazeva str. 22-79, Perm, Perm Krai, Russia E-mail: [email protected] Gauss integral theorems for electric and magnetic fields, Faraday’s law of electromagnetic induction, magnetic field circulation theorem, theorems on the flux and circulation of vector potential, which are valid in curved spacetime, are presented in a covariant form. Covariant formulas for magnetic and electric fluxes, for electromotive force and circulation of the vector potential are provided. In particular, the electromotive force is expressed by a line integral over a closed curve, while in the integral, in addition to the vortex electric field strength, a determinant of the metric tensor also appears. Similarly, the magnetic flux is expressed by a surface integral from the product of magnetic field induction by the determinant of the metric tensor. A new physical quantity is introduced – the integral scalar potential, the rate of change of which over time determines the flux of vector potential through a closed surface. It is shown that the commonly used four-dimensional Kelvin-Stokes theorem does not allow one to deduce fully the integral laws of the electromagnetic field and in the covariant notation requires the addition of determinant of the metric tensor, besides the validity of the Kelvin-Stokes theorem is limited to the cases when determinant of metric tensor and the contour area are independent from time. This disadvantage is not present in the approach that uses the divergence theorem and equation for the dual electromagnetic field tensor.
    [Show full text]
  • On the Representation of Symmetric and Antisymmetric Tensors
    Max-Planck-Institut fur¨ Mathematik in den Naturwissenschaften Leipzig On the Representation of Symmetric and Antisymmetric Tensors (revised version: April 2017) by Wolfgang Hackbusch Preprint no.: 72 2016 On the Representation of Symmetric and Antisymmetric Tensors Wolfgang Hackbusch Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22–26, D-04103 Leipzig, Germany [email protected] Abstract Various tensor formats are used for the data-sparse representation of large-scale tensors. Here we investigate how symmetric or antiymmetric tensors can be represented. The analysis leads to several open questions. Mathematics Subject Classi…cation: 15A69, 65F99 Keywords: tensor representation, symmetric tensors, antisymmetric tensors, hierarchical tensor format 1 Introduction We consider tensor spaces of huge dimension exceeding the capacity of computers. Therefore the numerical treatment of such tensors requires a special representation technique which characterises the tensor by data of moderate size. These representations (or formats) should also support operations with tensors. Examples of operations are the addition, the scalar product, the componentwise product (Hadamard product), and the matrix-vector multiplication. In the latter case, the ‘matrix’belongs to the tensor space of Kronecker matrices, while the ‘vector’is a usual tensor. In certain applications the subspaces of symmetric or antisymmetric tensors are of interest. For instance, fermionic states in quantum chemistry require antisymmetry, whereas bosonic systems are described by symmetric tensors. The appropriate representation of (anti)symmetric tensors is seldom discussed in the literature. Of course, all formats are able to represent these tensors since they are particular examples of general tensors. However, the special (anti)symmetric format should exclusively produce (anti)symmetric tensors.
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]
  • SPINORS and SPACE–TIME ANISOTROPY
    Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE{TIME ANISOTROPY University of Athens ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii - i ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. ii - iii ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics.
    [Show full text]
  • General Relativity Fall 2019 Lecture 11: the Riemann Tensor
    General Relativity Fall 2019 Lecture 11: The Riemann tensor Yacine Ali-Ha¨ımoud October 8th 2019 The Riemann tensor quantifies the curvature of spacetime, as we will see in this lecture and the next. RIEMANN TENSOR: BASIC PROPERTIES α γ Definition { Given any vector field V , r[αrβ]V is a tensor field. Let us compute its components in some coordinate system: σ σ λ σ σ λ r[µrν]V = @[µ(rν]V ) − Γ[µν]rλV + Γλ[µrν]V σ σ λ σ λ λ ρ = @[µ(@ν]V + Γν]λV ) + Γλ[µ @ν]V + Γν]ρV 1 = @ Γσ + Γσ Γρ V λ ≡ Rσ V λ; (1) [µ ν]λ ρ[µ ν]λ 2 λµν where all partial derivatives of V µ cancel out after antisymmetrization. σ Since the left-hand side is a tensor field and V is a vector field, we conclude that R λµν is a tensor field as well { this is the tensor division theorem, which I encourage you to think about on your own. You can also check that explicitly from the transformation law of Christoffel symbols. This is the Riemann tensor, which measures the non-commutation of second derivatives of vector fields { remember that second derivatives of scalar fields do commute, by assumption. It is completely determined by the metric, and is linear in its second derivatives. Expression in LICS { In a LICS the Christoffel symbols vanish but not their derivatives. Let us compute the latter: 1 1 @ Γσ = @ gσδ (@ g + @ g − @ g ) = ησδ (@ @ g + @ @ g − @ @ g ) ; (2) µ νλ 2 µ ν λδ λ νδ δ νλ 2 µ ν λδ µ λ νδ µ δ νλ since the first derivatives of the metric components (thus of its inverse as well) vanish in a LICS.
    [Show full text]
  • A Some Basic Rules of Tensor Calculus
    A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e.
    [Show full text]
  • General Relativity Fall 2019 Lecture 13: Geodesic Deviation; Einstein field Equations
    General Relativity Fall 2019 Lecture 13: Geodesic deviation; Einstein field equations Yacine Ali-Ha¨ımoud October 11th, 2019 GEODESIC DEVIATION The principle of equivalence states that one cannot distinguish a uniform gravitational field from being in an accelerated frame. However, tidal fields, i.e. gradients of gravitational fields, are indeed measurable. Here we will show that the Riemann tensor encodes tidal fields. Consider a fiducial free-falling observer, thus moving along a geodesic G. We set up Fermi normal coordinates in µ the vicinity of this geodesic, i.e. coordinates in which gµν = ηµν jG and ΓνσjG = 0. Events along the geodesic have coordinates (x0; xi) = (t; 0), where we denote by t the proper time of the fiducial observer. Now consider another free-falling observer, close enough from the fiducial observer that we can describe its position with the Fermi normal coordinates. We denote by τ the proper time of that second observer. In the Fermi normal coordinates, the spatial components of the geodesic equation for the second observer can be written as d2xi d dxi d2xi dxi d2t dxi dxµ dxν = (dt/dτ)−1 (dt/dτ)−1 = (dt/dτ)−2 − (dt/dτ)−3 = − Γi − Γ0 : (1) dt2 dτ dτ dτ 2 dτ dτ 2 µν µν dt dt dt The Christoffel symbols have to be evaluated along the geodesic of the second observer. If the second observer is close µ µ λ λ µ enough to the fiducial geodesic, we may Taylor-expand Γνσ around G, where they vanish: Γνσ(x ) ≈ x @λΓνσjG + 2 µ 0 µ O(x ).
    [Show full text]