Homework 1 Problem 1

Homework 1 Problem 1

PHYS606: Electrodynamics Feb. 01, 2011 Homework 1 Instructor: Dr. Paulo Bedaque Submitted by: Vivek Saxena Problem 1 µ Under a Lorentz transformation L ν, a rank-2 covariant tensor transforms as α β A A = L L A (1) µν −→ µν µ ν αβ Symmetric Tensor By definition, Aµν = Aνµ,so α β Aν µ = Lν Lµ Aαβ α β = Lν Lµ Aβα β α = Lµ Lν Aβα = Aµν (2) So, symmetry is preserved under Lorentz transformations. Antisymmetric Tensor By definition, A = A ,so µν − νµ α β Aν µ = Lν Lµ Aαβ = L αL βA − ν µ βα = L βL αA − µ ν βα = A (3) − µν So, antisymmetry is also preserved under Lorentz transformations. Contraction of a symmetric and antisymmetric tensor A Sµν =( A )(Sνµ) (4) µν − νµ = (A Sνµ) − νµ = (A Sµν)(µ and ν are dummy indices) (5) − µν ∵ µν Hence, AµνS =0. 1 -1 Curl of grad, and div of curl f =(eˆ ∂ ) (eˆ ∂ f) ∇ × ∇ i i × j j = ijk∂i∂jfeˆk = ijk∂j∂ifeˆk (∵ f is well-behaved) = ∂ ∂ feˆ − jik j i k = f (6) −∇ × ∇ So, f =0 (7) ∇ × ∇ Also, ( a)=(eˆ ∂ ) [(eˆ ∂ ) (eˆ a )] ∇ · ∇ × i i · j j × k k = δiljkl∂i∂jak = ijk∂i∂jak = ijk∂j∂iak (∵ f is well-behaved) = ∂ ∂ a − jik j i k = ( a) (8) −∇ · ∇ × So, ( a)=0 (9) ∇ · ∇ × Problem 2 (a) The LHS is antisymmetric in (j, k) and (l, m), so it suffices to consider the case j = k and l = m (as otherwise, the LHS is zero). Substituting j =2,k =3(= i = 1) the LHS equals 1231lm. So, either l =2,m =3so ⇒ that the LHS = +1 or l =3,m = 2 so that the LHS = 1. For i =1,j =2,k = 3, the RHS − = δ2lδ3m δ2mδ3l which equals +1 if l =2,m= 3 and equals 1ifl =3,m= 2. So the LHS = RHS − − for this permutation of indices. Similarly, we can show that the LHS = RHS for every permutation of the indices [1, 2, 3]. This establishes the identity, ijkilm = δjlδkm δjmδkl (10) − Equivalently, if we use ijkijk = 3! = 6 as the starting point, the general form has to be ijkilm = C(δjlδkm δjmδkl) − 1 -2 where C is an appropriate normalization factor. Contracting indices (j, l) and (k, m) on both sides, we get ijkijk = C(δjjδkk δjkδkj) − = 6=6C ⇒ = C =1 ⇒ which establishes Eqn. (10). (b) Using Eqn. (11) with l = j (with a sum on j), we get ijkijm = δjjδkm δjmδkj − =3δkm δkm =2δkm − So, ijkilm =2δkm (11) (c) To Prove: A (B C)=B (C A)=C (A B) · × · × · × A (B C)=(a eˆ ) (eˆ b c ) (12) · × i i · l ljk j k = ijkaibjck (13) B (C A)= b c a (14) · × ijk i j k = b c a (15) − kji k j i = jkibjckai (16) = A (B C) (17) · × C (A B)= c a b (18) · × ijk i j k = c a b (19) − jik j i k = kijckaibj (20) = A (B C) (21) · × Hence, A (B C)=B (C A)=C (A B) (22) · × · × · × 1 -3 To Prove: (A B)=A ( B)+B ( A)+(A )B +(B )A ∇ · × ∇ × × ∇ × · ∇ · ∇ The LHS is (A B)=eˆ ∂ (a b ) ∇ · i i j j = eˆi [(∂iaj)bj + aj(∂ibj)] (23) and the four terms of the RHS are A ( B)=eˆ a ∂ b × ∇ × i ijk klm j l m = eˆ (δ δ δ δ )a ∂ b (24) i il jm − im jl j l m B ( A)=eˆ (δ δ δ δ )b ∂ a (25) × ∇ × i il jm − im jl j l m (A )B = eˆ a ∂ b (26) · ∇ i j j i (B )A = eˆ b ∂ a (27) · ∇ i j j i So, the RHS is the sum of the four terms, given by eˆi [(∂iaj)bj + aj(∂ibj)] (28) which identically equals the LHS. Therefore, (A B)=A ( B)+B ( A)+(A )B +(B )A (29) ∇ · × ∇ × × ∇ × · ∇ · ∇ To Prove: (A B)=B ( A) A ( B) ∇ · × · ∇ × − · ∇ × (A B)=(eˆ ∂ ) (eˆ a b ) (30) ∇ · × i i · k klm l m = ilm∂i(albm) = b ∂ a a ∂ b m mil i l − l lim i m = b ( A) a ( B) m ∇ × m − l ∇ × l = B ( A) A ( B) (31) · ∇ × − · ∇ × So, (A B)=B ( A) A ( B) (32) ∇ · × · ∇ × − · ∇ × To Prove: ( A)= ( A) 2A ∇ × ∇ × ∇ ∇ · − ∇ ( A)=(eˆ ∂ ) (eˆ ∂ a ) (33) ∇ × ∇ × i i × j jlm l m = eˆkkijjim∂i∂lam = eˆkjkijlm∂i∂lam = eˆ (δ δ δ δ )∂ ∂ a k kl im − km il i l m = eˆ ∂ ∂ a eˆ ∂ ∂ a k i k i − k i i k = ( A) 2A (34) ∇ ∇ · − ∇ So, ( A)= ( A) 2A (35) ∇ × ∇ × ∇ ∇ · − ∇ 1 -4 Problem 3 Suppose the boosts are performed along the x-axis, and the (transformed) x-axis (which is parallel to the x-axis). Then, the first boost is given by γ γ1v1 00 1 − c2 γ1v1 γ1 00 L1 = − (36) 0010 0001 v2 where γ =1/ 1 1 . Likewise, the second boost is given by 1 − c2 γ γ2v2 00 2 − c2 γ2v2 γ2 00 L2 = − (37) 0010 0001 The product of these boosts is γ γ2v2 00 γ γ1v1 00 2 − c2 1 − c2 γ2v2 γ2 00 γ1v1 γ1 00 Lprod = L2L1 = − − 0010 0010 0001 0001 v1v2 γ1γ2 γ1γ2 1+ c2 c2 (v1 + v2)00 − v1v2 γ1γ2(v1 + v2) γ1γ2 1+ 2 00 = − c (38) 0010 0001 Therefore, the product of the boosts is also a boost along the x-direction with speed v3 given by 0 v3 (Lprod) 1 2 = 0 (39) c −(Lprod) 0 γ1γ2 2 (v1 + v2) = c (40) v1v2 γ1γ2 1+ c2 So, v1 + v2 v3 = v1v2 (41) 1+ c2 The boost parameter γ of the combined boost is v v γ = γ γ 1+ 1 2 (42) 1 2 c2 1 -5 Problem 4 ν Let Tµ denote an orthogonal transformation, so that µ α µ Tα T ν = δν (43) Now, under such an orthogonal transformation, µ µ µ β α δ (δ ) = T T δ (44) ν −→ ν α ν β µ α = T αTν µ = δν (using (44)) (45) µ Hence, δν is an invariant tensor under an orthogonal transformation. Similarly, µν µν µ ν αβ g (g ) = T T g (46) −→ α β µ σ ων αβ = T αTω g gσβg α δσ µ σ ων α = T αTω g δσ µ α ων = T αTω g µ ων = δωg (using (44)) = gµν (47) Hence, gµν is an invariant tensor under an orthogonal transformation. Finally, under the orthogonal transformation, µνλρ µνλρ µ ν λ ρ αβωσ ( ) = T T T T (48) −→ α β ω σ =det(T )µνλρ (49) =+1 µνλρ (if T is a proper orthogonal transformation.) (50) × Hence, µνλρ is also an invariant tensor under a (proper) orthogonal transformation. If the orthogonal transformation matrix has a determinant 1, then the components acquire a minus sign. This shows − that µνλρ is a pseudotensor. Problem 5 By definition, δF[ϕ(x)] F [ϕ(x)+δ(x y)] F [ϕ(x)] =lim − − (51) δϕ(y) 0 → Now, δF[x(s)] F [x(s)+δ(s s )] F [x(s)] =lim − − δx(s ) 0 → dF [x(s)] 2 F [x(s)] + δ(s s) + O( ) F [x(s)] =lim − dx − (Taylor expanding) 0 → dF = δ(s s) (52) − dx 1 -6 Also, taking F [x(s)] to be the identity functional, i.e. F [x(s)] = x(s) in (52), we have δx(s) dx = δ(s s) δx(s) − dx = δ(s s) (53) − dx(s) Next, taking F [x(s)] = ds in (51), we have d dx(s) δ dx(s) x(s)+δ(s s) =lim ds { − }− ds δx(s ) ds 0 → dx(s) d dx(s) + δ(s s) =lim ds ds − − ds 0 → dδ(s s ) = − (54) ds δ dy sin([f(y)+δ(y x)]2) dy sin([f(y)]2) dy sin(f 2(y)) = lim − − δf(x) 0 → dy sin([f 2(y)+2δ(y x)f(y)]) dy sin([f(y)]2) =lim − − 0 → dy sin([f(y)]2)+ dy cos([f(y)]2)sin(2δ(y x)f(y)) dy sin([f(y)]2) =lim − − 0 → dy cos([f(y)]2)sin(2δ(y x)f(y)) =lim − (∵ cos(θ) 1 for small θ) 0 ≈ → dy cos([f(y)]2)[2δ(y x)f(y)] =lim − (∵ sin(θ) θ for small θ) 0 ≈ → =2f(x) cos([f(x)]2) where we have used the trigonometric identity sin(A + B)=sin(A) cos(B) + cos(A)sin(B). So, δ dy sin(f 2(y)) = 2f(x) cos([f(x)]2) (55) δf(x) Note that this result could have been obtained more directly by using (52) with F [f(y)] = dy sin([f(y)]2), so that δF[f(y)] d = dy δ(x y) sin([f(y)]2) δf(x) − df (x) d = dy δ(x y) sin([f(y)]2) − df (y) = dy δ(x y)2f(y) cos([f(y)]2) − =2f(x) cos([f(x)]2) 1 -7 Similarly, δ dy sin(f (y)+δ(y x)) dy sin(f (y)) dy sin(f (y)) = lim − − δf(x) 0 → dy sin(f (y)) cos(δ (y x)) + dy cos(f (y)) sin(δ (y x)) dy sin(f (y)) =lim − − − 0 → dy cos(f (y)) sin(δ(y x)) =lim − (∵ cos(θ) 1 for small θ) 0 ≈ → dy cos(f (y))[δ(y x)] =lim − (∵ sin(θ) θ for small θ) 0 ≈ → = dy cos[f (y)]δ(y x) − d = dy δ(y x) cos[f (y)] − − dy df (y) = dy δ(y x)sin[f (y)] − dy = f (x)sin[f (x)] So, δ dy sin(f (y)) = f (x)sin[f (x)] (56) δf(x) 1 -8.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us