Living Inside Termites-An Overview of Symbiotic Interactions, with Emphasis on Flagellate Protists

Total Page:16

File Type:pdf, Size:1020Kb

Living Inside Termites-An Overview of Symbiotic Interactions, with Emphasis on Flagellate Protists Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Living inside termites: an overview of symbiotic interactions, with emphasis on flagellate protists SÓNIA DUARTE, L. NUNES, P.A.V. BORGES, C.G. FOSSDAL & T. NOBRE Duarte, S., L. Nunes, P.A.V. Borges, C.G. Fossdal & T. Nobre 2017. Living inside termites: an overview of symbiotic interactions, with emphasis on flagellate protists. Arquipelago. Life and Marine Sciences 34: 21-43. To degrade lignocellulose efficiently, lower termites rely on their digestive tract’s specific features (i.e., physiological properties and enzymes) and on the network of symbiotic fauna harboured in their hindgut. This complex ecosystem, has different levels of symbiosis, and is a result of diverse co-evolutionary events and the singular social behaviour of termites. The partnership between termites and flagellate protists, together with prokaryotes, has been very successful because of their co-adaptative ability and efficacy in resolving the needs of the involved organisms: this tripartite symbiosis may have reached a physiologically stable, though dynamic, evolutionary equilibrium. The diversity of flagellate protists fauna associated with lower termites could be explained by a division of labour to accomplish the intricate process of lignocellulose digestion, and the ability to disrupt this function has potential use for termite control. Multi-level symbiosis strategy processes, or the cellulolytic capacity of flagellate protists, may lead to innovative pathways for other research areas with potential spin-offs for industrial and commercial use. Key words: flagellate protists, hindgut symbiotic fauna, lignocellulose digestion, subterranean termites Sónia Duarte1,2 (email:[email protected]), Lina Nunes1,2, Paulo A.V. Borges2, Carl G. Fossdal3 & Tânia Nobre4, 1LNEC, National Laboratory for Civil Engineering, Structures Department, Av. do Brasil, 101, PT-1700-066, Lisbon, Portugal, 2cE3c, Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and University of the Azores, Faculty of Agrarian and Environmental Sciences, PT- 9700–042 Angra do Heroísmo, 3NIBIO Norwegian Institute for Bioeconomy Research, Division for Biotechnology and Plant Health, Forest Health, NO-1431 Ås, Norway, ICAAM – Institute of Mediterranean Agricultural and Environmental Sciences, Laboratory of Entomology, University of Évora, Évora, Portugal. INTRODUCTION areas of high diversity are located in the tropics, particularly in Africa, South America and Asia Termites are social insects closely related to (Krishna et al. 2013). Termites can be informally cockroaches, from which they evolved (Lo et al. divided into two groups: lower (all families but 2000; Inward et al. 2007a; Engel et al. 2009) and Termitidae) and higher termites (Termitidae), are denominated as Polyneoptera a monophyletic based on the presence or absence of flagellate group including the cockroaches, Dermaptera, protists in their hindgut, respectively, and also on Plecoptera, Orthoptera, Embioptera,Phasmatodea, different feeding and nesting habits, and different Mantophasmatodea, Grylloblattodea, Mantodea, intestinal compartmentalisation (Eggleton 2011; and Zoraptera. More than 3,000 species of Hongoh 2011; Krishna et al. 2013). These insects termites have been described globally, but their are abundant in many terrestrial ecosystems, 21 Duarte et al. particularly in the tropics where they are a retained their bacterial symbionts, but lack the dominant invertebrate group that heavily protozoan gut symbionts. They have various contributes to the lignocellulose decomposition feeding habits, with clear separation of feeding process – thus have been called ‘ecosystem and nesting sites, and exhibit a highly engineers’ (Eggleton 2011; Palin et al. 2011). compartmentalised intestine (except for Termites also have a major role in diverse Macrotermitinae and Sphaerotermitinae). ecosystem functions, such as nutrients and Dissimilarly, lower termites feed strictly on organic matter cycling and redistribution, soil lignocellulose and are aided by hindgut symbionts fertility promotion, generation and regulation of during the digestion process; they are considered soil biodiversity and ecosystem restoration to be an ancestral branch of termites which comprises 11 families (Krishna et al. 2013). (Zimmermann et al. 1982; Bignell & Eggleton Lower termites have a dilated section of the 2000; Sugimoto et al. 2000; Jouquet et al. 2011). anterior hindgut (the paunch) where the bulk of They are major contributors to the ecologic symbiotic microbiota is harboured. Most lower stability of their habitats. By preparing different termites nest and feed within the same wood substrates, like wood or leaf-litter, into forms resource. With potential impact on within-nest easily accessed by microorganisms, termites play endosymbiont transmission, lower termites rely a major role as ecosystem conditioners (Lawton on regurgitation of crop contents and saliva et al. 1996). Termites are able to degrade (stomodeal trophallaxis) as well as proctodeal lignocellulose efficiently (e.g. Ohkuma 2008; trophallaxis, involving anus-to-mouth exchanges Husseneder 2010; Watanabe & Tokuda 2010) and of hindgut fluids, to pass food and gut contents to their feeding habits span a gradient from sound nest mates, whereas higher termites rely mainly wood to other lignocellulosic plant materials with on stomodeal trophallaxis (Eggleton 2011; different humification gradients, such as plant Shimada et al. 2013; Mirabito & Rosengaus litter or soil (Sleaford et al. 1996). This niche 2016). Proctodeal trophallaxis fosters the social, differentiation has allowed termites to promote an nutritional and symbiotic fauna interactions impact on the global terrestrial carbon cycle, among lower termites belonging to the same exceeding the cumulative decomposition roles of colony, probably playing a key role in the other arthropods (Bignell et al. 1997). integration of the information of these different Efficient lignocellulose utilisation as a food environments (Nalepa 2015). Trophallaxis may source by termites is possible because of the be horizontal, among nestmates, or vertical, establishment of endo- and ectosymbiosis, among parents and offspring. including microorganisms of all major taxa. These symbionts are Archaea and Bacteria, and LOWER TERMITES GLOBAL IMPACT protists: unicellular eukaryotes belonging to two Because of their feeding habits and preferences, separate lineages, the parabasalids and the lower termites have an important ecological oxymonads (Fig.1) (Bignell 2000; Bignell & impact on diverse ecosystems, but are also Eggleton 2000; Brune & Ohkuma 2011; Adl et al. considered to be structural, agricultural and 2012; Brune 2013). Ectosymbiosis has evolved in forestry pests, as they attack cultivated plants and the fungus-growing termites (Macrotermitinae) forest nurseries (Rouland-Lefèvre 2011). Lower which cultivate a basidiomycete fungus termites account for 80% of the economically (Termitomyces spp.) (e.g. Nobre & Aanen 2012), important species known to cause major problems whereas the majority of the other termites rely in artificial constructions (Nobre & Nunes 2007; solely on endosymbiosis. The fauna harboured Rust & Su 2012). There is concern that the inside the hindgut assists the termite host with number of invasive termite species has increased energy metabolism, nitrogen and vitamin supply more than 50% since 1969 (Evans et al. 2013), and also additional defence mechanisms (Salem which may be related to the globalisation of trade. et al. 2014, Peterson et al. 2015, Zheng et al. In 2010, the global economic impact of termites was 2015). estimated at 35.6 billion euros, and subterranean Higher termites, account for nearly 75% of termites accounted for 80% of this figure, i.e. Isoptera species richness and yet belong to a approximately 24 billion euros (Rust & Su 2012). single family, Termitidae. These termites have 22 Living inside termites Living Fig. 1. Possible evolutionary trajectory, from a most recent common ancestor of the cockroach type, of the simplified feeding groups of termites (LWT – Lower termites; FGT – Fungus 23 -growing termites; OHT – Other higher termites; SFT – Soil-feeding termites) based on their symbiotic fauna [based on: Donovan et al. 2001, Eggleton & Tayasu 2001, Inward et al. 2007b, Bujang et al. 2014; Otani et al. 2014]. A= acquisition of externalised gut through the establishment of a mutualistic external symbiosis with basidiomycete fungi; B=acquisition of flagellate protists; C=loss of flagellate protists; D=acquisition of strict soil-feeding habits. Some subfamilies have representatives in more than one feeding group. Duarte et al. As the human population increases, production, LIGNOCELLULOSE DIGESTION trade and use of wooden structures and bio- products susceptible to termite infestation FEEDING SUBSTRATE increases, potentially increasing the spread of Wood is a natural material composed of three termite pest species. Warmer seasons and changes main types of components: cellulose (framework in precipitation patterns due to climate change are substance), hemicellulose (matrix substance expected to influence termite territory size and present between cellulose microfibrils) and lignin distribution. For example, the known 27 species (incrusting substance for cell wall solidification). of invasive termite species are likely to increase For the digestion of these main components, their ranges (Su & Scheffrahn 2000; Evans et al. several enzymes
Recommended publications
  • Plant-Microbe Symbioses: a Continuum from Commensalism to Parasitism
    UCLA UCLA Previously Published Works Title Plant-microbe symbioses: A continuum from commensalism to parasitism Permalink https://escholarship.org/uc/item/6kx779h1 Journal Symbiosis, 37(1-3) ISSN 0334-5114 Author Hirsch, Ann M. Publication Date 2004 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Symbiosis, 37 (2004) xx–xx 1 Balaban, Philadelphia/Rehovot Review article. Plant-Microbe Symbioses: A Continuum from Commensalism to Parasitism ANN M. HIRSCH Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA, Tel. +1-310-206-8673, Fax. +1-310-206-5413, Email. [email protected] Received October 28, 2003; Accepted January 27, 2004 Abstract Photosynthetic organisms establish symbioses with a wide range of microorganisms. This review examines the diversity of symbiotic interactions, and proposes that there is a continuum from commensalism to mutualism to pathogenesis/parasitism in plant-microbe associations. The advantage of considering commensalism, mutualism, and pathogenesis/parasitism as a continuum rather than as discrete relationships between hosts and microbes, as they have been considered in the past, is that it will motivate us to focus more on common molecular mechanisms. Keywords: ?? 1. Introduction Plants establish mutualistic, often described as symbiotic, interactions with myriad organisms, both prokaryotic and eukaryotic. Some of the most prominent photosynthetic mutualisms are illustrated in Fig. 1. Although technically not a plant symbiosis, lichens are photosynthetic and represent an excellent example of a beneficial interaction (Fig. 1A). Presented at the 4th International Symbiosis Congress, August 17–23, 2003, Halifax, Canada 0334-5114/2004/$05.50 ©2004 Balaban 2 A.M.
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • Superorganisms of the Protist Kingdom: a New Level of Biological Organization
    Foundations of Science https://doi.org/10.1007/s10699-020-09688-8 Superorganisms of the Protist Kingdom: A New Level of Biological Organization Łukasz Lamża1 © The Author(s) 2020 Abstract The concept of superorganism has a mixed reputation in biology—for some it is a conveni- ent way of discussing supra-organismal levels of organization, and for others, little more than a poetic metaphor. Here, I show that a considerable step forward in the understand- ing of superorganisms results from a thorough review of the supra-organismal levels of organization now known to exist among the “unicellular” protists. Limiting the discussion to protists has enormous advantages: their bodies are very well studied and relatively sim- ple (as compared to humans or termites, two standard examples in most discussions about superorganisms), and they exhibit an enormous diversity of anatomies and lifestyles. This allows for unprecedented resolution in describing forms of supra-organismal organiza- tion. Here, four criteria are used to diferentiate loose, incidental associations of hosts with their microbiota from “actual” superorganisms: (1) obligatory character, (2) specifc spatial localization of microbiota, (3) presence of attachment structures and (4) signs of co-evolu- tion in phylogenetic analyses. Three groups—that have never before been described in the philosophical literature—merit special attention: Symbiontida (also called Postgaardea), Oxymonadida and Parabasalia. Specifcally, it is argued that in certain cases—for Bihos- pites bacati and Calkinsia aureus (symbiontids), Streblomastix strix (an oxymonad), Joe- nia annectens and Mixotricha paradoxa (parabasalids) and Kentrophoros (a ciliate)—it is fully appropriate to describe the whole protist-microbiota assocation as a single organism (“superorganism”) and its elements as “tissues” or, arguably, even “organs”.
    [Show full text]
  • Influence of Lab Adapted Natural Diet, Genotype, and Microbiota On
    INFLUENCE OF LAB ADAPTED NATURAL DIET, GENOTYPE, AND MICROBIOTA ON DROSOPHILA MELANOGASTER LARVAE by ANDREI BOMBIN LAURA K. REED, COMMITTEE CHAIR JULIE B. OLSON JOHN H. YODER STANISLAVA CHTARBANOVA-RUDLOFF CASEY D. MORROW A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2020 Copyright Andrei Bombin 2020 ALL RIGHTS RESERED ABSTRACT Obesity is an increasing pandemic and is caused by multiple factors including genotype, psychological stress, and gut microbiota. Our project investigated the effects produced by microbiota community, acquired from the environment and horizontal transfer, on traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. In addition, we evaluated the change in microbial communities and larvae phenotypes due to the high fat and high sugar diet modifications. We observed that presence of symbiotic microbiota often mitigated the effect that harmful dietary modifications produced on larvae and was crucial for Drosophila survival on high sugar peach diets. Although genotype of the host was the most influential factor shaping the microbiota community, several dominant microbial taxa were consistently associated with nutritional modifications across lab and peach diets.
    [Show full text]
  • Molecular Identification and Evolution of Protozoa Belonging to the Parabasalia Group and the Genus Blastocystis
    UNIVERSITAR DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE (Intenational PhD School in Biomolecular and Biotechnological Sciences) Indirizzo: Microbiologia molecolare e clinica Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Direttore della scuola: Prof. Masala Bruno Relatore: Prof. Pier Luigi Fiori Correlatore: Dott. Eric Viscogliosi Tesi di Dottorato : Dionigia Meloni XXIV CICLO Nome e cognome: Dionigia Meloni Titolo della tesi : Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Tesi di dottorato in scienze Biomolecolari e biotecnologiche. Indirizzo: Microbiologia molecolare e clinica Universit degli studi di Sassari UNIVERSITAR DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE (Intenational PhD School in Biomolecular and Biotechnological Sciences) Indirizzo: Microbiologia molecolare e clinica Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Direttore della scuola: Prof. Masala Bruno Relatore: Prof. Pier Luigi Fiori Correlatore: Dott. Eric Viscogliosi Tesi di Dottorato : Dionigia Meloni XXIV CICLO Nome e cognome: Dionigia Meloni Titolo della tesi : Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Tesi di dottorato in scienze Biomolecolari e biotecnologiche. Indirizzo: Microbiologia molecolare e clinica Universit degli studi di Sassari Abstract My thesis was conducted on the study of two groups of protozoa: the Parabasalia and Blastocystis . The first part of my work was focused on the identification, pathogenicity, and phylogeny of parabasalids. We showed that Pentatrichomonas hominis is a possible zoonotic species with a significant potential of transmission by the waterborne route and could be the aetiological agent of gastrointestinal troubles in children.
    [Show full text]
  • The Nitrogen-Fixing Symbiotic Cyanobacterium, Nostoc Punctiforme Can Regulate Plant Programmed Cell Death
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The nitrogen-fixing symbiotic cyanobacterium, Nostoc punctiforme can regulate plant programmed cell death Samuel P. Belton1,4, Paul F. McCabe1,2,3, Carl K. Y. Ng1,2,3* 1UCD School of Biology and Environmental Science, 2UCD Centre for Plant Science, 3UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin, DN04 E25, Republic of Ireland 4Present address: DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Dublin, D09 E7F2, Republic of Ireland *email: [email protected] Acknowledgements This work was financially supported by a Government of Ireland Postgraduate Scholarship from the Irish Research Council (GOIPG/2015/2695) to SPB. Author contributions S.P.B., P.F.M, and C.K.Y.N conceived of the study and designed the experiments. S.B. performed all the experiments and analysed the data. S.B. prepared the draft of the manuscript with the help of P.F.M and C.K.Y.N. All authors read, edited, and approved the manuscript. Competing interests The authors declare no competing interests. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Cyanobacteria such as Nostoc spp.
    [Show full text]
  • Secondary Absence of Mitochondria in Giardia Lamblia and Trichomonas
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6860–6865, June 1998 Evolution Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny (amitochondriate protistsydiplomonadsyparabasalia) TETSUO HASHIMOTO*†‡,LIDYA B. SA´NCHEZ†,TETSUROU SHIRAKURA*, MIKLO´S MULLER¨ †, AND MASAMI HASEGAWA* *The Institute of Statistical Mathematics, 4–6-7 Minami-Azabu, Minato-ku, Tokyo 106, Japan; and †The Rockefeller University, New York, NY 10021 Communicated by William Trager, The Rockefeller University, New York, NY, March 27, 1998 (received for review December 29, 1997) ABSTRACT Nuclear-coded valyl-tRNA synthetase evolutionary origins of the amitochondriate condition. Before (ValRS) of eukaryotes is regarded of mitochondrial origin. any molecular phylogenetic data became available, cytological Complete ValRS sequences obtained by us from two amito- considerations led to the proposal by Cavalier-Smith that chondriate protists, the diplomonad, Giardia lamblia and the diplomonads, parabasalids, and microsporidia could be prim- parabasalid, Trichomonas vaginalis were of the eukaryotic itively amitochondriate (15, 16), and to the erection of the type, strongly suggesting an identical history of ValRS in all taxon Archezoa for these organisms. These three amitochond- eukaryotes studied so far. The findings indicate that riate lineages represented the first branches on phylogenetic diplomonads are secondarily amitochondriate and give fur- trees based on rRNA (17, 18) and some protein sequences (19). ther evidence for such conclusion reached recently concerning This observation was regarded as compelling evidence for an parabasalids. Together with similar findings on other amito- early separation of these groups from the main eukaryotic chondriate groups (microsporidia and entamoebids), this lineage, preceding the acquisition of mitochondria (20).
    [Show full text]
  • 23.3 Groups of Protists
    Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes.
    [Show full text]
  • The Amoeboid Parabasalid Flagellate Gigantomonas Herculeaof
    Acta Protozool. (2005) 44: 189 - 199 The Amoeboid Parabasalid Flagellate Gigantomonas herculea of the African Termite Hodotermes mossambicus Reinvestigated Using Immunological and Ultrastructural Techniques Guy BRUGEROLLE Biologie des Protistes, UMR 6023, CNRS and Université Blaise Pascal de Clermont-Ferrand, Aubière Cedex, France Summary. The amoeboid form of Gigantomonas herculea (Dogiel 1916, Kirby 1946), a symbiotic flagellate of the grass-eating subterranean termite Hodotermes mossambicus from East Africa, is observed by light, immunofluorescence and transmission electron microscopy. Amoeboid cells display a hyaline margin and a central granular area containing the nucleus, the internalized flagellar apparatus, and organelles such as Golgi bodies, hydrogenosomes, and food vacuoles with bacteria or wood particles. Immunofluorescence microscopy using monoclonal antibodies raised against Trichomonas vaginalis cytoskeleton, such as the anti-tubulin IG10, reveals the three long anteriorly-directed flagella, and the axostyle folded into the cytoplasm. A second antibody, 4E5, decorates the conspicuous crescent-shaped structure or cresta bordered by the adhering recurrent flagellum. Transmission electron micrographs show a microfibrillar network in the cytoplasmic margin and internal bundles of microfilaments similar to those of lobose amoebae that are indicative of cytoplasmic streaming. They also confirm the internalization of the flagella. The arrangement of basal bodies and fibre appendages, and the axostyle composed of a rolled sheet of microtubules are very close to that of the devescovinids Foaina and Devescovina. The very large microfibrillar cresta supporting an enlarged recurrent flagellum resembles that of Macrotrichomonas. The parabasal apparatus attached to the basal bodies is small in comparison to the cell size; this is probably related to the presence of many Golgi bodies supported by a striated fibre that are spread throughout the central cytoplasm in a similar way to Placojoenia and Mixotricha.
    [Show full text]
  • Cyanobacterial Genome Evolution Subsequent to Domestication by a Plant (Azolla)
    Cyanobacterial genome evolution subsequent to domestication by a plant ( A z o l l a ) John Larsson Cyanobacterial genome evolution subsequent to domestication by a plant (Azolla) John Larsson ©John Larsson, Stockholm 2011 ISBN 978-91-7447-313-1 Printed in Sweden by Universitetsservice, US-AB, Stockholm 2011 Distributor: Department of Botany, Stockholm University To Emma, my family, and all my friends. Abstract Cyanobacteria are an ancient and globally distributed group of photosynthetic prokaryotes including species capable of fixing atmospheric dinitrogen (N2) into biologically available ammonia via the enzyme complex nitrogenase. The ability to form symbiotic interactions with eukaryotic hosts is a notable feature of cyanobacteria and one which, via an ancient endosymbiotic event, led to the evolution of chloroplasts and eventually to the plant dominated biosphere of the globe. Some cyanobacteria are still symbiotically competent and form symbiotic associations with eukaryotes ranging from unicellular organisms to complex plants. Among contemporary plant-cyanobacteria associations, the symbiosis formed between the small fast-growing aquatic fern Azolla and its cyanobacterial symbiont (cyanobiont), harboured in specialized cavities in each Azolla leaf, is the only one which is perpetual and in which the cyanobiont has lost its free-living capacity, suggesting a long-lasting co- evolution between the two partners. In this study, the genome of the cyanobiont in Azolla filiculoides was sequenced to completion and analysed. The results revealed that the genome is in an eroding state, evidenced by a high proportion of pseudogenes and transposable elements. Loss of function was most predominant in genetic categories related to uptake and metabolism of nutrients, response to environmental stimuli and in the DNA maintenance machinery.
    [Show full text]
  • Phylogenomic Analyses Support the Monophyly of Excavata and Resolve Relationships Among Eukaryotic ‘‘Supergroups’’
    Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘‘supergroups’’ Vladimir Hampla,b,c, Laura Huga, Jessica W. Leigha, Joel B. Dacksd,e, B. Franz Langf, Alastair G. B. Simpsonb, and Andrew J. Rogera,1 aDepartment of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5; bDepartment of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1; cDepartment of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; dDepartment of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; eDepartment of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7; and fDepartement de Biochimie, Universite´de Montre´al, Montre´al, QC, Canada H3T 1J4 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 22, 2009 (received for review August 12, 2008) Nearly all of eukaryotic diversity has been classified into 6 strong support for an incorrect phylogeny (16, 19, 24). Some recent suprakingdom-level groups (supergroups) based on molecular and analyses employ objective data filtering approaches that isolate and morphological/cell-biological evidence; these are Opisthokonta, remove the sites or taxa that contribute most to these systematic Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Exca- errors (19, 24). vata. However, molecular phylogeny has not provided clear evi- The prevailing model of eukaryotic phylogeny posits 6 major dence that either Chromalveolata or Excavata is monophyletic, nor supergroups (25–28): Opisthokonta, Amoebozoa, Archaeplastida, has it resolved the relationships among the supergroups. To Rhizaria, Chromalveolata, and Excavata. With some caveats, solid establish the affinities of Excavata, which contains parasites of molecular phylogenetic evidence supports the monophyly of each of global importance and organisms regarded previously as primitive Rhizaria, Archaeplastida, Opisthokonta, and Amoebozoa (16, 18, eukaryotes, we conducted a phylogenomic analysis of a dataset of 29–34).
    [Show full text]