Influence of Lab Adapted Natural Diet, Genotype, and Microbiota On

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Lab Adapted Natural Diet, Genotype, and Microbiota On INFLUENCE OF LAB ADAPTED NATURAL DIET, GENOTYPE, AND MICROBIOTA ON DROSOPHILA MELANOGASTER LARVAE by ANDREI BOMBIN LAURA K. REED, COMMITTEE CHAIR JULIE B. OLSON JOHN H. YODER STANISLAVA CHTARBANOVA-RUDLOFF CASEY D. MORROW A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2020 Copyright Andrei Bombin 2020 ALL RIGHTS RESERED ABSTRACT Obesity is an increasing pandemic and is caused by multiple factors including genotype, psychological stress, and gut microbiota. Our project investigated the effects produced by microbiota community, acquired from the environment and horizontal transfer, on traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. In addition, we evaluated the change in microbial communities and larvae phenotypes due to the high fat and high sugar diet modifications. We observed that presence of symbiotic microbiota often mitigated the effect that harmful dietary modifications produced on larvae and was crucial for Drosophila survival on high sugar peach diets. Although genotype of the host was the most influential factor shaping the microbiota community, several dominant microbial taxa were consistently associated with nutritional modifications across lab and peach diets. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions. ii DEDICATION This dissertation is dedicated to my wife Shun Yan, who tirelessly supported me during the PhD journey and was my inspiration, during all these years. iii LIST OF ABBREVIATIONS AND SYMBOLS 16S rRNA 16S ribosomal ribonucleic acid gene CAFE Capillary feeder DGRP Drosophila Genetic Reference Panel DSPR Drosophila Synthetic Population Resource D Diet G Genotype NS Non-sterilized P Colorimetric assay plate PCR Polymerase chain reaction PHF Peach high fat diet PHFA Peach high fat autoclaved diet PHS Peach high sugar diet PHSA6 Peach high sugar autoclaved 6% diet PHSA11 Peach high sugar autoclaved 11% diet PR Peach regular diet R Regular diet RHF Regular high fat diet RHS Regular high sugar diet Ro Round iv RT Radioactive tracer S Sterilized T Treatment WGS Whole Genome Sequencing v ACKNOWLEDGMENTS I greatly appreciate the help of my academic advisor Laura K. Reed. Laura has not only guided me through academic and scientific work but has been very understanding and attentive mentor, with whom I could always share my sorrows and happiness. During the exhausting PhD journey, I avoided a need for professional psychological help largely due to Laura. I would like to express my appreciation to my committee members: John Yoder, who always served me as an example, with his research enthusiasm and tireless experimenting work, and who’s influence shaped my understanding of what does it mean to be a scientist; Julie Olson, who’s expertise in microbiology and microbial databases has navigated me through the microbiological part of my work, and who always encouraged me to think broader; Stanislava Chtarbanova-Rudloff, who has provided her guidance and research materials for dissections, to whom, I always have been able to come to talk about research and any other issue and who has been very sympathetic and encouraging, which meant a lot to me; Casey Morrow, who’s help with sequencing, troubleshooting, and obtaining funding has been crucial for generating our dataset, and who was always very supportive. I would like to thank Juan Lopez-Bautista, who provided his guidance for my whole academic career, from whom, I first learned what does it mean to do a research, and who was not only my teacher but also my friend. vi I would like to express my gratitude to my brother Sergei Bombin, who helped me with bioinformatical analysis, persevered all challenges of coming across the ocean with me, and a friendly competition with whom has kept me going through all these years. I would like to thank my students and researchers who put their time and effort in this work, without whom generating the sample size of more than 130,000 would be absolutely impossible, and who’s example fueled my ambitions: Owen Cunneely, Kira Ecikman, Abigail Ruesy, Rachael Cowan, Mengting Su, and Abigail Myers. As well as previous members of the team Caroline Hart, Ryan O'Rourke, and Kara MacIntyre. I appreciate the help of my colleagues: Logan Griffin, who significantly improved the sterilization method that I applied, and who became my friend; as well as Vishal Oza, Kelsey Lowman, Clare Scott, and YounJi Nam. I would like to thank the University of Alabama, College of Arts and Sciences, and the Department of Biological Sciences that provided me with financial resources without which, I would not be able to afford to finish this degree. I would like to thank my family; my mother Natalia Stroeva, without whom, I would not start my new life in the United States and most likely would not even become a scientist; my grandfather Vladilen Nichaev whose wisdom has guided me through my life, and from whom I learned most of my life skills; my grandmother Nadejda Nichaeva, and my sister Veronica Bombina for her cheerful example. I would like to thank my wife Shun Yan for her love and to whom this work is dedicated. vii CONTENTS ABSTRACT .................................................................................................................................... ii DEDICATION ............................................................................................................................... iii LIST OF ABBREVIATIONS AND SYMBOLS .......................................................................... iv ACKNOWLEDGMENTS ............................................................................................................. vi LIST OF TABLES .......................................................................................................................... x LIST OF FIGURES ..................................................................................................................... xiii CHAPTER ONE ............................................................................................................................. 1 INTRODUCTION ....................................................................................................................... 1 GOALS AND HYPOTHESES ................................................................................................. 13 CHAPTER TWO .......................................................................................................................... 16 INTRODUCTION ..................................................................................................................... 16 MATERIALS AND METHODS .............................................................................................. 19 RESULTS .................................................................................................................................. 28 DISCUSSION ........................................................................................................................... 55 CHAPTER THREE ...................................................................................................................... 66 INTRODUCTION ..................................................................................................................... 66 MATERIALS AND METHODS .............................................................................................. 71 viii RESULTS .................................................................................................................................. 79 DISCUSSION ......................................................................................................................... 148 CHAPTER FOUR ....................................................................................................................... 164 SYNTHESIS ........................................................................................................................... 164 CONCLUSIONS ..................................................................................................................... 178 FINAL NOTES ....................................................................................................................... 179 REFERENCES ........................................................................................................................... 180 ix LIST OF TABLES Table 2.1A: The difference in larvae phenotypes based on the diet ............................................. 30 Table 2.1B: The difference in fresh diets’ nutritional values ....................................................... 30 Table 2.1C: The difference in fresh diets’ nutritional values ....................................................... 30 Table 2.2: The influence of parental microbiota
Recommended publications
  • Plant-Microbe Symbioses: a Continuum from Commensalism to Parasitism
    UCLA UCLA Previously Published Works Title Plant-microbe symbioses: A continuum from commensalism to parasitism Permalink https://escholarship.org/uc/item/6kx779h1 Journal Symbiosis, 37(1-3) ISSN 0334-5114 Author Hirsch, Ann M. Publication Date 2004 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Symbiosis, 37 (2004) xx–xx 1 Balaban, Philadelphia/Rehovot Review article. Plant-Microbe Symbioses: A Continuum from Commensalism to Parasitism ANN M. HIRSCH Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA, Tel. +1-310-206-8673, Fax. +1-310-206-5413, Email. [email protected] Received October 28, 2003; Accepted January 27, 2004 Abstract Photosynthetic organisms establish symbioses with a wide range of microorganisms. This review examines the diversity of symbiotic interactions, and proposes that there is a continuum from commensalism to mutualism to pathogenesis/parasitism in plant-microbe associations. The advantage of considering commensalism, mutualism, and pathogenesis/parasitism as a continuum rather than as discrete relationships between hosts and microbes, as they have been considered in the past, is that it will motivate us to focus more on common molecular mechanisms. Keywords: ?? 1. Introduction Plants establish mutualistic, often described as symbiotic, interactions with myriad organisms, both prokaryotic and eukaryotic. Some of the most prominent photosynthetic mutualisms are illustrated in Fig. 1. Although technically not a plant symbiosis, lichens are photosynthetic and represent an excellent example of a beneficial interaction (Fig. 1A). Presented at the 4th International Symbiosis Congress, August 17–23, 2003, Halifax, Canada 0334-5114/2004/$05.50 ©2004 Balaban 2 A.M.
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • Acetobacter Sacchari Sp. Nov., for a Plant Growth-Promoting Acetic Acid Bacterium Isolated in Vietnam
    Annals of Microbiology (2019) 69:1155–11631163 https://doi.org/10.1007/s13213-019-01497-0 ORIGINAL ARTICLE Acetobacter sacchari sp. nov., for a plant growth-promoting acetic acid bacterium isolated in Vietnam Huong Thi Lan Vu1,2 & Pattaraporn Yukphan3 & Van Thi Thu Bui1 & Piyanat Charoenyingcharoen3 & Sukunphat Malimas4 & Linh Khanh Nguyen1 & Yuki Muramatsu5 & Naoto Tanaka6 & Somboon Tanasupawat7 & Binh Thanh Le2 & Yasuyoshi Nakagawa5 & Yuzo Yamada3,8,9 Received: 21 January 2019 /Accepted: 7 July 2019 /Published online: 18 July 2019 # Università degli studi di Milano 2019 Abstract Purpose Two bacterial strains, designated as isolates VTH-Ai14T and VTH-Ai15, that have plant growth-promoting ability were isolated during the study on acetic acid bacteria diversity in Vietnam. The phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates were located closely to Acetobacter nitrogenifigens RG1T but formed an independent cluster. Methods The phylogenetic analysis based on 16S rRNA gene and three housekeeping genes’ (dnaK, groEL, and rpoB) sequences were analyzed. The genomic DNA of the two isolates, VTH-Ai14T and VTH-Ai15, Acetobacter nitrogenifigens RG1T, the closest phylogenetic species, and Acetobacter aceti NBRC 14818T were hybridized and calculated the %similarity. Then, phenotypic and chemotaxonomic characteristics were determined for species’ description using the conventional method. Results The 16S rRNA gene and concatenated of the three housekeeping genes phylogenetic analysis suggests that the two isolates were constituted in a species separated from Acetobacter nitrogenifigens, Acetobacter aceti,andAcetobacter sicerae. The two isolates VTH-Ai14T and VTH-Ai15 showed 99.65% and 98.65% similarity of 16S rRNA gene when compared with Acetobacter nitrogenifigens and Acetobacter aceti and they were so different from Acetobacter nitrogenifigens RG1T with 56.99 ± 3.6 and 68.15 ± 1.8% in DNA-DNA hybridization, when isolates VTH-Ai14T and VTH-Ai15 were respectively labeled.
    [Show full text]
  • The Nitrogen-Fixing Symbiotic Cyanobacterium, Nostoc Punctiforme Can Regulate Plant Programmed Cell Death
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The nitrogen-fixing symbiotic cyanobacterium, Nostoc punctiforme can regulate plant programmed cell death Samuel P. Belton1,4, Paul F. McCabe1,2,3, Carl K. Y. Ng1,2,3* 1UCD School of Biology and Environmental Science, 2UCD Centre for Plant Science, 3UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin, DN04 E25, Republic of Ireland 4Present address: DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Dublin, D09 E7F2, Republic of Ireland *email: [email protected] Acknowledgements This work was financially supported by a Government of Ireland Postgraduate Scholarship from the Irish Research Council (GOIPG/2015/2695) to SPB. Author contributions S.P.B., P.F.M, and C.K.Y.N conceived of the study and designed the experiments. S.B. performed all the experiments and analysed the data. S.B. prepared the draft of the manuscript with the help of P.F.M and C.K.Y.N. All authors read, edited, and approved the manuscript. Competing interests The authors declare no competing interests. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Cyanobacteria such as Nostoc spp.
    [Show full text]
  • Acetobacter Fabarum Genes Influencing Drosophila Melanogaster Phenotypes Kylie Makay White Brigham Young University
    Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2017-12-01 Acetobacter fabarum Genes Influencing Drosophila melanogaster Phenotypes Kylie MaKay White Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation White, Kylie MaKay, "Acetobacter fabarum Genes Influencing Drosophila melanogaster Phenotypes" (2017). All Theses and Dissertations. 6613. https://scholarsarchive.byu.edu/etd/6613 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Acetobacter fabarum Genes Influencing Drosophila melanogaster Phenotypes Kylie Makay White A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science John M. Chaston, Chair Joel Griffitts Laura Bridgewater Department of Microbiology and Molecular Biology Brigham Young University Copyright © 2017 Kylie Makay White All Rights Reserved ABSTRACT Acetobacter fabarum Genes Influencing Drosophila melanogaster Phenotypes Kylie Makay White Department of Microbiology and Molecular Biology, BYU Master of Science Research in our lab has predicted hundreds of bacterial genes that influence nine different traits in the fruit fly, Drosophila melanogaster. As a practical alternative to creating site-directed mutants for each of the predicted genes, we created an arrayed transposon insertion library using a strain of Acetobacter fabarum DsW_054 isolated from fruit flies. Creation of the Acetobacter fabarum DsW_054 gene knock-out library was done through random transposon insertion, combinatorial mapping and Illumina sequencing.
    [Show full text]
  • Exploring Host–Microbiota Interactions in Animal Models and Humans
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Exploring host–microbiota interactions in animal models and humans Aleksandar D. Kostic,1,2,3,4 Michael R. Howitt,1,2,3 and Wendy S. Garrett1,2,3,4,5 1Harvard School of Public Health, Boston, Massachusetts 02115, USA; 2Harvard Medical School, Boston, Massachusetts 02115, USA; 3Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 4The Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts 02141, USA The animal and bacterial kingdoms have coevolved and of experimental control that is not achievable in human coadapted in response to environmental selective pres- studies. Both vertebrates and invertebrates have been sures over hundreds of millions of years. The meta’omics essential for discovering the microbial-associated molec- revolution in both sequencing and its analytic pipelines ular patterns and host pattern recognition receptors re- is fostering an explosion of interest in how the gut quired for sensing of pathogenic and symbiotic microbes. microbiome impacts physiology and propensity to dis- In many cases, tractable genetics in the host and microbes ease. Gut microbiome studies are inherently interdisci- have proven essential for identifying both microbial and plinary, drawing on approaches and technical skill sets host factors that enable symbiosis. Model systems are from the biomedical sciences, ecology, and computa- also revealing roles for the microbiome in host physiology tional biology. Central to unraveling the complex biology ranging from mate selection (Sharon et al. 2010) to of environment, genetics, and microbiome interaction in skeletal biology (Cho et al.
    [Show full text]
  • The Impact of Rhodiola Rosea on the Gut Microbial Community of Drosophila Melanogaster
    UC Irvine UC Irvine Previously Published Works Title The impact of Rhodiola rosea on the gut microbial community of Drosophila melanogaster. Permalink https://escholarship.org/uc/item/0bg294r4 Journal Gut pathogens, 10(1) ISSN 1757-4749 Authors Labachyan, Khachik E Kiani, Dara Sevrioukov, Evgueni A et al. Publication Date 2018 DOI 10.1186/s13099-018-0239-8 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Labachyan et al. Gut Pathog (2018) 10:12 https://doi.org/10.1186/s13099-018-0239-8 Gut Pathogens RESEARCH Open Access The impact of Rhodiola rosea on the gut microbial community of Drosophila melanogaster Khachik E. Labachyan , Dara Kiani, Evgueni A. Sevrioukov, Samuel E. Schriner and Mahtab Jafari* Abstract Background: The root extract of Rhodiola rosea has historically been used in Europe and Asia as an adaptogen, and similar to ginseng and Shisandra, shown to display numerous health benefts in humans, such as decreasing fatigue and anxiety while improving mood, memory, and stamina. A similar extract in the Rhodiola family, Rhodiola crenulata, has previously been shown to confer positive efects on the gut homeostasis of the fruit fy, Drosophila melanogaster. Although, R. rosea has been shown to extend lifespan of many organisms such as fruit fies, worms and yeast, its anti- aging mechanism remains uncertain. Using D. melanogaster as our model system, the purpose of this work was to examine whether the anti-aging properties of R. rosea are due to its impact on the microbial composition of the fy gut. Results: Rhodiola rosea treatment signifcantly increased the abundance of Acetobacter, while subsequently decreas- ing the abundance of Lactobacillales of the fy gut at 10 and 40 days of age.
    [Show full text]
  • Cyanobacterial Genome Evolution Subsequent to Domestication by a Plant (Azolla)
    Cyanobacterial genome evolution subsequent to domestication by a plant ( A z o l l a ) John Larsson Cyanobacterial genome evolution subsequent to domestication by a plant (Azolla) John Larsson ©John Larsson, Stockholm 2011 ISBN 978-91-7447-313-1 Printed in Sweden by Universitetsservice, US-AB, Stockholm 2011 Distributor: Department of Botany, Stockholm University To Emma, my family, and all my friends. Abstract Cyanobacteria are an ancient and globally distributed group of photosynthetic prokaryotes including species capable of fixing atmospheric dinitrogen (N2) into biologically available ammonia via the enzyme complex nitrogenase. The ability to form symbiotic interactions with eukaryotic hosts is a notable feature of cyanobacteria and one which, via an ancient endosymbiotic event, led to the evolution of chloroplasts and eventually to the plant dominated biosphere of the globe. Some cyanobacteria are still symbiotically competent and form symbiotic associations with eukaryotes ranging from unicellular organisms to complex plants. Among contemporary plant-cyanobacteria associations, the symbiosis formed between the small fast-growing aquatic fern Azolla and its cyanobacterial symbiont (cyanobiont), harboured in specialized cavities in each Azolla leaf, is the only one which is perpetual and in which the cyanobiont has lost its free-living capacity, suggesting a long-lasting co- evolution between the two partners. In this study, the genome of the cyanobiont in Azolla filiculoides was sequenced to completion and analysed. The results revealed that the genome is in an eroding state, evidenced by a high proportion of pseudogenes and transposable elements. Loss of function was most predominant in genetic categories related to uptake and metabolism of nutrients, response to environmental stimuli and in the DNA maintenance machinery.
    [Show full text]
  • Microbiology of Vinegar: from Isolation, Phenetic Characterization and Detection of Acetic Acid Bacteria to Microbial Profiling of an Industrial Production
    Microbiology of Vinegar: from Isolation, Phenetic Characterization and Detection of Acetic Acid Bacteria to Microbial Profiling of an Industrial Production João Nuno Serôdio de Melo Thesis to obtain the Master of Science Degree in Microbiology Supervisor(s): Prof. Rogério Paulo de Andrade Tenreiro Prof. Nuno Gonçalo Pereira Mira Examination Committee: Chairperson: Prof. Jorge Humberto Gomes Leitão Supervisor: Prof. Rogério Paulo de Andrade Tenreiro Member of the Committee: Prof. Rodrigo da Silva Costa December, 2016 Acknowledgements I would like to express my sincere gratitude to my supervisor, Professor Rogério Tenreiro, for giving me this opportunity and for all his support and guidance throughout the last year. I have truly learned immensely working with you. Also, I would like to show appreciation to my supervisor from IST, Professor Nuno Mira, for his support along the development of this thesis. I would also like to thank Professor Ana Tenreiro for all her time and help, especially with the flow cytometry assays. Additionally, I’d like to thank Professor Lélia Chambel for her help with the Bionumerics software. I would like to thank Filipa Antunes, from the Lab Bugworkers | M&B-BioISI, for the remarkable organization of the lab and for all her help. I would like to express my gratitude to Mendes Gonçalves, S.A. for the opportunity to carry out this thesis and for providing support during the whole course of this project. Special thanks to Cristiano Roussado for always being available. Also, a big thank you to my colleagues and friends, Catarina, Sofia, Tatiana, Ana, Joana, Cláudia, Mariana, Inês and Pedro for their friendship, support and for this enjoyable year, especially to Ana Marta Lourenço for her enthusiastic Gram stainings.
    [Show full text]
  • Gut Microbiome and Mediterranean Diet in the Context of Obesity
    Metabolism Open 9 (2021) 100081 Contents lists available at ScienceDirect Metabolism Open journal homepage: www.journals.elsevier.com/metabolism-open Gut microbiome and Mediterranean diet in the context of obesity. Current knowledge, perspectives and potential therapeutic targets * Christina Tsigalou a, , Afroditi Paraschaki a, Alexandros Karvelas a, Konstantina Kantartzi b, Kenan Gagali c, Dimitrios Tsairidis d, Eugenia Bezirtzoglou d a Laboratory of Microbiology, School of Medicine, Democritus University of Thrace, University General Hospital of Alexandroupolis, Dragana Campus, Alexandroupolis, 68100, Greece b Department of Nephrology, Democritus University of Thrace, University General Hospital of Alexandroupolis Dragana Campus, Alexandroupolis, 68100, Greece c University General Hospital of Alexandroupolis, Dragana Campus, Alexandroupolis, 68100, Greece d Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Dragana, Alexandroupolis, 68100, Greece article info abstract Article history: Mediterranean Diet has been recognized as one of the healthiest and sustainable dietary patterns Received 19 September 2020 worldwide, based on the food habits of people living in the Mediterranean region. It is focused on a Received in revised form plant-based cuisine combining local agricultural products and moderate intake of fish. As eating habits 14 January 2021 seem to exert a major impact on the composition of gut microbiota, numerous studies show that an Accepted 19 January 2021 adherence to the Mediterranean diet positively influences the microbiome ecosystem network. This has a Available online 2 February 2021 profound effect on multiple host metabolic pathways and plays a major role in immune and metabolic homeostasis. Among metabolic disorders, obesity represents a major health issue where Mediterranean Keywords: Mediterranean diet Dietary regime could possibly slowdown its spread.
    [Show full text]
  • Genomic, Transcriptomic, and Proteomic Insights Into the Symbiosis of Deep-Sea Tubeworm Holobionts
    The ISME Journal (2020) 14:135–150 https://doi.org/10.1038/s41396-019-0520-y ARTICLE Genomic, transcriptomic, and proteomic insights into the symbiosis of deep-sea tubeworm holobionts 1 1 1 1 1 2 2 3,4 Yi Yang ● Jin Sun ● Yanan Sun ● Yick Hang Kwan ● Wai Chuen Wong ● Yanjie Zhang ● Ting Xu ● Dong Feng ● 5 2 1 Yu Zhang ● Jian-Wen Qiu ● Pei-Yuan Qian Received: 5 June 2019 / Revised: 11 August 2019 / Accepted: 25 August 2019 / Published online: 8 October 2019 © The Author(s) 2019. This article is published with open access Abstract Deep-sea hydrothermal vents and methane seeps are often densely populated by animals that host chemosynthetic symbiotic bacteria, but the molecular mechanisms of such host-symbiont relationship remain largely unclear. We characterized the symbiont genome of the seep-living siboglinid Paraescarpia echinospica and compared seven siboglinid-symbiont genomes. Our comparative analyses indicate that seep-living siboglinid endosymbionts have more virulence traits for establishing infections and modulating host-bacterium interaction than the vent-dwelling species, and have a high potential to resist environmental hazards. Metatranscriptome and metaproteome analyses of the Paraescarpia holobiont reveal that the fi fi 1234567890();,: 1234567890();,: symbiont is highly versatile in its energy use and ef cient in carbon xation. There is close cooperation within the holobiont in production and supply of nutrients, and the symbiont may be able to obtain nutrients from host cells using virulence factors. Moreover, the symbiont is speculated to have evolved strategies to mediate host protective immunity, resulting in weak expression of host innate immunity genes in the trophosome.
    [Show full text]
  • Do Oak Barrels Contribute to the Variability of the Microbiome of Barrel-Aged
    AN ABSTRACT OF THE THESIS OF Avram M. Shayevitz for the degree of Master of Science in Food Science and Technology presented on September 17, 2018 Title: Do Oak Barrels Contribute To The Variability of The Microbiome of Barrel-Aged Beers? Abstract approved: ______________________________________________________ Christopher D. Curtin Lambic and other barrel-aged beer styles are gaining popularity in the United States and Europe and are often treated as a premium product that can command a premium price. However, these styles can be prone to spoilage during the barrel-aging process, which represents a significant time and product commitment by a brewery, and thus it is important to understand what exactly is happening within these barrels from a microbiological point of view. Previous studies have used microbiome analyses to establish the similarity in microbial succession between traditional Belgian Lambic beer and America Coolship Ales, but to date no studies have been performed on a large number of barrels. The focus of this study was on the influence of oak barrels on the microbiome of three distinct beers produced and matured within the state of Oregon, USA and aged in 102 barrels. It was evident that traditionally fermented beer produced outside of Belgium exhibited a similar microbial profile to traditional Lambic beers during the first 36 weeks of fermentation, with eventual dominance of Dekkera (syn. Brettanomyces) bruxellensis and Lactobacillus. During this time, previously unreported instances of Gluconoacetobacter were observed, a genera more often associated with vinegar and kombucha production than with beer. Analysis of beer that had aged up to five years in barrels showed that yeast and bacterial communities follow a conserved trend, with the eventual dominance of Dekkera (syn.
    [Show full text]