NF-Κb Inhibits T-Cell Activation-Induced, P73-Dependent Cell Death by Induction of MDM2

Total Page:16

File Type:pdf, Size:1020Kb

NF-Κb Inhibits T-Cell Activation-Induced, P73-Dependent Cell Death by Induction of MDM2 NF-κB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2 Valere Busuttila,1, Nathalie Droina,b,1, Laura McCormicka, Francesca Bernassolac, Eleonora Candic, Gerry Melinoc,d, and Douglas R. Greena,2 aDepartment of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105; bHematopoiesis Unit, Institut National de la Santé et de la Recherche Médicale U1009, Institut de Recherche Intégrée en Cancérologie de Villejuif, Institut Gustave Roussy, 94805 Villejuif, France; cDepartment of Experimental Medicine and Biochemical Sciences, Biochemistry Laboratory, Istituto Dermopatico dell’Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Università degli Studi di Roma “Tor Vergata,” 00133 Rome, Italy; and dMedical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom Edited by Tak Wah Mak, The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute at Princess Margaret Hospital, University Health Network, Toronto, ON, Canada, and approved September 8, 2010 (received for review May 5, 2010) NF-κB is a key transcription factor involved in the regulation of T-cell have not been identified to date. Interestingly, NF-κB has been activation and proliferation upon engagement of the T-cell receptor shown to induce MDM2 expression in mouse embryonic fibro- (TCR). T cells that lack the IκB kinase (IKKβ) are unable to activate blasts (19), as an NF-κB–responsive element has been identified in NF-κB, and rapidly undergo apoptosis upon activation. NF-κBacti- intron 1 of MDM2. vation following T-cell receptor engagement induces the expression Here, we explore the role of NF-κB in the expression of MDM2 of Mdm2 through interaction with NF-κB sites in its P1 promoter, in activated T cells and its role in preventing p73-dependent, and enforced expression of Mdm2 protected T cells deficient for activation-induced apoptosis. We further identify BIM as a p73 NF-κB activation from activation-induced cell death. In T cells with target in T lymphocytes, required for this form of AICD. intact NF-κB signaling, ablation or pharmacologic inhibition of Mdm2 resulted in activation-induced apoptosis. Mdm2 coprecipi- Results tates with p73 in activated T cells, and apoptosis induced by inhibi- To generate T cells defective in NF-κB signaling, we bred −/− −/− tion of Mdm2 was p73-dependent. Further, Bim was identified as Ikkβ Tnfr1 animals to rescue the embryonic lethality seen −/− +/+ −/− a p73 target gene required for cell death induced by Mdm2 inhibi- in Ikkβ mice. Splenic T cells from 7-d-old Ikkβ Tnfr1 −/− −/− +/+ tion, and a p73-responsive element in intron 1 of Bim was charac- or Ikkβ Tnfr1 mice (hereafter referred to as Ikkβ or −/− terized. Our results demonstrate a pathway for survival of activated Ikkβ ) were stimulated with anti-CD3 plus anti-CD28, and as T cells through NF-κB–induced Mdm2, which blocks Bim-dependent expected (5), apoptosis was dramatically elevated in activated −/− apoptosis through binding and inhibition of p73. Ikkβ T cells (Fig. S1 A and B). Similarly, we found that Jurkat T cells, stably expressing an IκBαM superrepressor (20), un- apoptosis | T lymphocyte | Bim derwent apoptosis upon stimulation with anti-CD3, whereas cells stably transduced with a control vector did not (Fig. S1C). uring the course of an immune response, activated T lym- In mouse embryonic fibroblasts, NF-κB has been observed to Dphocytes undergo cell death by a variety of mechanisms (1). drive the expression of MDM2, which regulates p53 function (19). Such activation-induced cell death (AICD) can be mediated by Similarly, in both primary T cells (Fig. 1 A and C) and Jurkat cells expression of death ligands of the TNF family, including CD95 (Fig. 1 B and D), activation led to increased mRNA and protein −/− ligand (1) and TNF-related apoptosis-inducing ligand (2), and the expression of MDM2. Ikkβ T cells and Jurkat cells expressing engagement of their respective receptors. An independent mech- IκBαM did not display increased MDM2 following activation. anism of AICD involves the expression and stabilization of the We next asked if the expression of MDM2 participates in NF- proapoptotic BCL-2 protein, BIM (3). Another, less well charac- κB–dependent cell survival following T-cell activation. To ectop- IMMUNOLOGY terized mode of AICD in T cells involves engagement of the p53 ically express MDM2 in primary T cells, we optimized transduction family member p73 (4). Intriguingly, this mechanism of T-cell to achieve expression of GFP in almost 50% of primary cells (Fig. death appears to be inhibited by the function of the transcription S2C). We introduced a construct for transient expression of −/− factor NF-κB, as T cells expressing a nondegradable mutant of its MDM2 in Ikkβ T cells before activation with anti-CD3 plus inhibitor, IκB, undergo AICD in a p73-dependent manner (5). anti-CD28 (Fig. 1E and Fig. S2A). Although activation of Ikkβ-null Upon ligation of the T-cell receptor (TCR) and coreceptors, T cells resulted in extensive cell death, enforced expression of T cells activate NF-κB via the IκB kinase (IKK) complex, com- MDM2 inhibited apoptosis. posed of IKKα,IKKβ, and IKKγ/NEMO (6). T cells deficient in Similarly, we stably enforced MDM2 expression in Jurkat cells NF-κB components (7) or lacking IKKβ (8, 9) develop normally with or without IκBαM superrepressor (Fig. S2B). Although acti- provided TNFR1 is disrupted (10), but display defective pro- vation of Jurkat cells with anti-CD3 resulted in apoptosis in cells liferation (11) and accumulation of memory T cells (12, 13). expressing IκBαM superrepressor, this cell death was inhibited by The p53 family of proteins includes p53, p63, and p73, and forms MDM2, but not by stable transduction with the control vector of these proteins produced by alternative splicing and/or alterna- (Fig. 1F). tive translation-start sites (14). A critical regulator of p53 is the E3- ubiquitin ligase, murine double minute-2 (MDM2), which binds directly to the NH2 terminus of p53 in the nucleus, inhibiting its Author contributions: V.B., N.D., and D.R.G. designed research; V.B. and N.D. performed transcriptional activity (15). The MDM2–p53 complex shuttles research; V.B., N.D., L. M., F.B., and E.C. contributed new reagents/analytic tools; V.B., from the nucleus to the cytoplasm, where MDM2 targets p53 for N.D., G.M., and D.R.G. analyzed data; and V.B., N.D., G.M., and D.R.G. wrote the paper. proteasome-dependent degradation. MDM2 also binds to p73 and The authors declare no conflict of interest. inhibits its transcriptional activity, but does not target p73 for This article is a PNAS Direct Submission. degradation (16). 1V.B. and N.D. contributed equally to this work. Expression of murine and human MDM2 is under the control of 2To whom correspondence should be addressed. E-mail: [email protected]. two promoters, P1 and P2 (17, 18). Whereas P2 is driven by p53 This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. (17), transcription factors responsible for P1-mediated expression 1073/pnas.1006163107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1006163107 PNAS | October 19, 2010 | vol. 107 | no. 42 | 18061–18066 Downloaded by guest on September 25, 2021 12000 3000 Human Mdm2 A Ikk Tnfr1 -/- Mdm2 B LXSN-Jurkat -/- Ikk Tnfr1 I BM-Jurkat A Mdm2 promoter 1 -CD3/CD28 GFP 2000 8000 -CD3 0 1h B2 GFP 2h 1000 4000 B1 GFP B1 B2 GFP mRNA expression (relative to L32) (relative expression mRNA 0 to PPIA) (relative expression mRNA 0 pGlow Time (h): 0 1 2 3 12 18 24 Time (h): 0 0.5 1 2 4 8 12 24 2000 6000 10000 14000 18000 22000 26000 C D GFP mRNA expression (relative) Ikk Ikk -/- LXSN-Jurkat I BM-Jurkat Cold Probe: + Tnfr1 -/- Tnfr1 -/- 150 B -CD3 (h):0 0.5 1 2 3 4 3 114 100 Human 81 MDM2 MDM2 75 61 Actin 37 LDH 36 B1 0 24 0 24 0 0.5 1 2 4 0 0.5 1 2 4 Time (h) -CD3/CD28 Time (hours) -CD3 Cold Probe: + C -CD3 (h): 0 0.25 0.5 1 2 4 2 E 70 Ikk -/- Tnfr1 -/- pcDNA F 60 LXSN-pCEP4 Ikk -/- Tnfr1 -/- MDM2 LXSN-MDM2 60 50 I BM-pCEP4 50 I BM-MDM2 40 40 B2 30 30 20 Cold Probe - - - - - + - - - - - + 20 D Anti-RelA/p65 - - - - + - - - - - + - Apoptotic cells (%) Apoptotic cells (%) 10 10 Anti-p50 - - - + - - - - - + - - - CD3/CD28 -CD3 Anti-c-Rel - - + - - - - - + - - - 0 0 Anti-RelB - + - - - - - + - - - - Time (h): 0 12 24 36 48 Time (h): 0 24 48 72 − − − − Fig. 1. Impaired Mdm2 up-regulation in primary Ikkβ / Tnfr1 / and IκBM- Jurkat T cells upon TCR activation. (A) Total mRNA was isolated from anti- − − − − − − mCD3/anti-mCD28 activated Ikkβ+/+Tnfr1 / and Ikkβ / Tnfr1 / lymphocytes Non and assessed by real-time RT-PCR for Mdm2 mRNA expression. Absolute specific mRNA values were determined, normalized to L32, and reported as arbitrary 0 -CD3 B2 units. (B) Total mRNA was isolated from anti-hCD3 (OKT3) activated LXSN- κ and I BM-Jurkat T cells and assessed by real-time RT-PCR for human Mdm2 140 Human Mdm2 100 human I B mRNA expression. Absolute mRNA values were determined, normalized to E prom B1 − − 120 prom B Cyclophylin (PPIA), and reported as arbitrary units. (C) Ikkβ+/+Tnfr1 / and − − − − 80 Ikkβ / Tnfr1 / lymphocytes were activated for 24 h with anti-mCD3/anti- 100 mCD28. MDM2 and Actin protein expression was detected by immuno- 80 60 blotting. (D) LXSN- and IκBM-Jurkat T cells were activated with anti-hCD3 60 (OKT3) for the indicated times. Human MDM2 and lactate dehydrogenase 40 − − β / 40 protein expression were assessed by Western blotting.
Recommended publications
  • Product Name: NFKB1 (Ser893) Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated Catalog No
    Product Name: NFKB1 (Ser893) Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated Catalog No. : TAP01-94487R-A594 Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID 4790 ISO Type Rabbit IgG Clone N/A Immunogen Range 880-900/968 Conjugation ALEXA FLUOR® 594 Subcellular Locations Cytoplasm, Nucleus Applications IF(IHC-P) Cross Reactive Species Human Source KLH conjugated synthetic phosphopeptide derived from human NF KappaB p105 around the phosphorylation site of Ser893 Applications with IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complexappears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Differentdimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family.
    [Show full text]
  • Revealing Transcription Factor and Histone Modification Co-Localization and Dynamics Across Cell Lines by Integrating Chip-Seq A
    Zhang et al. BMC Genomics 2018, 19(Suppl 10):914 https://doi.org/10.1186/s12864-018-5278-5 RESEARCH Open Access Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data Lirong Zhang1*, Gaogao Xue1, Junjie Liu1, Qianzhong Li1* and Yong Wang2,3,4* From 29th International Conference on Genome Informatics Yunnan, China. 3-5 December 2018 Abstract Background: Interactions among transcription factors (TFs) and histone modifications (HMs) play an important role in the precise regulation of gene expression. The context specificity of those interactions and further its dynamics in normal and disease remains largely unknown. Recent development in genomics technology enables transcription profiling by RNA-seq and protein’s binding profiling by ChIP-seq. Integrative analysis of the two types of data allows us to investigate TFs and HMs interactions both from the genome co-localization and downstream target gene expression. Results: We propose a integrative pipeline to explore the co-localization of 55 TFs and 11 HMs and its dynamics in human GM12878 and K562 by matched ChIP-seq and RNA-seq data from ENCODE. We classify TFs and HMs into three types based on their binding enrichment around transcription start site (TSS). Then a set of statistical indexes are proposed to characterize the TF-TF and TF-HM co-localizations. We found that Rad21, SMC3, and CTCF co-localized across five cell lines. High resolution Hi-C data in GM12878 shows that they associate most of the Hi-C peak loci with a specific CTCF-motif “anchor” and supports that CTCF, SMC3, and RAD2 co-localization serves important role in 3D chromatin structure.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Bcl3 and REG-gamma are the Regulators of NF-kappaB p50 and p52 Permalink https://escholarship.org/uc/item/2293k9sk Author Du, Qian Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERISTY OF CALIFORNIA, SAN DIEGO Bcl3 and REG-gamma are the Regulators of NF-kappaB p50 and p52 A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemistry by Qian Du Committee in Charge: Professor Gourisankar Ghosh, Chair Professor Simpson Joseph Professor Emmanuel Theodorakis Professor Wei Wang 2017 ii The Thesis of Qian Du is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2017 iii DEDICATION This thesis is dedicated to my beloved parents, for their endless love, caring and under- standing throughout my life. This thesis is also dedicated to my beloved grandparents, for their kindness and devo- tion. Their selflessness will always be remembered. iv TABLE OF CONTENTS Signature Page……………………………………………………………………………ⅲ Dedication.......................................................................................................................…ⅳ Table of Contents…………………………………………………………………………ⅴ List of Figures…………………………………………………………………………….ⅵ Preface……………………………………………………….....………………………...ⅷ Acknowledgemnts………………………………………….……...……………………...ⅸ Abstract of the Thesis……………………………………...…………………...………....ⅺ
    [Show full text]
  • Immunological Defects in Mice with a Targeted Disruption in Bcl-3
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Immunological defects in mice with a targeted disruption in Bcl-3 Edward M. Schwarz/'^ Paul Krimpenfort/'^ Anton Berns,^ and Inder M. Verma 1,4 ^Laboratory of Genetics, The Salk Institute, San Diego, California 92186-5800 USA; ^Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands The proto-oncogene bcl-3 is a member ol the IKB family. The Bcl-3 protein is known to interact specifically with the p50 and p52 subunits of NFKB. However, the function of this interaction is not well understood. To determine the in vivo role of Bcl-3, mice were generated that lack the bcl-3 gene, Bel 3(-/-). Here we report that Bel 3(-/-) mice appear developmentally normal, but exhibit severe defects in humoral immune responses and protection from in vivo pathogenic challenges. Relative to wild-type mice, Bel 3(-/-) mice are unable to clear L. monocytogenes and are more susceptible to infection with S. pneumoniae. This phenotype is similar to that observed in the p50(-/-) mice and the cross between the Bcl-3(-/-) and p50(-/-) mice generates animals with an enhanced phenotype. In accordance with the observed defects in their immune response, the Bel 3(-/-) mice have normal immunoglobulin levels before and after immunization, but fail to produce antigen-specific antibodies. Additionally, spleens from Bcl-3(-/-) mice are abnormal and void of germinal centers. In contrast, the p50(-/-) mice have normal germinal centers. We propose that in in vivo, Bcl-3 can function independently of p50.
    [Show full text]
  • B-Cell Lymphomas with Concurrent MYC and BCL2 Abnormalities Other Than Translocations Behave Similarly to MYC&Sol
    Modern Pathology (2015) 28, 208–217 208 & 2015 USCAP, Inc All rights reserved 0893-3952/15 $32.00 B-cell lymphomas with concurrent MYC and BCL2 abnormalities other than translocations behave similarly to MYC/BCL2 double-hit lymphomas Shaoying Li1, Adam C Seegmiller1, Pei Lin2, Xuan J Wang1, Roberto N Miranda2, Sharathkumar Bhagavathi3 and L Jeffrey Medeiros2 1Division of Hematopathology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA; 2Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and 3Department of Pathology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA Large B-cell lymphomas with IGH@BCL2 and MYC rearrangement, known as double-hit lymphoma (DHL), are clinically aggressive neoplasms with a poor prognosis. Some large B-cell lymphomas have concurrent abnormalities of MYC and BCL2 other than coexistent translocations. Little is known about patients with these lymphomas designated here as atypical DHL. We studied 40 patients of atypical DHL including 21 men and 19 women, with a median age of 60 years. Nine (23%) patients had a history of B-cell non-Hodgkin lymphoma. There were 30 diffuse large B-cell lymphoma (DLBCL), 7 B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma, and 3 DLBCL with coexistent follicular lymphoma. CD10, BCL2, and MYC were expressed in 28/39 (72%), 33/35 (94%), and 14/20 (70%) cases, respectively. Patients were treated with standard (n ¼ 14) or more aggressive chemotherapy regimens (n ¼ 17). We compared the atypical DHL group with 76 patients with DHLand 35 patients with DLBCL lacking MYC and BCL2 abnormalities.
    [Show full text]
  • NFKB1 and Cancer: Friend Or Foe?
    cells Review NFKB1 and Cancer: Friend or Foe? Julia Concetti and Caroline L. Wilson * Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-191-208-8590 Received: 15 August 2018; Accepted: 4 September 2018; Published: 7 September 2018 Abstract: Current evidence strongly suggests that aberrant activation of the NF-κB signalling pathway is associated with carcinogenesis. A number of key cellular processes are governed by the effectors of this pathway, including immune responses and apoptosis, both crucial in the development of cancer. Therefore, it is not surprising that dysregulated and chronic NF-κB signalling can have a profound impact on cellular homeostasis. Here we discuss NFKB1 (p105/p50), one of the five subunits of NF-κB, widely implicated in carcinogenesis, in some cases driving cancer progression and in others acting as a tumour-suppressor. The complexity of the role of this subunit lies in the multiple dimeric combination possibilities as well as the different interacting co-factors, which dictate whether gene transcription is activated or repressed, in a cell and organ-specific manner. This review highlights the multiple roles of NFKB1 in the development and progression of different cancers, and the considerations to make when attempting to manipulate NF-κB as a potential cancer therapy. Keywords: NF-κB; NFKB1; p105/p50; Bcl-3; cancer; inflammation; apoptosis 1. Introduction One of the emerging questions in cancer biology is: “How are inflammation and dysregulated immune responses linked to cancer?” It is now widely accepted that chronic inflammation and infection represent major risk factors for certain cancers.
    [Show full text]
  • Mouse Bcl3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Bcl3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Bcl3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Bcl3 gene (NCBI Reference Sequence: NM_033601 ; Ensembl: ENSMUSG00000053175 ) is located on Mouse chromosome 7. 9 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 9 (Transcript: ENSMUST00000120537). Exon 3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Bcl3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-33H23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice lacking functional copies of this gene exhibit defects of the immune system including disruption of the humoral immune response and abnormal spleen and Peyer's patch organogenesis. Mutant mice show increased susceptibility to pathogens. Exon 3 starts from about 29.46% of the coding region. The knockout of Exon 3 will result in frameshift of the gene. The size of intron 2 for 5'-loxP site insertion: 7533 bp, and the size of intron 3 for 3'-loxP site insertion: 705 bp. The size of effective cKO region: ~609 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 4 5 6 9 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Bcl3 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Supplementary Fig. S1. LD Mice Used in This Study Accumulate Polyglucosan Inclusions (Lafora Bodies) in the Brain
    1 SUPPLEMENTARY MATERIAL Supplementary Fig. S1. LD mice used in this study accumulate polyglucosan inclusions (Lafora bodies) in the brain. Samples from the hippocampus of five months old control, Epm2a-/- (lacking laforin) and Epm2b-/- mice (lacking malin) were stained with periodic acid Schiff reagent (PAS staining), which colors polysaccharide granules in red. Bar: 50 m. Supplementary Fig. S2. Principal component analysis (PCA) representing the first two components with the biggest level of phenotypic variability. Samples 1_S1 to 4_S4 corresponded to control, 5_S5, 6_S6 and 8_S8 to Epm2a-/- and 9_S9 to 12_S12 to Epm2b- /- samples, of animals of 16 months of age respectively. Supplementary Table S1. Primers used in this work to validate the expression of the corresponding genes by RT-qPCR. Supplementary Table S2: Genes downregulated more than 0.5 fold in Epm2a-/- and Epm2b-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. Supplementary Table S3: Genes upregulated more than 1.5 fold in Epm2a-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. Supplementary Table S4: Genes upregulated more than 1.5 fold in Epm2b-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. 2 Supplementary Table S5: Genes upregulated in both Epm2a-/- and Epm2b-/- mice of 16 months of age.
    [Show full text]
  • The Landscape and Driver Potential of Site-Specific Hotspots Across Cancer
    www.nature.com/npjgenmed ARTICLE OPEN The landscape and driver potential of site-specific hotspots across cancer genomes ✉ ✉ Randi Istrup Juul 1 , Morten Muhlig Nielsen1, Malene Juul1, Lars Feuerbach2 and Jakob Skou Pedersen 1,3 Large sets of whole cancer genomes make it possible to study mutation hotspots genome-wide. Here we detect, categorize, and characterize site-specific hotspots using 2279 whole cancer genomes from the Pan-Cancer Analysis of Whole Genomes project and provide a resource of annotated hotspots genome-wide. We investigate the excess of hotspots in both protein-coding and gene regulatory regions and develop measures of positive selection and functional impact for individual hotspots. Using cancer allele fractions, expression aberrations, mutational signatures, and a variety of genomic features, such as potential gain or loss of transcription factor binding sites, we annotate and prioritize all highly mutated hotspots. Genome-wide we find more high- frequency SNV and indel hotspots than expected given mutational background models. Protein-coding regions are generally enriched for SNV hotspots compared to other regions. Gene regulatory hotspots show enrichment of potential same-patient second-hit missense mutations, consistent with enrichment of hotspot driver mutations compared to singletons. For protein-coding regions, splice-sites, promoters, and enhancers, we see an excess of hotspots associated with cancer genes. Interestingly, missense hotspot mutations in tumor suppressors are associated with elevated expression, suggesting localized amino-acid changes with functional impact. For individual non-coding hotspots, only a small number show clear signs of positive selection, including known sites in the TERT promoter and the 5’ UTR of TP53.
    [Show full text]
  • Targeting the Transcription Factor C-Jun in Cervical Cancer Cells
    Targeting the Transcription Factor c-Jun in Cervical Cancer Cells Grace Pei Chien Yee Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Australia A thesis submitted to the University of New South Wales for the degree of Doctor of Philosophy (PhD) September 2013 ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. i ABSTRACT Despite the development of vaccines for human papillomaviruses (HPV) in cervical cancer and other efforts to improve therapy, deaths still average 275,000 annually worldwide, with most women succumbing to recurrent or metastatic disease. The c-Jun oncogene is a subunit of the activating protein-1 (AP-1) transcription factor and is strongly expressed in cervical cancer, regulating the expression of HPV16 and 18 genes. AP-1 plays a major role in cell growth, migration and apoptosis in many cell types.
    [Show full text]
  • Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase
    BASIC RESEARCH www.jasn.org Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase † ‡ Yifei Zhong,* Edward Y. Chen, § Ruijie Liu,*¶ Peter Y. Chuang,* Sandeep K. Mallipattu,* ‡ ‡ † | ‡ Christopher M. Tan, § Neil R. Clark, § Yueyi Deng, Paul E. Klotman, Avi Ma’ayan, § and ‡ John Cijiang He* ¶ *Department of Medicine, Mount Sinai School of Medicine, New York, New York; †Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ‡Department of Pharmacology and Systems Therapeutics and §Systems Biology Center New York, Mount Sinai School of Medicine, New York, New York; |Baylor College of Medicine, Houston, Texas; and ¶Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York ABSTRACT The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases.
    [Show full text]
  • Identification of a Genomic Enhancer That Enforces Proper Apoptosis
    ARTICLE https://doi.org/10.1038/s41467-019-10525-1 OPEN Identification of a genomic enhancer that enforces proper apoptosis induction in thymic negative selection Miki Arai Hojo1,2, Kyoko Masuda3, Hiroaki Hojo2,3,4, Yosuke Nagahata3, Keiko Yasuda3, Daiya Ohara3, Yusuke Takeuchi3, Keiji Hirota3, Yutaka Suzuki1, Hiroshi Kawamoto3 & Shinpei Kawaoka 2,3,4 1234567890():,; During thymic negative selection, autoreactive thymocytes carrying T cell receptor (TCR) with overtly strong affinity to self-MHC/self-peptide are removed by Bim-dependent apop- tosis, but how Bim is specifically regulated to link TCR activation and apoptosis induction is unclear. Here we identify a murine T cell-specific genomic enhancer EBAB (Bub1-Acoxl-Bim), whose deletion leads to accumulation of thymocytes expressing high affinity TCRs. Con- sistently, EBAB knockout mice have defective negative selection and fail to delete autoreactive thymocytes in various settings, with this defect accompanied by reduced Bim expression and apoptosis induction. By contrast, EBAB is dispensable for maintaining peripheral T cell homeostasis via Bim-dependent pathways. Our data thus implicate EBAB as an important, developmental stage-specific regulator of Bim expression and apoptosis induction to enforce thymic negative selection and suppress autoimmunity. Our study unravels a part of genomic enhancer codes that underlie complex and context-dependent gene regulation in TCR signaling. 1 Graduate School of Frontier Science, The University of Tokyo, Kashiwa-shi, Chiba 277-8562, Japan. 2 The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Soraku-gun, Kyoto 619-0237, Japan. 3 Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto 606-8507, Japan.
    [Show full text]