Immunological Defects in Mice with a Targeted Disruption in Bcl-3

Total Page:16

File Type:pdf, Size:1020Kb

Immunological Defects in Mice with a Targeted Disruption in Bcl-3 Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Immunological defects in mice with a targeted disruption in Bcl-3 Edward M. Schwarz/'^ Paul Krimpenfort/'^ Anton Berns,^ and Inder M. Verma 1,4 ^Laboratory of Genetics, The Salk Institute, San Diego, California 92186-5800 USA; ^Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands The proto-oncogene bcl-3 is a member ol the IKB family. The Bcl-3 protein is known to interact specifically with the p50 and p52 subunits of NFKB. However, the function of this interaction is not well understood. To determine the in vivo role of Bcl-3, mice were generated that lack the bcl-3 gene, Bel 3(-/-). Here we report that Bel 3(-/-) mice appear developmentally normal, but exhibit severe defects in humoral immune responses and protection from in vivo pathogenic challenges. Relative to wild-type mice, Bel 3(-/-) mice are unable to clear L. monocytogenes and are more susceptible to infection with S. pneumoniae. This phenotype is similar to that observed in the p50(-/-) mice and the cross between the Bcl-3(-/-) and p50(-/-) mice generates animals with an enhanced phenotype. In accordance with the observed defects in their immune response, the Bel 3(-/-) mice have normal immunoglobulin levels before and after immunization, but fail to produce antigen-specific antibodies. Additionally, spleens from Bcl-3(-/-) mice are abnormal and void of germinal centers. In contrast, the p50(-/-) mice have normal germinal centers. We propose that in in vivo, Bcl-3 can function independently of p50. [Key Words: Gene targeting; immune deficiency; NF-KB/IKB; pathogenesis; germinal centers] Received August 16, 1996; revised version accepted December 3, 1996. The Bcl-3 gene was originally identified as a putative Caamano et al. (1996) have generated transgenic mice proto-oncogene because of its location at the breakpoint with constitutive expression of Bcl-3 in thymocytes. Ex­ junction in the t(14;19) translocation observed in human tracts of thymocytes from these mice have enhanced p50 B-cell chronic lymphocytic leukemia (CLL) (Ohno et al DNA binding that is phosphorylation dependent. 1990). Bcl-3 belongs to the IKB family of proteins. It con­ The question remains, does Bcl-3 act negatively or tains a proline-rich amino terminus, a series of seven positively on transcription? Transiently expressed Bcl-3 tandem ankyrin repeats, characteristic of all IKB family negatively effects expression of NF-KB-dependent re­ members, and a proline- and serine-rich carboxyl termi­ porter constructs. This inhibitory effect is dose depen­ nus. Bcl-3 interacts specifically with the p50 and p52 dent (Kerr et al. 1992). Others argue that Bcl-3 acts posi­ subunits of NF-KB (Franzoso et al. 1992,1993; Hatada et tively toward NF-KB-mediated transcription. It has been al. 1992; Kerr et al. 1992; Wulczyn et al. 1992; Inoue et al. shown that Bcl-3 can facilitate NF-KB mediated transac- 1993; Naumann et al. 1993; Nolan et al. 1993). Based on tivation by removing inhibiting p50 homodimers from its structure and association with NF-KB, Bcl-3 has been select KB sites (Franzoso et al. 1992). Additionally, it has designated as a member of the IKB family. However, its been shown that Bcl-3 trans-activa.tes directly through in vivo function remains poorly understood (Lenardo and KB motifs via association with p52 (Bours et al. 1993). Siebenlist 1994; Miyamoto and Verma 1995; Verma et al. Fujita et al. (1993) also demonstrated that Bcl-3 can act as 1995). Contrasting reports demonstrate that Bcl-3 retains a transcriptional coactivator that activates through NF- p50 in the cytoplasm (Naumann et al. 1993) or is trans­ KB p50 homodimers. ported to the nucleus via association with p50 (Nolan et In an effort to develop an understanding of the physi­ al. 1993). Additionally, it has been shown that Bcl-3 can ological roles of Bcl-3, we have generated mice lacking prevent, as well as remove, p50 and p52 from binding bcl-3 through embryonic gene targeting. Our results in­ DNA (Nolan et al. 1993). This inhibitory activity of Bcl-3 dicate that Bcl-3 does not have a developmental role for requires phosphorylation (Nolan et al. 1993). However, immune cells (or other cells), but is required for the gen­ eration of normal germinal centers. The Bcl-3(-/-) mice (1) fail to produce antigen-specific antibodies; (2) are un­ able to clear Listeria monocytogenes; and (3) are more ^These authors contributed equally to this work. "Corresponding author. susceptible to infection with Streptococcus pneu- E-MAIL Inder [email protected]; FAX (619) 558-7454. GENES & DEVELOPMENT 11:187-197 © 1997 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/97 $5.00 187 Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Schwarz et al. Results gromycin gene (probe B) hybridized to the 7.5-kb £coRI fragment of the targeted locus (data not shown). Disrup­ Generation of bcl-3 null mice tion of the bcl-3 gene occurred at a frequency of three in To use homologous recombination to generate a mouse 180 hygromycin resistant clones. lacking the bcl-3 gene, genomic bcl-3 DNA was ob­ Two targeted ES clones of normal morphology and tained. A genomic 129/SV library was screened using the karyotype were injected into B6 blastocysts and im­ mouse bcl-3 cDNA as a probe and three recombinant planted into surrogate mothers. Chimeric male progeny phages were recovered that overlapped a region of 25 kb. were crossed to FVB/N females and germ-line transmis­ This region contains 15 kb of structural information and sion of the disrupted bcl-3 gene was obtained (Fig. IC). includes all nine exons of the bcl-3 gene. From these Intercrosses between heterozygous animals produced genomic clones, a targeting construct was generated. In­ progeny with normal Mendelian transmission of the dis­ ternal sequences from a SacII site in exon 1, up to a Notl rupted bcl-3 allele, bcl-3 mutant heterozygous or homo­ site, at the beginning of exon 6 were deleted and replaced zygous mice did not show any gross abnormalities as with the hygromycin resistance gene (Fig. lA). Homolo­ determined by a detailed histopathological analysis of gous recombination of this targeting construct in embry­ the mice. onic stem (ES) cells replaces -10 kb of genomic DNA To verify that the gene disruption created a null mu­ that deletes the coding sequence for five ankyrin repeats tation, we examined Bcl-3 expression in spleen (Fig. ID). of the Bcl-3 protein. Bcl-3 protein was detected in splenocyte extracts from The targeting construct was introduced into E14 ES wild-type mice. Extracts from Bcl-3(-/-) mice lacked de­ cells by electroporation (Hooper et al. 1987). Homolo­ tectable levels of Bcl-3 protein. Heterozygous mice ex­ gous recombination between the targeting construct and pressed half as much Bcl-3 protein as wild-type mice. the wild-type gene, produces a disrupted gene with diag­ These results indicate that Bcl-3 has been functionally nostic £coRI sites. To detect disruption of the bcl-3 gene, inactivated in homozygous mice. DNA from either wild-type or targeted ES cells was di­ gested with £coRI and fractionated by electrophoresis for Expression of IKB and NF-KB family members in the Southern blot analysis. The fractionated DNA was probed with sequences complementary to the promoter Bcl-3(-/-) mouse is unchanged region (probe A). The probe detected diagnostic frag­ Consistent with the findings on studies with the p50, ments of 10.5 and 7.5 kb for the wild-type and mutated p65, c-Rel, RelB, and IKBQ knockout mice (Beg et al. bcl-3 alleles, respectively (Fig. IB). Additionally, the hy­ 1995a,b; Kontgen et al. 1995; Sha et al. 1995; Welh et al. Figure 1. Production of mice lacking A bcl-3. [A] Strategy for the disruption of region cloned In lambdaFlxll the bcl-3 gene. The top line represents the region cloned in A.FixII phages; the middle line shows roughly the organiza- R, tion of the bcl-3 locus. Boxes represent i exons, hatched boxes represent ankyrin BCISIOCUS III ji I repeat encoding exons. Bottom line sche­ matically shows the targeting fragment; below is indicated the sizes of the EcoKl fragments detected by probe A of the targeting wild-type bcl-3 and the mutated bcl-3 al­ hyg lele. Restriction sites: (RI) £coRI; (BII) vector BglW; (SII) Sacll; (Not) Not; (hyg) hygro­ mycin resistance expression cassette. [B] Southern blot analysis of E14 ES cell and ' wt allele — clone 205 DNA; DNA was digested with £coRI and run over a 0.6% agarose gel; targeted aiieie after blotting, the DNA was hybridized with probe A; (size markers): Xffindlll; LU CM M +/+ +/- -/- (arrowheads) wild-type and mutant hcl-3 200—: allele, (C) Southern blot analysis of DNA isolated from the tail of progeny derived wt — from intercrosses of Bcl-3[+l-] animals, ko- DNA was digested with £coRI and run Bcl-3 [ W over a 0.6% agarose gel. After blotting, 43-gr DNA was hybridized with probe A; (size markers): XHmdIII. (D) Western blot analysis of spleen lysates from mice genotyped as wild type, heterozygous, and homozygous for the disrupted bcl-3 allele. The protein blot was incubated with serum specific to mouse Bcl-3. Location of specific Bcl-3 bands are indicated; (size marker) prestained size markers (GIBCO, BRL). 188 GENES & DEVELOPMENT Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Bcl-3 knockout mice 1995), there is no compensation or altered gene expres­ addition of the probe.
Recommended publications
  • Product Name: NFKB1 (Ser893) Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated Catalog No
    Product Name: NFKB1 (Ser893) Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated Catalog No. : TAP01-94487R-A594 Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID 4790 ISO Type Rabbit IgG Clone N/A Immunogen Range 880-900/968 Conjugation ALEXA FLUOR® 594 Subcellular Locations Cytoplasm, Nucleus Applications IF(IHC-P) Cross Reactive Species Human Source KLH conjugated synthetic phosphopeptide derived from human NF KappaB p105 around the phosphorylation site of Ser893 Applications with IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complexappears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Differentdimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family.
    [Show full text]
  • Revealing Transcription Factor and Histone Modification Co-Localization and Dynamics Across Cell Lines by Integrating Chip-Seq A
    Zhang et al. BMC Genomics 2018, 19(Suppl 10):914 https://doi.org/10.1186/s12864-018-5278-5 RESEARCH Open Access Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data Lirong Zhang1*, Gaogao Xue1, Junjie Liu1, Qianzhong Li1* and Yong Wang2,3,4* From 29th International Conference on Genome Informatics Yunnan, China. 3-5 December 2018 Abstract Background: Interactions among transcription factors (TFs) and histone modifications (HMs) play an important role in the precise regulation of gene expression. The context specificity of those interactions and further its dynamics in normal and disease remains largely unknown. Recent development in genomics technology enables transcription profiling by RNA-seq and protein’s binding profiling by ChIP-seq. Integrative analysis of the two types of data allows us to investigate TFs and HMs interactions both from the genome co-localization and downstream target gene expression. Results: We propose a integrative pipeline to explore the co-localization of 55 TFs and 11 HMs and its dynamics in human GM12878 and K562 by matched ChIP-seq and RNA-seq data from ENCODE. We classify TFs and HMs into three types based on their binding enrichment around transcription start site (TSS). Then a set of statistical indexes are proposed to characterize the TF-TF and TF-HM co-localizations. We found that Rad21, SMC3, and CTCF co-localized across five cell lines. High resolution Hi-C data in GM12878 shows that they associate most of the Hi-C peak loci with a specific CTCF-motif “anchor” and supports that CTCF, SMC3, and RAD2 co-localization serves important role in 3D chromatin structure.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Bcl3 and REG-gamma are the Regulators of NF-kappaB p50 and p52 Permalink https://escholarship.org/uc/item/2293k9sk Author Du, Qian Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERISTY OF CALIFORNIA, SAN DIEGO Bcl3 and REG-gamma are the Regulators of NF-kappaB p50 and p52 A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemistry by Qian Du Committee in Charge: Professor Gourisankar Ghosh, Chair Professor Simpson Joseph Professor Emmanuel Theodorakis Professor Wei Wang 2017 ii The Thesis of Qian Du is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2017 iii DEDICATION This thesis is dedicated to my beloved parents, for their endless love, caring and under- standing throughout my life. This thesis is also dedicated to my beloved grandparents, for their kindness and devo- tion. Their selflessness will always be remembered. iv TABLE OF CONTENTS Signature Page……………………………………………………………………………ⅲ Dedication.......................................................................................................................…ⅳ Table of Contents…………………………………………………………………………ⅴ List of Figures…………………………………………………………………………….ⅵ Preface……………………………………………………….....………………………...ⅷ Acknowledgemnts………………………………………….……...……………………...ⅸ Abstract of the Thesis……………………………………...…………………...………....ⅺ
    [Show full text]
  • B-Cell Lymphomas with Concurrent MYC and BCL2 Abnormalities Other Than Translocations Behave Similarly to MYC&Sol
    Modern Pathology (2015) 28, 208–217 208 & 2015 USCAP, Inc All rights reserved 0893-3952/15 $32.00 B-cell lymphomas with concurrent MYC and BCL2 abnormalities other than translocations behave similarly to MYC/BCL2 double-hit lymphomas Shaoying Li1, Adam C Seegmiller1, Pei Lin2, Xuan J Wang1, Roberto N Miranda2, Sharathkumar Bhagavathi3 and L Jeffrey Medeiros2 1Division of Hematopathology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA; 2Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and 3Department of Pathology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA Large B-cell lymphomas with IGH@BCL2 and MYC rearrangement, known as double-hit lymphoma (DHL), are clinically aggressive neoplasms with a poor prognosis. Some large B-cell lymphomas have concurrent abnormalities of MYC and BCL2 other than coexistent translocations. Little is known about patients with these lymphomas designated here as atypical DHL. We studied 40 patients of atypical DHL including 21 men and 19 women, with a median age of 60 years. Nine (23%) patients had a history of B-cell non-Hodgkin lymphoma. There were 30 diffuse large B-cell lymphoma (DLBCL), 7 B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma, and 3 DLBCL with coexistent follicular lymphoma. CD10, BCL2, and MYC were expressed in 28/39 (72%), 33/35 (94%), and 14/20 (70%) cases, respectively. Patients were treated with standard (n ¼ 14) or more aggressive chemotherapy regimens (n ¼ 17). We compared the atypical DHL group with 76 patients with DHLand 35 patients with DLBCL lacking MYC and BCL2 abnormalities.
    [Show full text]
  • NFKB1 and Cancer: Friend Or Foe?
    cells Review NFKB1 and Cancer: Friend or Foe? Julia Concetti and Caroline L. Wilson * Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-191-208-8590 Received: 15 August 2018; Accepted: 4 September 2018; Published: 7 September 2018 Abstract: Current evidence strongly suggests that aberrant activation of the NF-κB signalling pathway is associated with carcinogenesis. A number of key cellular processes are governed by the effectors of this pathway, including immune responses and apoptosis, both crucial in the development of cancer. Therefore, it is not surprising that dysregulated and chronic NF-κB signalling can have a profound impact on cellular homeostasis. Here we discuss NFKB1 (p105/p50), one of the five subunits of NF-κB, widely implicated in carcinogenesis, in some cases driving cancer progression and in others acting as a tumour-suppressor. The complexity of the role of this subunit lies in the multiple dimeric combination possibilities as well as the different interacting co-factors, which dictate whether gene transcription is activated or repressed, in a cell and organ-specific manner. This review highlights the multiple roles of NFKB1 in the development and progression of different cancers, and the considerations to make when attempting to manipulate NF-κB as a potential cancer therapy. Keywords: NF-κB; NFKB1; p105/p50; Bcl-3; cancer; inflammation; apoptosis 1. Introduction One of the emerging questions in cancer biology is: “How are inflammation and dysregulated immune responses linked to cancer?” It is now widely accepted that chronic inflammation and infection represent major risk factors for certain cancers.
    [Show full text]
  • Mouse Bcl3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Bcl3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Bcl3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Bcl3 gene (NCBI Reference Sequence: NM_033601 ; Ensembl: ENSMUSG00000053175 ) is located on Mouse chromosome 7. 9 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 9 (Transcript: ENSMUST00000120537). Exon 3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Bcl3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-33H23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice lacking functional copies of this gene exhibit defects of the immune system including disruption of the humoral immune response and abnormal spleen and Peyer's patch organogenesis. Mutant mice show increased susceptibility to pathogens. Exon 3 starts from about 29.46% of the coding region. The knockout of Exon 3 will result in frameshift of the gene. The size of intron 2 for 5'-loxP site insertion: 7533 bp, and the size of intron 3 for 3'-loxP site insertion: 705 bp. The size of effective cKO region: ~609 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 4 5 6 9 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Bcl3 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Supplementary Fig. S1. LD Mice Used in This Study Accumulate Polyglucosan Inclusions (Lafora Bodies) in the Brain
    1 SUPPLEMENTARY MATERIAL Supplementary Fig. S1. LD mice used in this study accumulate polyglucosan inclusions (Lafora bodies) in the brain. Samples from the hippocampus of five months old control, Epm2a-/- (lacking laforin) and Epm2b-/- mice (lacking malin) were stained with periodic acid Schiff reagent (PAS staining), which colors polysaccharide granules in red. Bar: 50 m. Supplementary Fig. S2. Principal component analysis (PCA) representing the first two components with the biggest level of phenotypic variability. Samples 1_S1 to 4_S4 corresponded to control, 5_S5, 6_S6 and 8_S8 to Epm2a-/- and 9_S9 to 12_S12 to Epm2b- /- samples, of animals of 16 months of age respectively. Supplementary Table S1. Primers used in this work to validate the expression of the corresponding genes by RT-qPCR. Supplementary Table S2: Genes downregulated more than 0.5 fold in Epm2a-/- and Epm2b-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. Supplementary Table S3: Genes upregulated more than 1.5 fold in Epm2a-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. Supplementary Table S4: Genes upregulated more than 1.5 fold in Epm2b-/- mice of 16 months of age. The gene name, false discovery rate (FDR), fold change (FC), description and MGI Id (mouse genome informatics) are indicated. Genes are arranged according to FC. 2 Supplementary Table S5: Genes upregulated in both Epm2a-/- and Epm2b-/- mice of 16 months of age.
    [Show full text]
  • The Landscape and Driver Potential of Site-Specific Hotspots Across Cancer
    www.nature.com/npjgenmed ARTICLE OPEN The landscape and driver potential of site-specific hotspots across cancer genomes ✉ ✉ Randi Istrup Juul 1 , Morten Muhlig Nielsen1, Malene Juul1, Lars Feuerbach2 and Jakob Skou Pedersen 1,3 Large sets of whole cancer genomes make it possible to study mutation hotspots genome-wide. Here we detect, categorize, and characterize site-specific hotspots using 2279 whole cancer genomes from the Pan-Cancer Analysis of Whole Genomes project and provide a resource of annotated hotspots genome-wide. We investigate the excess of hotspots in both protein-coding and gene regulatory regions and develop measures of positive selection and functional impact for individual hotspots. Using cancer allele fractions, expression aberrations, mutational signatures, and a variety of genomic features, such as potential gain or loss of transcription factor binding sites, we annotate and prioritize all highly mutated hotspots. Genome-wide we find more high- frequency SNV and indel hotspots than expected given mutational background models. Protein-coding regions are generally enriched for SNV hotspots compared to other regions. Gene regulatory hotspots show enrichment of potential same-patient second-hit missense mutations, consistent with enrichment of hotspot driver mutations compared to singletons. For protein-coding regions, splice-sites, promoters, and enhancers, we see an excess of hotspots associated with cancer genes. Interestingly, missense hotspot mutations in tumor suppressors are associated with elevated expression, suggesting localized amino-acid changes with functional impact. For individual non-coding hotspots, only a small number show clear signs of positive selection, including known sites in the TERT promoter and the 5’ UTR of TP53.
    [Show full text]
  • Targeting the Transcription Factor C-Jun in Cervical Cancer Cells
    Targeting the Transcription Factor c-Jun in Cervical Cancer Cells Grace Pei Chien Yee Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Australia A thesis submitted to the University of New South Wales for the degree of Doctor of Philosophy (PhD) September 2013 ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. i ABSTRACT Despite the development of vaccines for human papillomaviruses (HPV) in cervical cancer and other efforts to improve therapy, deaths still average 275,000 annually worldwide, with most women succumbing to recurrent or metastatic disease. The c-Jun oncogene is a subunit of the activating protein-1 (AP-1) transcription factor and is strongly expressed in cervical cancer, regulating the expression of HPV16 and 18 genes. AP-1 plays a major role in cell growth, migration and apoptosis in many cell types.
    [Show full text]
  • Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase
    BASIC RESEARCH www.jasn.org Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase † ‡ Yifei Zhong,* Edward Y. Chen, § Ruijie Liu,*¶ Peter Y. Chuang,* Sandeep K. Mallipattu,* ‡ ‡ † | ‡ Christopher M. Tan, § Neil R. Clark, § Yueyi Deng, Paul E. Klotman, Avi Ma’ayan, § and ‡ John Cijiang He* ¶ *Department of Medicine, Mount Sinai School of Medicine, New York, New York; †Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ‡Department of Pharmacology and Systems Therapeutics and §Systems Biology Center New York, Mount Sinai School of Medicine, New York, New York; |Baylor College of Medicine, Houston, Texas; and ¶Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York ABSTRACT The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases.
    [Show full text]
  • Identification of a Genomic Enhancer That Enforces Proper Apoptosis
    ARTICLE https://doi.org/10.1038/s41467-019-10525-1 OPEN Identification of a genomic enhancer that enforces proper apoptosis induction in thymic negative selection Miki Arai Hojo1,2, Kyoko Masuda3, Hiroaki Hojo2,3,4, Yosuke Nagahata3, Keiko Yasuda3, Daiya Ohara3, Yusuke Takeuchi3, Keiji Hirota3, Yutaka Suzuki1, Hiroshi Kawamoto3 & Shinpei Kawaoka 2,3,4 1234567890():,; During thymic negative selection, autoreactive thymocytes carrying T cell receptor (TCR) with overtly strong affinity to self-MHC/self-peptide are removed by Bim-dependent apop- tosis, but how Bim is specifically regulated to link TCR activation and apoptosis induction is unclear. Here we identify a murine T cell-specific genomic enhancer EBAB (Bub1-Acoxl-Bim), whose deletion leads to accumulation of thymocytes expressing high affinity TCRs. Con- sistently, EBAB knockout mice have defective negative selection and fail to delete autoreactive thymocytes in various settings, with this defect accompanied by reduced Bim expression and apoptosis induction. By contrast, EBAB is dispensable for maintaining peripheral T cell homeostasis via Bim-dependent pathways. Our data thus implicate EBAB as an important, developmental stage-specific regulator of Bim expression and apoptosis induction to enforce thymic negative selection and suppress autoimmunity. Our study unravels a part of genomic enhancer codes that underlie complex and context-dependent gene regulation in TCR signaling. 1 Graduate School of Frontier Science, The University of Tokyo, Kashiwa-shi, Chiba 277-8562, Japan. 2 The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Soraku-gun, Kyoto 619-0237, Japan. 3 Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto 606-8507, Japan.
    [Show full text]
  • PDF-Document
    Supplementary Material Investigating the role of microRNA and Transcription Factor co-regulatory networks in Multiple Sclerosis pathogenesis Nicoletta Nuzziello1, Laura Vilardo2, Paride Pelucchi2, Arianna Consiglio1, Sabino Liuni1, Maria Trojano3 and Maria Liguori1* 1National Research Council, Institute of Biomedical Technologies, Bari Unit, Bari, Italy 2National Research Council, Institute of Biomedical Technologies, Segrate Unit, Milan, Italy 3Department of Basic Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy Supplementary Figure S1 Frequencies of GO terms and canonical pathways. (a) Histogram illustrates the GO terms associated to assembled sub-networks. (b) Histogram illustrates the canonical pathways associated to assembled sub-network. a b Legends for Supplementary Tables Supplementary Table S1 List of feedback (FBL) and feed-forward (FFL) loops in miRNA-TF co-regulatory network. Supplementary Table S2 List of significantly (adj p-value < 0.05) GO-term involved in MS. The first column (from the left) listed the GO-term (biological processes) involved in MS. For each functional class, the main attributes (gene count, p-value, adjusted p-value of the enriched terms for multiple testing using the Benjamini correction) have been detailed. In the last column (on the right), we summarized the target genes involved in each enriched GO-term. Supplementary Table S3 List of significantly (adj p-value < 0.05) enriched pathway involved in MS. The first column (from the left) listed the enriched pathway involved in MS. For each pathway, the main attributes (gene count, p-value, adjusted p-value of the enriched terms for multiple testing using the Benjamini correction) have been detailed. In the last column (on the right), we summarized the target genes involved in each enriched pathway.
    [Show full text]