Earthquake Alaska Are We Prepared?

Total Page:16

File Type:pdf, Size:1020Kb

Earthquake Alaska Are We Prepared? UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY EARTHQUAKE ALASKA ARE WE PREPARED? Edited by Rodney Combellick1 Roger Head2 RandaU Updike3 Open-File Report 94-218 Prepared in cooperation with ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Alaska Division of Geological & 2Alaska Department of Transportation & 3U.S. Geological Survey Geophysical Surveys Public Facilities Reston, Virginia Fairbanks, Alaska Anchorage, Alaska 1994 EARTHQUAKE ALASKA ARE WE PREPARED? A conference on the status of knowledge and preparedness for earthquake hazards in Alaska November 19-20,1992 Anchorage, Alaska SPONSORED BY: U.S. Geological Survey Federal Emergency Management Agency Alaska Division of Geological & Geophysical Surveys Alaska Department of Transportation & Public Facilities Alaska Division of Emergency Services Municipality of Anchorage ORGANIZING COMMITTEE: Roger Head (Conference Chair), Alaska Department of Transportation & Public Facilities Rodney Combellick, Alaska Division of Geological & Geophysical Surveys Mike Webb, Alaska Division of Emergency Services John Aho,CH2M Hill David Cole, DOWL Engineers Robert Steward, Municipality of Anchorage EDITORS Rodney A. Combellick, Alaska Division of Geological & Geophysical Surveys Roger D. Head, Alaska Department of Transportation & Public Facilities Randall G. Updike, U.S. Geological Survey Front Cover: View of Anchorage looking east soon after the great Alaska earthquake of March 27,1964. Many homes in the Turnagain heights subdivision were destroyed by a massive earthquake-induced landslide (foreground). U.S. Army Corps of Engineers photograph, courtesy of Alaska Earthquake Photograph Archive, University of Alaska (archive no. TRN-35). CONTENTS Page INTRODUCTION Roger Head........................................................................................................................ 1 ACKNOWLEDGMENTS...................................................................................................... 2 SETTING THE SCENE Moderator: Rodney Combellick Historic Seismicity in Alaska Charlotte Rowe.......................................................................................................... 3 Earthquake Sources in Alaska John Davies................................................................................................................ 9 Geologic Evidence of Earthquake Frequency in Southcentral Alaska Rodney Combellick................................................................................................... 19 Comparison of Knowledge of Earthquake Potential in the San Francisco Bay and Anchorage Regions Robert Page................................................................................................................ 31 Regional Tsunami Potential Thomas J. Sokolowski and Paul M. Whitmore......................................................... 43 Potential Effects of a Major Earthquake on Structures in the Anchorage Area John Aho .................................................................................................................... 55 A Hypothetical Earthquake on the Castle Mountain Fault Randall Updike.......................................................................................................... 61 DISASTER RESPONSE Moderator: Mike Webb Disaster Response in Santa Cruz County Following the 1989 Loma Prieta Earthquake Gary Smith................................................................................................................. 69 Disaster Preparedness in the Municipality of Anchorage Larry Langston........................................................................................................... 77 Response of the Pajaro Valley Unified School District Following the 1989 Loma Prieta Earthquake Hank Hendrickson ..................................................................................................... 81 Disaster Preparedness in the Anchorage School District Tom Bibeau................................................................................................................ 87 in Volunteers as a Resource for Disaster Response in San Lorenzo Valley, California Mary Hammer............................................................................................................ 91 Disaster Response by the Southcentral Alaska Chapter of the American Red Cross Sue LaMunyon........................................................................................................... 97 LONG-TERM RECOVERY Moderator: JohnAho The Loma Prieta Earthquake Recovery Saga Charles Eadie............................................................................................................. 103 Public- Works Aspects of Long-Term Recovery in Anchorage Ken Canfleld.............................................................................................................. Ill Global Perspectives on Postearthquake Rebuilding George Mader............................................................................................................ 119 Reconstruction following the 1964 Great Alaska Earthquake George Sharrock ........................................................................................................ 127 The Hazards of Long-Term Recovery Paula Schulz............................................................................................................... 135 COMMUNITY PLANNING Moderator: David Cole Economic Impacts and Permanent Changes in the Aftermath of the 1989 Loma Prieta Earthquake Charles Eadie............................................................................................................. 145 Preparing for Disaster and Economic Recovery in Alaska Robert Gray................................................................................................................ 155 Lessons Learned from the 1989 Loma Prieta Earthquake Michael Dever............................................................................................................ 163 Lessons Learned from the 1964 Great Alaska Earthquake Mike Meehan............................................................................................................. 175 APPENDIX A - Acronyms used in this report.......................................................................... 183 APPENDIX B -List of workshop registrants and speakers...................................................... 185 IV INTRODUCTION by Roger Head Conference Chair Alaska Department of Transportation and Public Facilities Anchorage, Alaska A conference entitled "Earthquake Alaska-Are We Prepared?" was held in Anchorage, Alaska on November 19 and 20,1992. Earthquake Alaska was a new concept in public education of the short- and long-term hazards associated with seismic activity in urban centers. The conference focused on the similarities of two "sister communities," one of which had experienced recent devastating impacts from a recent earthquake. The experiences over a wide range of community infrastructure were presented by numerous local professionals. Bringing the experiences of one community to another and comparing the attitudes and plans of the professionals provide a much more realistic and often surprising perspective of the multitude of problems the second community might face if a similar event strikes. The conference was held in Anchorage, a community well aware of earthquake hazards. In 1964 one of the largest recorded earthquakes struck southcentral Alaska, causing several hundred millions of dollars of damage. Since then, Anchorage has been shaken by literally hundreds of smaller earthquakes, none of which have caused significant damage. Anchorage is a modem and relatively young community. It was not settled until 1917 and experienced little growth until World War II. Most new structures comply with the seismic re­ quirements of the Uniform Building Code. The need for sturdy construction dictated by a colder climate, together with the prohibitive cost of importing materials associated with seismically unsafe unreinforced masonry structures, have resulted in the construction of buildings that are relatively earthquake resistant. However, parts of Anchorage are highly susceptible to earthquake-induced ground failure. Since 1964, there has been no earthquake damage to alert the public to potential hazards. Although the 1964 earthquake was a major blow to Anchorage, it serves as a poor illustra­ tion of the magnitude of problems the community can expect today in responding to a similar event. In 1964, Anchorage was a small community with a resident population of about 35,000. The biggest industry was the military, supporting both Elmendorf Air Force Base and Fort Richardson Army Base. Anchorage considered itself a pioneer community. Most residents were relatively self sufficient, using on-site fuel oil or wood for heating and were always prepared for power outages that occurred on a regular basis. Only a small part of the community had public sewer and water. Most residents had on-site wells and septic tanks. Today Anchorage is a quite different community. The population has grown to 250,000 and the city has an urban horizon of high-rise buildings. The modernization of Anchorage has eliminated the self-sufficient systems so prevalent in 1964. The community depends on public lifelines: natural gas, electricity, public sewer and water, and freeways complete with grade-separated interchanges. For these and other reasons, Anchorage was perhaps better prepared in 1964 than
Recommended publications
  • Recommendations
    RECOMMENDATIONS . 7-1 Anchorage Metropolitan Area Transportation Solutions 2035 Metropolitan Transportation Plan 7-2 . A Call to Action . 7-3 Anchorage Metropolitan Area Transportation Solutions 2035 Metropolitan Transportation Plan 7-4 7-5 Anchorage Metropolitan Area Transportation Solutions 2035 Metropolitan Transportation Plan 7-6 Roads Scoring Points Criterion 0 1 3 5 Some preliminary Final engineering design and/or ROW purchased; Project readiness No work started completed or environmental ready to construct nearing completion work complete Needed in short Needed in short term (2011- term—helps to Can wait until Long-term need 2023)— addresses Timing of need complete grid beyond 2035 (2023-2035) major system or improves safety/capacity facility to standards needs Next logical or final Logical sequencing N/A New project N/A phase of an existing road Functional classification Local Collector Arterial/expressway Freeway Number of modes (automobile, pedestrian, bike, transit, freight Single Two Three Four or more or intermodal) 1st quartile Cost/length/AADT 4th quartile 3rd quartile 2nd quartile (highest score) AADT = Annual Average Daily Traffic N/A = not applicable 7-7 Anchorage Metropolitan Area Transportation Solutions 2035 Metropolitan Transportation Plan 7-8 Criterion Scoring Points 2010 Cost Cost/ Project Project Timing of Logical Functional Multi-modal Project Name Project Location Estimate Length/ Total Number Readiness Need Sequencing Classification Function ($ million) AADT Seward Hwy - Dimond Blvd Dimond Blvd to Dowling 101
    [Show full text]
  • A Review of Geological Records of Large Tsunamis at Vancouver Island, British Columbia, and Implications for Hazard John J
    Quaternary Science Reviews 19 (2000) 849}863 A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard John J. Clague! " *, Peter T. Bobrowsky#, Ian Hutchinson$ !Depatment of Earth Sciences and Institute for Quaternary Research, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 "Geological Survey of Canada, 101 - 605 Robson St., Vancouver, BC, Canada V6B 5J3 #Geological Survey Branch, P.O. Box 9320, Stn Prov Govt, Victoria, BC, Canada V8W 9N3 $Department of Geography and Institute for Quaternary Research, Simon Fraser University, Burnaby, Canada BC V5A 1S6 Abstract Large tsunamis strike the British Columbia coast an average of once every several hundred years. Some of the tsunamis, including one from Alaska in 1964, are the result of distant great earthquakes. Most, however, are triggered by earthquakes at the Cascadia subduction zone, which extends along the Paci"c coast from Vancouver Island to northern California. Evidence of these tsunamis has been found in tidal marshes and low-elevation coastal lakes on western Vancouver Island. The tsunamis deposited sheets of sand and gravel now preserved in sequences of peat and mud. These sheets commonly contain marine fossils, and they thin and "ne landward, consistent with deposition by landward surges of water. They occur in low-energy settings where other possible depositional processes, such as stream #ooding and storm surges, can be ruled out. The most recent large tsunami generated by an earthquake at the Cascadia subduction zone has been dated in Washington and Japan to AD 1700. The spatial distribution of the deposits of the 1700 tsunami, together with theoretical numerical modelling, indicate wave run-ups of up to 5 m asl along the outer coast of Vancouver Island and up to 15}20 m asl at the heads of some inlets.
    [Show full text]
  • Radiation and Radioactivity Quantified? Do You Think of These “People” When I Say RADIATION? Do You Think of These Things As Well?
    Welcome To RadTown USA •Click to Explore RadTown USA • Click on any location in RadTown USA and find out about radiation sources or uses at that location. The Alpha, Beta, Gammas of Nuclear Education March 2nd, 2014 Fundamentals of Ionizing Radiation Debra N Thrall, PhD Executive Director Albert I Pierce Foundation Radiation Fundamentals What is radiation? Where does it come from? How does it interact with matter? What is radioactivity? What are fission and fusion? How are radiation and radioactivity quantified? Do you think of these “people” when I say RADIATION? Do you think of these things as well? • Food • Space • Utilities • Consumer Products • Medicine Brief History of the Atom • 500 BC Democritus Atom • Long time (Romans Dark Ages) • 1808 AD Dalton Plum Pudding • 1911 Rutherford Nucleus • 1913 Bohr Orbits • 1920’s Many People Quantum Mechanics Rutherford’s Gold Foil Experiment The Design 1. Bombard positively charged alpha particles into thin gold foil. 2. Use fluorescent screen to detect particles as they exit the gold foil. 3. Use angle of deflection to determine interior of the atom. So, What is an Atom? • Atoms are made up of protons, neutrons & electrons • Protons: + charge p+ • Neutrons: no charge n0 • Electrons: - charge e- • Atoms want to have a stable energy level • This translates to having no net charge • # protons = # electrons Mass of an Atom • Masses • Proton: 1.000000 amu • Neutron: 1.000000 amu • Electron: 0.000549 amu (Translates to 1.2 lbs/1 ton ~ a kitten on an elephant!) • The mass of an atom is approximately
    [Show full text]
  • Chester Creek Watershed Plan (Draft)
    Prepared for: The Municipal Planning Department and Watershed Management Services 1 Prepared by: Anchorage Waterways Council Rev. 4, September 2014 (Draft) Table of Contents Executive Summary...................................................................................................................................................................................................... 5 Acknowledgements ....................................................................................................................................................................................................... 6 1 Introduction .............................................................................................................................................................................................................. 7 Importance of Watershed Planning .................................................................................................................................................................. 8 Regulations and Plans ....................................................................................................................................................................................... 9 2 Creation of the Plan................................................................................................................................................................................................ 10 History of the Plan and Participants ...............................................................................................................................................................
    [Show full text]
  • FEMA's Be a Hero! Youth Emergency Preparedness Curriculum
    cy Preparedness Emergen Youth Grades 1-2 TM http://www.ready.gov/kids 1 Dear Educator, Welcome to FEMA’s Be a Hero curriculum, an empowering educational journey into emergency preparedness! This standards-based, cross-curricular program is designed to provide students in grades 1 and 2 with the knowledge, awareness, and life-saving skills needed to prepare for a variety of emergencies and disasters. By engaging in three inquiry-based lessons, students will gain a personal and meaningful understanding of disaster preparedness in the context of real-world hazards. All learning activities lead to important learning through collaborative fact-finding and sharing. By the final lesson, students will become “heroes” as they develop their ownReady Books on emergency preparedness. Using communication skills and creativity, they will generate awareness of emergency preparedness among friends, families, and the school community. Knowledge empowers! We hope this program will help you, your students, and their families feel prepared. Sincerely, Your Friends at FEMA Table of Contents Lesson 1: Lesson 2: Lesson 3: Super Mission: Find the Facts 5 Superheroes, Ready! 16 We Know What To Do! 22 Essential Questions: Essential Questions: Essential Questions: What is an emergency? What is a How can I/my family prepare for an What should I do in an emergency? What are natural disaster? What are different emergency or disaster? Am I/is my safe actions in different emergency situations? kinds of emergencies that can family prepared? impact me? Learning Objectives:
    [Show full text]
  • Civil Defense and Homeland Security: a Short History of National Preparedness Efforts
    Civil Defense and Homeland Security: A Short History of National Preparedness Efforts September 2006 Homeland Security National Preparedness Task Force 1 Civil Defense and Homeland Security: A Short History of National Preparedness Efforts September 2006 Homeland Security National Preparedness Task Force 2 ABOUT THIS REPORT This report is the result of a requirement by the Director of the Department of Homeland Security’s National Preparedness Task Force to examine the history of national preparedness efforts in the United States. The report provides a concise and accessible historical overview of U.S. national preparedness efforts since World War I, identifying and analyzing key policy efforts, drivers of change, and lessons learned. While the report provides much critical information, it is not meant to be a substitute for more comprehensive historical and analytical treatments. It is hoped that the report will be an informative and useful resource for policymakers, those individuals interested in the history of what is today known as homeland security, and homeland security stakeholders responsible for the development and implementation of effective national preparedness policies and programs. 3 Introduction the Nation’s diverse communities, be carefully planned, capable of quickly providing From the air raid warning and plane spotting pertinent information to the populace about activities of the Office of Civil Defense in the imminent threats, and able to convey risk 1940s, to the Duck and Cover film strips and without creating unnecessary alarm. backyard shelters of the 1950s, to today’s all- hazards preparedness programs led by the The following narrative identifies some of the Department of Homeland Security, Federal key trends, drivers of change, and lessons strategies to enhance the nation’s learned in the history of U.S.
    [Show full text]
  • Downloads of Technical Information
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2018 Nuclear Spaces: Simulations of Nuclear Warfare in Film, by the Numbers, and on the Atomic Battlefield Donald J. Kinney Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES NUCLEAR SPACES: SIMULATIONS OF NUCLEAR WARFARE IN FILM, BY THE NUMBERS, AND ON THE ATOMIC BATTLEFIELD By DONALD J KINNEY A Dissertation submitted to the Department of History in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2018 Donald J. Kinney defended this dissertation on October 15, 2018. The members of the supervisory committee were: Ronald E. Doel Professor Directing Dissertation Joseph R. Hellweg University Representative Jonathan A. Grant Committee Member Kristine C. Harper Committee Member Guenter Kurt Piehler Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii For Morgan, Nala, Sebastian, Eliza, John, James, and Annette, who all took their turns on watch as I worked. iii ACKNOWLEDGMENTS I would like to thank the members of my committee, Kris Harper, Jonathan Grant, Kurt Piehler, and Joseph Hellweg. I would especially like to thank Ron Doel, without whom none of this would have been possible. It has been a very long road since that afternoon in Powell's City of Books, but Ron made certain that I did not despair. Thank you. iv TABLE OF CONTENTS Abstract..............................................................................................................................................................vii 1.
    [Show full text]
  • Duck and Cover: How Print Media, the U.S. Government, and Entertainment Culture Formedamerica's Understanding of the Atom
    DUCK AND COVER: HOW PRINT MEDIA, THE U.S. GOVERNMENT, AND ENTERTAINMENT CULTURE FORMEDAMERICA’S UNDERSTANDING OF THE ATOM BOMB A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts By Daniel Patrick Wright B.A., University of Cincinnati, 2013 2015 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL May 5, 2015 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Daniel Patrick Wright ENTITLED Duck and Cover: How Print Media, the U.S. Government and Entertainment Culture Formed America’s Understanding of the Atom Bomb BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Arts ________________________________ Jonathan Winkler, Thesis Director ________________________________ Carol Herringer, Chair History Department Committee on College of Liberal Arts Final Examination ________________________________ Drew Swanson, Ph.D. ________________________________ Nancy Garner, Ph.D. ________________________________ Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School ABSTRACT Wright, Daniel Patrick. M.A. Department of History, Wright State University, 2015. Duck and Cover: How Print Media, the U.S. Government and Entertainment Culture Formed America’s Understanding of the Atom Bomb This research project will explore an overview of the different subsections of American post-war society that contributed to the American “atomic reality” in hopes of revealing how and why the American understanding of atomic weapons did not slowly evolve over the course of a generation, but instead materialize rapidly in the years following the bombing of Hiroshima and Nagasaki. By analyzing government sources and programs, print media sources such as newspapers and magazines, and the American entertainment culture of the 1940s and 1950s, this research project will answer exactly why and how the American public arrived at its understanding of the atom bomb.
    [Show full text]
  • California North Coast Offshore Wind Studies
    California North Coast Offshore Wind Studies Overview of Geological Hazards This report was prepared by Mark A. Hemphill-Haley, Eileen Hemphill-Haley, and Wyeth Wunderlich of the Humboldt State University Department of Geology. It is part of the California North Coast Offshore Wind Studies collection, edited by Mark Severy, Zachary Alva, Gregory Chapman, Maia Cheli, Tanya Garcia, Christina Ortega, Nicole Salas, Amin Younes, James Zoellick, & Arne Jacobson, and published by the Schatz Energy Research Center in September 2020. The series is available online at schatzcenter.org/wind/ Schatz Energy Research Center Humboldt State University Arcata, CA 95521 | (707) 826-4345 California North Coast Offshore Wind Studies Disclaimer This study was prepared under contract with Humboldt State University Sponsored Programs Foundation with financial support from the Department of Defense, Office of Economic Adjustment. The content reflects the views of the Humboldt State University Sponsored Programs Foundation and does not necessarily reflect the views of the Department of Defense, Office of Economic Adjustment. This report was created under Grant Agreement Number: OPR19100 About the Schatz Energy Research Center The Schatz Energy Research Center at Humboldt State University advances clean and renewable energy. Our projects aim to reduce climate change and pollution while increasing energy access and resilience. Our work is collaborative and multidisciplinary, and we are grateful to the many partners who together make our efforts possible. Learn more about our work at schatzcenter.org Rights and Permissions The material in this work is subject to copyright. Please cite as follows: Hemphill-Haley, M.A., Hemphill-Haley, E. and Wunderlich, W. (2020).
    [Show full text]
  • Significant Aspects of Geotechnical and Seismic Engineering and Management of Bridges and Structures in the U.S
    SIGNIFICANT ASPECTS OF GEOTECHNICAL AND SEISMIC ENGINEERING AND MANAGEMENT OF BRIDGES AND STRUCTURES IN THE U.S. M. Myint Lwin1 Abstract It is important to integrate the knowledge and experience of geotechnical and seismic engineering and management of bridges to make sound decisions to reduce earthquake damages to highways, bridges and structures. Research continues to play important roles in developing modern bridge seismic design criteria, detailing practices and seismic retrofit strategies for reducing structural damages and casualties. Bridge management systems can be used effectively to incorporate seismic assessment data for prioritizing seismic retrofit needs. Introduction Major earthquakes, such as the 1964 Alaska Earthquake, Anchorage, Alaska; the 1989 Loma Prieta Earthquake, California; the 1994 Northridge Earthquake, California; the 1995 Kobe Earthquake, Japan; and so on, have taken thousands of lives, caused billions of dollars in damages, and incurred other indirect costs as a result of damage to bridges and structures, highways, and other public facilities. It is necessary to integrate the knowledge and experience in geotechnical and seismic engineering, and the management of bridges and structures, and other public facilities to mitigate seismic hazards. The important seismic hazards are strong ground shaking, ground failures (such as, liquefaction, lateral spread, differential settlement, landslides), soil-structure interaction, and other indirect effects caused by ground shaking and failures, such as, tsunamis, seiches, floods and fires. The engineers and code writers must take these seismic hazards into account in developing earthquake-resistant design, construction and management. Seismologic and Geologic Aspect of Earthquakes When an earthquake occurs, seismic waves traveled from the source to the earth’s surface through body waves and surface waves.
    [Show full text]
  • 1964 Great Alaska Earthquake—A Photographic Tour of Anchorage, Alaska
    1964 Great Alaska Earthquake—A Photographic Tour of Anchorage, Alaska Open-File Report 2014–1086 U.S. Department of the Interior U.S. Geological Survey Cover: Comparison photographs taken from the same location on 4th Avenue looking east through the intersection with C Street, Anchorage, Alaska. (Top photograph taken by U.S. Army, 1964; bottom photograph taken by Robert G. McGimsey, 2013) 1964 Great Alaska Earthquake—A Photographic Tour of Anchorage, Alaska By Evan E. Thoms, Peter J. Haeussler, Rebecca D. Anderson, and Robert G. McGimsey Open-File Report 2014–1086 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Thoms, E.E., Haeussler, P.J., Anderson, R.D., and McGimsey, R.G., 2014, 1964 Great Alaska Earthquake—A photographic tour of Anchorage, Alaska: U.S. Geological Survey Open-File Report 2014-1086, 48 p., http://dx.doi.org/10.3133/ofr20141086. ISSN 2331-1258 (online) Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • How to Survive Earthquakes and Tsunamis in Oregon
    Living on Shaky Ground How to survive earthquakes and tsunamis in Oregon Copyright 2018, Oregon Office of Emergency Management with help from the Oregon Department of Geology and Mineral Industries. Originally adapted from Humboldt Earthquake Education Center at Humboldt State University. Reproduction by permission only. Disclaimer: This document is intended to promote earthquake and tsunami readiness. It is based on the best currently available scientific, engineering, and sociological research. Following its suggestions, however, does not guarantee the safety of an individual or of a structure. Contributors • Michael Murphy, Coos County • Patence Winningham, City of Eugene • Justin Ross, Multnomah County • Cynthia Valdivia, Washington County • Bonny Cushman, City of Portland • Barbara Ayers, Hood River County • Curtis Peetz, American Red Cross • John Bowles, Morrow County • Virginia Demaris, Lincoln County • Terri Eubanks, City of Ashland • Althea Rizzo, Oregon Office of Emergency Management • Paula Negele, Oregon Office of Emergency Management ii Oregon Office of Emergency Management Introduction You can prepare for the What do I do? next quake or tsunami an earthquake you should: During Some people think it is not worth preparing for • If you are indoors, DROP and take COVER an earthquake or a tsunami because whether you under a sturdy table or other furniture. HOLD survive or not is up to chance. NOT SO! ON to it and stay put until the shaking stops. Most Oregon buildings will survive even a large • Stay clear of items that can fall and injure you, earthquake, and so will you, especially if you such as windows, fireplaces and heavy furniture. follow the simple guidelines in this handbook • Stay inside.
    [Show full text]