Draining the Life-Blood: Groundwater Impacts of Coal Mining in the Galilee Basin

Total Page:16

File Type:pdf, Size:1020Kb

Draining the Life-Blood: Groundwater Impacts of Coal Mining in the Galilee Basin Draining the Life-blood: Groundwater Impacts of Coal Mining in the Galilee Basin Hydrocology Environmental Consulting In consultation with Tom Crothers - Stellar Advisory Services 23 September 2013 Draining the life-blood: Groundwater Impacts of Coal Mining in the Galilee Basin 1 Front Cover images: Alpha Test Pit aerial - Greenpeace/Andrew Quilty Belyando Crossing Cattle north of Belyando Crossing Back Cover images: Ensham mine, Bowen Basin Belyando Crossing Emus in a Galilee Basin river channel Greenpeace images as credited - all other images courtesy Kate Ausburn, Boudicca Cerese and Ellie Smith. 2 Draining the life-blood: Groundwater Impacts of Coal Mining in the Galilee Basin Contents Executive Summary .........................................................................................................................5 Impacts outlined in this report ...................................................................................................7 Where to from here ............................................................................................................................9 1: Introduction ................................................................................................................................10 2: Background .................................................................................................................................14 2.1 The Galilee Basin geology ...............................................................................................................14 2.2 Water demand of Galilee coal projects ......................................................................................... 15 2.3 Galilee Basin aquifers and aquitards ..............................................................................................18 2.4 Mining methods proposed for Galilee coal mines .......................................................................22 2.5 Queensland groundwater regulation ............................................................................................. 27 2.6 Environment Protection Biodiversity Conservation Act 1999 ......................................................29 3: Groundwater impacts of Galilee mine proposals ........................................30 3.1 Impacts on the Great Artesian Basin ..............................................................................................32 3.2 Scale and impact of mine dewatering ...........................................................................................35 3.3 Impacts on groundwater discharge ...............................................................................................39 3.4 Impact on aquifer recharge and cross-formation flow ..................................................................42 3.5 Town and property impacts ............................................................................................................44 4: Conclusion ....................................................................................................................................49 References ..............................................................................................................................................51 Appendices .............................................................................................................................................54 Appendix 1: Galilee Exploration Permits for Coal .....................................................................................54 Appendix 2 Rainfall data ..............................................................................................................................56 Draining the life-blood: Groundwater Impacts of Coal Mining in the Galilee Basin 3 Belyando River, Galilee Basin 4 Draining the life-blood: Groundwater Impacts of Coal Mining in the Galilee Basin Executive Summary The series of coal mines proposed for Queensland’s Galilee Basin, on the edge of Great Artesian Basin recharge beds, stand to have a significant impact on the region’s groundwater resources, yet these risks have to date not been sufficiently assessed, and are therefore poorly understood. This report analyses assessment documents prepared by five coal mine proponents, projects additional impacts of a further four proposed mines and finds that, together, the coal mines proposed for the Galilee Basin have the potential to cause permanent and unacceptable impacts on regional groundwater and surface water resources. It is therefore argued that a regional, cumulative impact assessment of the full set of proposed mines be carried out prior to any further approvals being granted, to properly assess the risk of these potentially major impacts on the Basin’s water resources . The potential impact on surface water in the Belyando River catchment as a result of the groundwater interference of the mines, is also poorly understood by both the Queensland and Federal Governments responsible for protecting water resources. A companion report on the impacts on surface water by the proposed Galilee coal mines will be released in the near future. Environmental Impact Statements and other formal assessment documents prepared by Galilee Basin mine proponents for the five mines which have so far been assessed, predict that up to 870 gigalitres (GL) of groundwater will need to be removed from mine pits and underground workings for coal to be extracted. Dewatering projections for all nine mine proposals could total 1,343GL – over 2.5 times the volume of water in Sydney Harbour. 1 The nine coal mines proposed for the Galilee Basin would see over 34 open cut pits and 15 underground mines along a 270 kilometre north south strike to produce over 300 million tonnes of coal per annum at full production. Open cut coal pits for Galilee Basin mines will dewater regional aquifers long after mining ceases and will continue to draw groundwater due to evaporation that will raise salinity of the water in the void well beyond usable levels. While Adani’s Carmichael mine would operate for 90 years and other Galilee Basin mines for 30 years or more, all of these mines are expected to have impacts on local and regional water resources that will extend beyond the productive life of the mines, for generations to come. Longwall mining has historically caused land subsidence that increases the risks of aquifer fracturing, which has the potential to impact on the water resources in the Great Artesian Basin (GAB). Though the mechanisms are very poorly understood, the fracturing of aquifers constraining the GAB water from flowing eastward, together with the volume of water from mine dewatering operations, poses a grave risk that significant volumes will be caused to flow out from GAB recharge aquifers. Waratah Coal’s EIS for the China First mine reveals that the Rewan Formation aquitard, which separates the Clematis Sandstone aquifer – long considered a GAB recharge aquifer for the Central Erogmanga region – from regional aquifers, will be directly affected by the mines, and risks being fractured by one or more of the underground mines proposed for that project. The thickness, permeability and integrity of the Rewan Formation is critical in controlling whether or not the proposed mining will impact on the GAB. Coal mines require large quantities of water to use for dust suppression and coal washing. Based on the documents produced for Environmental Impact Assessment of the proposed mines, we have estimated that the peak water demand of the five Galilee mine proposals for which assessment documents have been prepared, is between 50 and 70 billion litres a year (GLpa), of which more than 60% will be sourced 1 The nine mines referred to in this report are those listed in Table 1. Other mining leases and mining exploration projects are also granted or underway in the Galilee Basin. Draining the life-blood: Groundwater Impacts of Coal Mining in the Galilee Basin 5 from local watercourses and groundwater. This has the potential to cause significant impact on local groundwater dependent ecosystems and fundamentally alter the dynamics of groundwater-surface water interaction. Groundwater is an essential resource for pastoralists and domestic and town water supplies precisely because of its reliability. Groundwater supplies water for the 1000 or so people of the former Jericho Shire (now part of the Barcaldine Regional Shire) and the 180,000-240,000 cattle pastured on properties in the Shire. The high likelihood of significant impacts to the region’s groundwater resources by proposed Galilee Basin mines has been acknowledged in the various assessment documents prepared for the mines. This fact has also been implicitly acknowledged by of the mine proponents who have offered to negotiate “make good” agreements with neighbouring landholders to provide alternative water supplies should groundwater no longer be available once mining begins. Despite this risk, a summary of the impacts of all of the proposed projects, and the implications for other water users, has not yet been prepared or attempted. This is the first report which has compiled publicly available information in an attempt to assess and review the likely cumulative impacts of the mines on the regions groundwater resources. A more detailed and rigorous assessment, based on additional data collection and modelling is urgently required in order to safeguard against potentially irreversible impacts. John Graham, Central Queensland grazier 6 Draining the life-blood:
Recommended publications
  • Division of Mines and Mining
    STATE OF WASHINGTON ARTHUR B. LANGLIE, GOVERNOR Department of Conservation and Development JOHN BROOKE FINK, Director THIRD BIENNIAL REPORT of the DIVISION OF MINES AND MINING For the Period Commencing January 1, 1939 and Ending January 1, 1941 By THOMAS B. HILL, SUPERVISOR J . w. MELROSE, GEOLOGIST OLYMPIA STATE PRI NTINC PLANT DIVISION OF MINES AND MINING Hon. John Brooke Fink, Director, Department of Conservation and Development, Olympia, Washington. Sir: I have the honor to submit herewith the third biennial report of the Division of Mines and Mining, covering the period from January l, 1939, to January 1, 1941. Respectfully, THOMAS B. HILL, Supervisor. DIVISION OF MINES AND MINING THOMAS B. HILL Supervisor SUMMARY OF MINERAL INFORMATION The present widespread interest in the mineral resources of Washington had its beginning in 1933 when the Director of the Department of Conserva­ tion and Devlopment devoted a substantial part of an allocation of $80,000 from Washington Emergency Relief Administration to mineral investigations. Two years later, the Division of Mines and Mining was created, and has continued the investigations, the work of compiling information and promoting the development of the mineral resources. Extensive information had been developed on the mineral resources of the State in the previous twenty-five years, largely through the Washington Geological Survey and the Division of Geology. This information had been published in some 50 or more bulletins and 1·eports, about half of which are now out of print. The information, while extensive, was scattered and in many instances fragmentary. The result of the work begun by the Department in 1933, and continued by this Division since 1935, is that now information is available on all the known mineral occurrences of the State.
    [Show full text]
  • Report to Office of Water Science, Department of Science, Information Technology and Innovation, Brisbane
    Lake Eyre Basin Springs Assessment Project Hydrogeology, cultural history and biological values of springs in the Barcaldine, Springvale and Flinders River supergroups, Galilee Basin and Tertiary springs of western Queensland 2016 Department of Science, Information Technology and Innovation Prepared by R.J. Fensham, J.L. Silcock, B. Laffineur, H.J. MacDermott Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The Commonwealth of Australia 2016 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence Under this licence you are free, without having to seek permission from DSITI or the Commonwealth, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation Fensham, R.J., Silcock, J.L., Laffineur, B., MacDermott, H.J.
    [Show full text]
  • Shift in Global Tantalum Mine Production, 2000–2014
    Shift in Global Tantalum Mine Production, 2000–2014 Tantalum has a unique set of tantalum from mine production is econom- (defined as sharing a border with the properties that make it useful in a ically viable in only a few countries. DRC) (U.S. Securities and Exchange number of diverse applications. The Although developed countries Commission, 2012; Chasan, 2015; ability of the metal to store and release dominated tantalum mine production U.S. Department of State, 2015). electrical energy makes it ideally suited in the early 2000s, production today The DRC, Rwanda, and surrounding for use in certain types of capacitors is dominated by countries in the Great countries are not globally significant that are widely used in modern elec- Lakes Region of Africa (figs. 1 and 2). sources of tin, tungsten, or gold, tronics. Approximately 60 percent of There is concern that the sales of accounting for only about 2 percent global tantalum consumption is in the minerals, including columbite-tantalite or of the mined world supply for each of electronics industry (Papp, 2015). The “coltan,” a mineral from which tantalum these elements. The region has, however, ductility and corrosion resistance of the is derived, have helped finance rebel evolved to become the world’s largest metal lends itself to application in the groups accused of violating human rights producer of mined tantalum. chemical processing industry, and its high as part of the continuing armed conflict A further complication of the melting point and high strength reten- in the Democratic Republic of the Congo production of tantalum stems from the tion at elevated temperatures make it an (DRC) and neighboring countries.
    [Show full text]
  • Galilee Basin Thermal Coal Prohibition Bill Submission
    Galilee Basin Thermal Coal Prohibition Bill Submission This submission relates to the proposed Bill for an Act to prohibit the mining of thermal coal in the Galilee Basin. The Black-throated Finch Recovery Team is a community-based group whose mission is to secure the conservation of the Black-throated Finch (southern subspecies) Poephila cincta cincta which is listed as Endangered under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) as well as under Queensland and New South Wales state legislation. The proposed Bill is relevant to the conservation of the Black-throated Finch because of the vital importance of the Galilee Basin as a stronghold for the species. Portions of the Galilee Basin provide high quality habitat in narrow-leaf ironbark (Eucalyptus crebra) and other woodlands and these areas support the highest know densities and largest known surviving populations of the bird. The only other area known to support relatively large populations is the Townsville Coastal Plain where the species is threatened by urban expansion, intensive livestock grazing and vegetation change, including weed invasion. The species is rare, if not extinct, further south in Queensland and in New South Wales. Open-cut and underground coal mining present a major threat to the populations of Black- throated Finch in the Galilee Basin. These threats relate to mine footprints themselves, which can be substantial, especially in the case of open-cut mining, and to the direct and indirect effects of mining-related infrastructure. Offsets, as proposed for as part of the conditions for approval of developments, such as the Carmichael Mine, do not compensate for loss of habitat and populations of Black-throated Finch and there is the very real risk that there are inadequate areas suitable for offsets.
    [Show full text]
  • Why Do Coal Mines Need So Much Water? 13 April 2017, by Ellen Moon
    Why do coal mines need so much water? 13 April 2017, by Ellen Moon as a water-based slurry for further processing. Mines also need water for things like equipment maintenance, and for consumption by the mining communities themselves. In total, about 250 litres of freshwater are required per tonne of coal produced. This freshwater makes up around a quarter of the total water demand during coal production, the rest being "worked" (recycled) water. Coal mines, such as this one near Bowen, use water for What other industries use lots of water? everything from equipment cooling to dust management. Credit: CSIRO, CC BY The Great Artesian Basin is one of the largest underground water reservoirs in the world. It underlies 22% of Australia's land area, beneath the arid and semi-arid parts of Queensland, New South From accidental water spills into coastal wetlands, Wales, South Australia and the Northern Territory. to proposed taxpayer-funded loans, Adani's planned Carmichael coal mine and the associated Its aquifers supply water to around 200 towns or Abbot Point coal terminal can't keep out of the settlements, most of which are allowed to draw news at the moment. between 100 and 500 million litres (ML) per year. Last week, the granting of an unlimited 60-year water licence to the Carmichael mine, in Queensland's Galilee Basin, rattled environmentalists, farmers and community groups alike. In a region experiencing prolonged drought conditions, the provision of unlimited water for one of the largest mining operations in the Southern Hemisphere seems like a commitment at odds with current climate predictions.
    [Show full text]
  • New Enterprise Project
    NI 43-101 Technical Report Assessing the Au, Cu, Porphyry Potential of the New Enterprise Project Maynard Mining District, Kingman, Arizona, United States of America FOR Pershing Resources Company Inc. 200 South Virginia Street, 8th Floor Reno, NV 89501 AUTHORS: Edward Walker, Ph.D., P.Geo. Jim Renaud, Ph.D., P.Geo. Natalie Pietrzak-Renaud, Ph.D., P.Geo. Effective Date : June 18, 2018 Signature Date: May 22, 2018 Table of Contents Item 1: Summary .......................................................................................................................... 7 Item 2: Introduction.................................................................................................................... 12 Item 3: Reliance on Other Experts .............................................................................................. 14 Item 4: Property Description and Location ................................................................................ 14 Item 5: Accessibility, Climate, Local Resources, Infrastructure, and Physiography ................... 27 Location and Access ............................................................................................................... 27 Climate and Vegetation .......................................................................................................... 27 Local Resources and Infrastructure ........................................................................................ 27 Physiography .........................................................................................................................
    [Show full text]
  • 5.4 Galilee Basin Survey 2012 Report.Doc Occur in Proximity to Intact Woodlands.) Waterhole Watches Were Not Used (More Useful in the Dry Season)
    bulk email and a handout in Appendix 1 Notices. We were agreeably surprised at the positive response. Many landholders were concerned about the impact of mining on their properties, and made us very welcome. We were given the use of showers and toilets etc. in some delightful campsites. Paola Cassini at Bimblebox even provided us with great meals. One offer of hospitality came directly from the ABC Breakfast Session, and another as a response to the first bulk email in Appendix 1 Survey personnel Sixteen volunteers from BirdLife Southern Queensland (14) and BirdLife Townsville (2) took part. No members from the BTR Recovery Team, BirdLife Capricornia or BirdLife North Queensland were available. The volunteers worked as two independent groups. See Appendix 2 The Team Survey area Initially it had been planned to do three 500m surveys and twelve 2HA Atlas plus Habitat surveys each morning, and optional incidental searches in the afternoons. It soon became apparent that organisation time and distances between sites permitted less surveys – in many cases the 2HA and Habitat surveys were omitted. Survey Sites See list in Appendix 3 Survey Sites. In the Galilee Basin, BTFs had been found in grassy, open woodlands and forests of Regional Ecosystem 10.5.5 - Eucalyptus melanophloia (Silver-leafed Ironbark) open woodland on sand plains. When it became apparent that many of the property managers of the ten properties with this RE were happy to give permission for surveys, it was decided to concentrate on these. It was found that the Stock Routes in the area were all unfenced, and largely unused, so little attention was given to them, and there was no time for the rail corridors, National Parks or Nature Refuges.
    [Show full text]
  • Galilee Basin (Coal Prohibition)
    Galilee Basin (Coal Prohibition) Bill 2018 IEEFA’s submission to the Senate Environment and Communications Legislation Committee inquiry into the Galilee Basin (Coal Prohibition) Bill 2018 January 2019 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) Galilee Basin (Coal Prohibition) Bill 2018 1 Table of Contents Executive Summary .............................................................................................................. 3 1. The IEA Sustainable Development Scenario: Coal’s Collapse ............................... 5 2. Financial Institutions Pivot Away from Coal ............................................................... 9 2.1 Japan ..................................................................................................................................... 10 2.2 South Korea ........................................................................................................................... 11 3. India’s Pivot to Renewables........................................................................................12 4. Inferior Galilee Coal Quality ......................................................................................14 4.1 6,000kcal Thermal Coal at US$100/t .................................................................................. 14 4.2 5,500kcal Thermal Coal at a 2018 Low .............................................................................. 15 5. Other Risks .....................................................................................................................18
    [Show full text]
  • Assessment of Acid and Metalliferous Drainage – Greenbushes Lithium
    Appendix C – Assessment of Acid and Metalliferous Drainage – Greenbushes Lithium Mine Expansion – 2018 Mining Proposal (GHD 2018) and Talison Leaching Study – Stage 2 AMD Testing Results (GHD 2019) GHD | Report for Talison Lithium Australia Pty Ltd – Greenbushes Mine Expansion – Works Approval 1, 6136944 TALISON LITHIUM Talison Lithium Australia Pty Ltd Assessment of acid and metalliferous drainage Greenbushes Lithium Mine Expansion - 2018 Mining Proposal July 2018 WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION Executive summary GHD was engaged by Talison Lithium Australia Pty Ltd to undertake an Acid and Metalliferous Drainage assessment (AMD), to demonstrate the leaching potential of the future tailings and waste rock due to the proposed expansion of the mine - the Greenbushes Lithium Mine, located at Greenbushes Western Australia. The scope of works for this AMD study included the collation and geo-statistical analysis of Talison’s mineralogical assay data base - for the proposed waste rock and ore, and a review of the body of information relating to previous AMD assessments of the previously mined waste rock and existing tailings facilities. Given the continuity of mineralogy between the previously mined material and the proposed mined material (waste rock and ore), the findings of previous AMD assessments, relating to the existing waste rock and tailings facilities, are considered reliable indicators of the future AMD risk. This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.3 and the assumptions and qualifications contained throughout the Report. Acidic drainage risk The risk that the tailings (derived from ore processing) will produce adverse quantities of acid is considered low, given the low sulphur content (average 0.04%).
    [Show full text]
  • Estimation of Capital Costs for Establishing Coal Mines in South Africa
    ESTIMATION OF CAPITAL COSTS FOR ESTABLISHING COAL MINES IN SOUTH AFRICA Moshe Mohutsiwa A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2015 DECLARATION I declare that this research report is my own unaided work. It is being submitted to the degree of Master of Science to the University of the Witwatersrand, Johannesburg. (Signature of Candidate) day of year ii ABSTRACT Coal is one of the most abundant mineral resources in South Africa and it is predominantly used in electricity generation in the country. Of all the mineral resources in South Africa, development of coal resources attracted most of the financial investment between 2010 and 2013. Development of mining projects requires estimation of capital and operating costs in the early stages of the project’s life. Estimation of costs is an essential exercise that assists on deciding the future of mining projects. Despite all the investment in the South African coal mining sector, there is still little consistency in unit capital costs invested/required to develop coal mining projects. Lack of research within the area of coal mining projects’ costs is attributable to a lack of publicly available information. Research in this area will enable investors and operators in the coal mining sector to be able to assess financial viability early in the project life. This study reviewed coal mining projects across the world, looking at publicly available capital costs. The study further recognised similarities between the South African and Indian coal mining sectors thereby enabling the research to leverage data from the Indian coal mining sector to estimate capital costs in South Africa.
    [Show full text]
  • Chapter 22 Conclusion and Recommendations
    Chapter 22 Conclusion and recommendations November 2013 Table of contents 22. Conclusion and recommendations ........................................................................................... 22-1 22.1 Purpose of this chapter .................................................................................................. 22-1 22.2 Rationale for NGBR Project ........................................................................................... 22-1 22.3 Economic justification .................................................................................................... 22-2 22.4 Project impacts .............................................................................................................. 22-2 22.4.1 Land use and tenure ........................................................................................... 22-2 22.4.2 Topography, geology, soils and land contamination .......................................... 22-3 22.4.3 Nature conservation ........................................................................................... 22-3 22.4.4 Matters of national environmental significance .................................................. 22-4 22.4.5 Greenhouse gas ................................................................................................. 22-5 22.4.6 Cultural heritage ................................................................................................. 22-5 22.4.7 Social and economic impacts ............................................................................
    [Show full text]
  • VARIATION of CONDITIONS ATTACHED to APPROVAL Carmichael Coal Mine and Rail Infrastructure Project, Queensland (EPBC 2010/5736)
    ~£~" _A_u_st_r_a_Ji_a_D_G_o_V_C_I'"_D__ffi _e_"_t ~ Department of the Environment and Energy VARIATION OF CONDITIONS ATTACHED TO APPROVAL Carmichael Coal Mine and Rail Infrastructure Project, Queensland (EPBC 2010/5736) This decision to vary conditions of approval is made under section 143 of the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). Approved action Person to whom the Adani Mining Pty Ltd approval is granted ACN: 145455205 Approved action To develop an open cut and underground coal mine, 189 km rail link and associated infrastructure approximately 160 km north west of Clermont in central Queensland [see EPBC Act referral 2010/5736 and approved variations dated 19 April 2012, 9 October 2012 and 24 July 2013] Variation Variation of conditions The variation is: attached to approval Delete conditions 8 and 11 attached to the approval and substitute with the conditions specified below. Delete the definition of the Galilee Basin Strategic Offset Strategy. Insert a new definition of Galilee Basin Offset Strategy as specified below. Date of effect This variation has effect on the date the instrument is signed Person authorised to make decision Name and position Chris Videroni Acting Assistant Secretary Assessme and Post Approvals Branch Signature Date of decision Varied condition As varied on 8. The approval holder must legally secure the minimum offset areas detailed in Table 1 for the date of the rail (west) component within four years of commencement of the specified component of this notice the action. The approval holder must legally secure the minimum offset areas for the other specified components detailed in Table 1 within two years of commencement of those specified components of the action.
    [Show full text]